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Abstract. This study provides dissolved and particulate
230Th and 232Th results as well as particulate 234Th data col-
lected during expeditions to the central Arctic Ocean (GEO-
TRACES, an international project to identify processes and
quantify fluxes that control the distributions of trace ele-
ments; sections GN04 and GIPY11). Constructing a time
series of dissolved 230Th from 1991 to 2015 enables the
identification of processes that control the temporal devel-
opment of 230Th distributions in the Amundsen Basin. After
2007, 230Th concentrations decreased significantly over the
entire water column, particularly between 300 and 1500 m.
This decrease is accompanied by a circulation change, evi-
denced by a concomitant increase in salinity. A potentially
increased inflow of water of Atlantic origin with low dis-
solved 230Th concentrations leads to the observed depletion
in dissolved 230Th in the central Arctic. Because atmospher-
ically derived tracers (chlorofluorocarbon (CFC), sulfur hex-
afluoride (SF6)) do not reveal an increase in ventilation rate,

it is suggested that these interior waters have undergone en-
hanced scavenging of Th during transit from Fram Strait and
the Barents Sea to the central Amundsen Basin. The 230Th
depletion propagates downward in the water column by set-
tling particles and reversible scavenging.

1 Introduction

The Arctic Ocean is one of the most rapidly changing parts
of the Earth’s ocean–atmosphere system as a result of climate
change. Underlying the potential anthropogenic changes is a
large natural variability in the Arctic. Due to the limited ob-
servations in this extreme environment, establishing datasets
that allow an assessment of its variability is important. Nat-
ural tracers of physical, chemical and biological processes
provide an integrated description of the changing state of the
system. They are therefore key tools to investigate processes,
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Figure 1. Map of the Arctic Ocean and station overview. AB:
Amundsen Basin; NB: Nansen Basin; GR: Gakkel Ridge; MB:
Makarov Basin. BS: Barents Sea; FS: Fram Strait; LR: Lomonosov
Ridge; St.A: St. Anna Trough with intermediate water circulation
patterns after Rudels (2009). Red is the Atlantic inflow through
Fram Strait (FSBW) and return flow through the Nansen Basin; pur-
ple is the inflow through the Barents Sea (BSBW). Atlantic layer
circulation in the Amundsen Basin (orange), the Makarov Basin
(black) and Canada Basin (blue) are indicated as arrows. Copyright:
Schlitzer (2018).

monitor environmental changes and provide an observational
baseline against which models can be tested.

1.1 Hydrography and circulation patterns of the
central Arctic Ocean

The central Arctic Ocean is divided into the Amerasian Basin
and Eurasian Basin by the Lomonosov Ridge (Fig. 1). The
Gakkel Ridge separates the Eurasian Basin further into the
Nansen Basin and the Amundsen Basin, while the Amerasian
Basin is separated into the Makarov and Canada basins by the
Alpha–Mendeleev Ridge.

Water masses of the Arctic Ocean are commonly distin-
guished as five layers (Rudels, 2009). The uppermost low-
salinity Polar Mixed Layer (PML) varies in thickness be-
tween winter and summer due to melting and freezing of sea
ice. Salinity ranges from 30 to 32.5 (Amerasian Basin) to 32–
34 (Eurasian Basin). Below the PML is a 100–250 m thick
halocline in which salinity increases sharply from approxi-
mately 32.5 to 34.5. The underlying Atlantic Layer is charac-
terized in salinity and temperature by waters of Atlantic ori-
gin and is usually found between 400 and 700 m water depth.
Its salinity is 34.5–35. Intermediate waters down to 1500 m,

with a salinity of 34.87–34.92, are still able to exchange over
the Lomonosov Ridge. In contrast, deep and bottom waters
differ between the Eurasian Basin (salinity: 34.92–34.945)
and the Amerasian Basin (salinity: 34.92–34.96) due to the
topographic barrier.

Atlantic waters from the Norwegian Atlantic Current en-
ter the Arctic Ocean via Fram Strait and the Barents Sea.
Fram Strait Branch Water (FSBW) is supplied through the
West Spitsbergen Current (WSC) (Rudels, 2012) (Fig. 1).
Barents Sea Branch Water (BSBW) enters through the Bar-
ents Sea and consists of Atlantic water that undergoes strong
modifications in the Barents and Kara seas by cooling down
and mixing with continental runoff and meltwater (Rudels
et al., 2015). The BSBW enters the Nansen Basin through
the St. Anna Trough, where limited mixing with the FSBW
occurs. Once in the polar ocean, surface waters follow wind-
driven ice motion (Aagaard et al., 1980), whereas deeper At-
lantic water branches (FSBW and BSBW) flow cyclonically
to the east, forming a boundary current along the continental
slopes of the Nansen and Amundsen basins.

BSBW (approx. 1025 m depth; Tanhua, 2009) and FSBW
(approx. 425 m) return in the Atlantic and intermediate wa-
ter layers along the Lomonosov Ridge towards Fram Strait
(Rudels et al., 2013) (Fig. 1), and a second branch crosses
the Lomonosov Ridge entering the Canada Basin following
the Arctic Ocean Boundary Current (AOBC) (Rudels, 2009).

Deep waters of the Arctic Ocean have similar structure,
with a thick intermediate layer stratified in temperature but
with salinity almost constant with depth (Rudels, 2009). Yet,
the Amerasian Basin Deep Water is warmer, saltier and less
dense than the Eurasian Basin Deep Water (EBDW) (Aa-
gaard, 1981; Worthington, 1953). The deepest exchange of
Makarov Basin water, part of the Amerasian Basin, with
Eurasian Basin water occurs through a depression of the
ridge, called the Intra-Basin with a sill depth of approxi-
mately 1800 m (Björk et al., 2007, 2010; Jones et al., 1995).
Water from the Amundsen Basin flows over the Lomonosov
Ridge into the deep Makarov Basin and in the reverse direc-
tion (Middag et al., 2009).

Another important component of the Arctic Ocean is the
freshwater content, coming from the melting of sea ice and
from river runoff. The fresh water content of the central Arc-
tic Ocean is currently at the highest level since the early
1980s and is expected to increase in the future (Rabe et
al., 2014), which could lead to a stronger stratification of the
water column. This process is supported by sea ice decline, as
observed in the Beaufort Gyre (Wang et al., 2018). Karcher
et al. (2012) suggest a reversal in flow direction of Atlantic
Water in the Canada Basin at intermediate water depths on
the basis of 129I observations and modelling. This could lead
to a decoupling of flow regimes in the Canada and Eurasian
basins and reduce exchange times between the two major
basins of the Arctic Ocean (Karcher et al., 2012).
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1.2 Particle fluxes, shelf input and biological
productivity

Biological productivity in the central Arctic Ocean and re-
lated particle fluxes are lower than in other oceans due to
the perennial sea ice cover (Clark and Hanson, 1983). This
is expected to change in the future when light limitation is
relieved by sea ice retreat (Pabi et al., 2008). Arctic sea ice
extent is declining (Serreze et al., 2016) and ice is becom-
ing thinner (Serreze and Stroeve, 2015). Biological produc-
tivity may increase and begin earlier in the year, at least in
the Pacific part of the Arctic, depending on nutrient sup-
ply (Hill et al., 2017). Recent studies show that productiv-
ity is still low in the central Arctic Ocean, limited by both
light and nutrient availability (Arrigo and van Dijken, 2015).
Highest net community production (NCP) is found at the ice
edge of the Nansen Basin and over the shelves, while the
Amundsen Basin shows the lowest NCP (Ulfsbo et al., 2014).
Apart from the possible effect on NCP, the declining sea ice
cover will also enhance ice-derived particle fluxes (Arrigo
et al., 2008; Boetius et al., 2013). The Arctic Ocean has the
largest relative proportion of shelves of all the World Ocean:
approximately 50 % of area in total (Jakobsson, 2002). Shelf
sediments and large volumes of riverine input add trace met-
als and carbon among other terrestrial components to Arc-
tic shelf areas, some of which are transported to the central
Arctic by the Transpolar Drift (TPD) (Wheeler et al., 1997;
Rutgers van der Loeff et al., 2018, 1995). On the basis of an
increase in 228Ra supply to the interior Arctic Ocean, Kipp
et al. (2018) suggested that the supply of shelf-derived ma-
terials is increasing, with a following change in trace metal,
nutrient and carbon balances. Thawing permafrost and sub-
sequent increasing coastal erosion (Günther et al., 2013) may
increase terrestrial input to the central Arctic Ocean (Schuur
et al., 2013, 2015).

1.3 Th as a tracer of water circulation and particle
fluxes

Thorium isotopes have been extensively used to study and
model physical oceanographic processes, such as advection,
water mass mixing and particle flux (Bacon and Ander-
son, 1982; Rutgers van der Loeff and Berger, 1993; Roy-
Barman, 2009; Rempfer et al., 2017). In seawater, 230Th
(t1/2 = 75380 years) is produced by the radioactive decay
of dissolved 234U. Without lateral transport by currents, the
vertical distribution of 230Th in the water column is con-
trolled by reversible exchange with sinking particles and in-
creases with depth (Bacon and Anderson, 1982; Nozaki et
al., 1981). Deviations from a linear increase with a depth
profile of 230Th (Bacon and Anderson, 1982) suggest that
oceanic currents transport 230Th away from the production
area or that ventilation, upwelling or depth-dependent scav-
enging processes play a role in the 230Th distribution in the

water column (e.g. Rutgers van der Loeff and Berger, 1993;
Moran et al., 1995; Roy-Barman, 2009).

232Th (t1/2 = 1.405× 1010 years) is known as a tracer for
shelf- or continentally derived signatures (Hsieh et al., 2011),
while 234Th (t1/2 = 24.1 d) serves as a tracer for particle flux
(Moran and Smith, 2000).

230Th in the Arctic Ocean

Several studies have addressed the regional distribution of
dissolved 230Th in the Arctic Ocean in relation to particle
fluxes and water mass residence time over the past decades.
Yet several key points to understand the removal processes
of dissolved 230Th are not entirely understood and the sen-
sitivity of dissolved 230Th to environmental changes is still
not explained sufficiently. Bacon et al. (1989) hypothesized
that the scavenging of reactive elements in the central Arc-
tic Ocean was significantly lower than in other parts of the
world to explain the high 230Th concentrations observed at
the Alpha Ridge and the northern Makarov Basin (Bacon et
al., 1989). Edmonds et al. (1998), later confirmed by Trimble
et al. (2004), showed that 230Th activities in the deep south-
ern Canada Basin were much lower, and residence times cor-
respondingly shorter, than observed by Bacon et al. (1989) at
the Alpha Ridge.

Cochran et al. (1995) calculated residence times of dis-
solved 230Th of 18–19 years in the central Nansen Basin and
10–12 years on the Barents Sea slope. 230Th concentrations
in the Nansen Basin were found to be lower than those from
the Alpha Ridge reported by Bacon et al. (1989), and deep
water in the central Nansen Basin had lower particulate and
higher dissolved 230Th concentrations than near the slopes
(Cochran et al., 1995). Scholten et al. (1995) found that the
shallower EBDW is influenced by ventilation, in contrast to
the deeper Eurasian Basin Bottom Water (EBBW) and sug-
gested resuspension as the cause for the increased scavenging
rates in the EBBW. Valk et al. (2018a) showed that the deep
Nansen Basin is influenced by volcanic and hydrothermal in-
puts that lead to scavenging removal of 230Th over several
years, at least episodically.

Sedimentary 231Paxs/
230Thxs from the Canada Basin pro-

vided new insights into the relevance of scavenging removal
and the horizontal redistribution of these tracers as well as the
fractionation between the low-productivity, sea-ice-covered
interior basins and the seasonally high particle flux areas
at the margins. Low surface sediment 231Paxs/

230Thxs ra-
tios were interpreted as a result of chemical fractionation of
230Th and 231Pa in the water column, resulting in preferred
231Pa export out of the Arctic. Almost all of the 230Th pro-
duced in situ (ca. 90 %) was estimated to be removed within
the Arctic by scavenging onto particles (Moran et al., 2005),
while Hoffmann et al. (2013) suggested that the deep waters
of the Arctic are exchanged through Fram Strait on centen-
nial timescales.

www.ocean-sci.net/16/221/2020/ Ocean Sci., 16, 221–234, 2020
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Roy-Barman (2009) presented a boundary scavenging pro-
file model, showing that linear 230Th concentration profiles
do not necessarily imply that circulation is negligible. They
suggested that the difference between the Arctic and other
oceans is a considerable lateral transport of 230Th from the
interior to the margins.

1.4 Motivation

Global warming is triggering profound changes in the ocean,
and the Arctic Ocean is especially vulnerable to such envi-
ronmental forcing. Summer ice cover is rapidly declining,
while the supply of terrestrial material (Günther et al., 2013)
and particle flux (Boetius et al., 2013) increases and ocean
circulation is changing (Karcher et al., 2012). These develop-
ments are expected to leave an imprint on the distribution of
particle-reactive radionuclides, such as Th isotopes. A cen-
tral motivation for this GEOTRACES study is to use the Th
isotopes to depict changes in circulation and particle fluxes in
the Arctic Ocean from 1991 to 2015. The basis of this study
is a time series consisting of natural radionuclide data from
various previous studies, combined with new data from 2007
and 2015.

2 Methods

2.1 Sampling and analysis of Th in samples collected in
2007

Sea water samples were filtered directly from the 24 L CTD
(conductivity–temperature–depth) Niskin® bottles into acid-
cleaned Cubitainer® containers (low-density polyethylene
(LDPE)) using 0.45 µm pore size Acropaks®. Samples were
collected in volumes of 1, 2 and 10 L and acidified with con-
centrated ultraclean HNO3. Samples for the analysis of to-
tal 230Th were taken without filtration. Analyses were per-
formed at the University of Minnesota, Minneapolis, follow-
ing methods from Shen et al. (2003). Measurements were
done using inductively coupled plasma mass spectrometry
(ICP-MS; Thermo Finnigan, Neptune) equipped with a sec-
ondary electron multiplier (SEM) and a retarding potential
quadrupole (RPQ) energy filter.

2.2 Sampling and analysis of dissolved Th samples
collected in 2015

Samples were filtered directly from the 24 L CTD Niskin®

bottles into Cubitainer® containers (LDPE) through 0.45 µm
pore size Acropaks® in volumes of 10 L (> 2000 m) and
20 L (< 2000 m), according to the expected concentrations
(Nozaki et al., 1981). Acropaks® were used for half of the
cruise and then replaced by new ones. Subsequently water
samples were acidified to a pH of 1.5–2 by the addition
of 1 mL acid L−1 (seawater) of concentrated double-distilled
HNO3.

Preconcentration and analysis of 230Th and 232Th were
performed following GEOTRACES methods in clean labo-
ratories of the Alfred Wegener Institute (AWI) (Anderson et
al., 2012).

Samples were spiked with 229Th and 236U, calibrated
against the reference standard material UREM11, a mate-
rial in radioactive equilibrium (Hansen and Ring, 1983),
followed by the addition of a purified Fe carrier solution
(FeCl3). The next day, the pH of the samples was raised to
8.5 by adding double-distilled NH4OH to induce Fe(OH)3
precipitation. After 72 h, when the Fe(OH)3 had settled to
the bottom of the Cubitainer®, the precipitate was trans-
ferred from the Cubitainer® containers to acid-cleaned 1 L
Teflon® bottles, after syphoning off the supernatant water.
After the dissolution of the sample in concentrated HCl, the
pH was raised again to 8.5 to allow the Fe(OH)3 precipitate
and settle. The supernatant water was syphoned off and the
precipitate was transferred into acid-cleaned 50 mL Falcon®

tubes the following day. The samples were then washed by
centrifugation four times at 4000 rpm for 12 min, where the
supernatant was decanted before the addition of new ultra-
pure Milli-Q® water. Finally, the precipitation was dissolved
in concentrated HCl and evaporated to a drop (> 10 µL) in
an acid-cleaned 15 mL Savillex® beaker. After evaporation,
the fractions of Pa, Th, U and Nd were separated using
chromatographic columns filled with anion exchange resin
(AG1X8, 100–200 mesh) according to GEOTRACES meth-
ods (Anderson et al., 2012). All fractions were collected in
acid-cleaned 15 mL Savillex® beakers, and columns were
washed and conditioned before the samples were loaded onto
the columns using concentrated HCl and HNO3.

Procedural blanks for 230Th and 232Th were run with each
batch of 10–15 samples. Average 230Th and 232Th blank cor-
rections are 0.24 fg kg−1 and 0.003 pmol L−1, respectively.
At station 81, a sample (2000 m) was divided into two sam-
ples and resulted in different dissolved 232Th concentrations,
probably due to Th attached to the walls of the original cu-
bitainer. Here, an average value considering the volumes of
both parts of the divided samples was calculated.

2.3 Sampling and analysis of particulate 234Th samples
collected in 2015

Particulate samples were taken using in situ pumps (McLane
and Challenger Oceanic). In total, 268 to 860 L seawater
were pumped through a 142 mm diameter, 0.45 µm pore size
Supor® (polyether sulfone) filter (Anderson et al., 2012). Fil-
ters were cut aboard for subsamples under a laminar flow
hood using tweezers and scalpels. Subsamples (23 mm di-
ameter) were dried, put on plastic mounts, covered with My-
lar and aluminium foil, and directly measured by beta decay
counting of 234Th for at least 12 h. Six months later, back-
ground measurements were performed at the AWI in Bre-
merhaven.

Ocean Sci., 16, 221–234, 2020 www.ocean-sci.net/16/221/2020/
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Table 1. Parameters of the profile model adapted from Rutgers van
der Loeff et al. (2018), representing transient 230Th in the Amund-
sen Basin.

Parameter Symbol Value Unit

Vertical eddy diffusion coefficient Kz 4100 m2 yr−1

Exchange time 0–1500 m with Kara Sea
initial tK ∞ years
during ventilation tK 4 years

230Th Kara Sea 230ThK 0 fg L−1

Cp/Cd
230Th∗ K230 0.5 –

Cp/Cd
234Th∗ K234 0.12 –

Adsorption rate constant k1 1.59 yr−1

Desorption rate constant k−1 3.18 yr−1

Particle settling rate∗ S 582 m yr−1

∗ Valk et al. (2018a). Cp: particulate concentration; Cd: dissolved concentration.

2.4 Model

The model of Rutgers van der Loeff et al. (2018) was used
to analyse the downward propagation of a ventilation sig-
nal in the Atlantic layer by settling particles and radioactive
ingrowth. The 230Th model is based on the reversible ex-
change model of Bacon and Anderson (1982) and Nozaki et
al. (1981) and solved with the programming language R. We
first let the 230Th model run with the base parameters as given
for the Amundsen Basin in Table 1 of Rutgers van der Loeff
et al. (2018), but without exchange with the Kara Sea, until
dissolved 230Th reaches a linear steady-state profile. We then
simulate a hypothetical strong ventilation of the intermediate
water with 230Th-depleted shelf water by introducing an ex-
change process down to 1500 m with a 230Th-free water mass
on a timescale of 4 years, which causes a rapid reduction in
230Th in this upper layer. The 230Th profile is determined
over the full water column over time since the beginning of
this ventilation. Parameter values used in the simulation are
listed in Table 1.

3 Results

230Th results are expressed as unsupported excess 230Th
(230Thxs); for simplification, hereinafter 230Th refers to
230Thxs. Excess corrections were done following Hayes et
al. (2015). 230Th concentrations are corrected for a pro-
portion of 230Th released by the dissolution of lithogenic
particles. This is based on parallel measurements of
232Th, considering a lithogenic ratio 230Th/232Th= 4.0×
10−6 mol mol−1 (Roy-Barman et al., 2009).

3.1 Dissolved 230Th in 1991, 2007 and 2015

Data obtained in 1991 by Scholten et al. (1995) consti-
tute the baseline for the time series presented in this study
(Fig. 2a). Dissolved 230Th activities increased with depth in
the Amundsen Basin in 1991, 2007 and 2015.

Station 400 (2007), located at the south-eastern margin of
the Eurasian Basin, showed lower concentrations than the
open-ocean stations.

3.2 Dissolved 232Th in 2007 and 2015

The concentrations of dissolved 232Th from 2007 and 2015
were similar. In 2015, dissolved 232Th concentrations ob-
served in the Amundsen Basin showed a decreasing trend
with depth. Surface concentrations were relatively high at
station 117 (100 pg kg−1) and 125 (> 200 pg kg−1). At sta-
tion 81, dissolved 232Th showed a relatively constant depth
distribution, where surface 232Th concentrations were lower
compared to station 117 and 125. At stations 125 and 117
dissolved 232Th also decreased slightly with depth, with sta-
tion 117 showing a mid-depth maximum at 2000 m (Fig. 2c).
Values from 2007 (station 309) decreased with depth until
2500 m and then slightly increased towards 4500 m. Close to
the shelf (at station 400) concentrations were lower than in
the open basin in 2007.

3.3 Particulate 234Th from 2015

Particulate 234Th from 2015 is shown as the relative amount
of particulate 234Th (Fig. 2d) compared to total 234Th, cal-
culated from 238U activities, assuming equilibrium of total
234Th with 238U in deep water (Owens et al., 2011). All
profiles show rather low concentrations of particulate 234Th
in the Amundsen Basin. Especially below 2000 m partic-
ulate 234Th is much higher in the Nansen Basin (Valk et
al., 2018a).

4 Discussion

4.1 Temporal evolution of dissolved 230Th in the
Amundsen Basin

Figure 2a shows 230Th concentrations from 2015 and the
temporal development since 1991.

Temporal changes have been manifest over the entire wa-
ter column since 2007. With one exception, the 2015 concen-
tration range is below 2007 and 1991 (Scholten et al., 1995).
This difference is larger than the concentration range for the
three 2015 profiles (Fig. 2a). The three stations from 2015
(81, 117 and 125) are distributed over a wide area of the
Amundsen Basin (Fig. 1). Because all stations show lower
concentrations in 2015, this points to a temporal rather than a
regional variability over the entire basin. The decrease in dis-
solved 230Th in the Amundsen Basin started after 2007, con-

www.ocean-sci.net/16/221/2020/ Ocean Sci., 16, 221–234, 2020
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Figure 2. (a) Amundsen Basin dissolved 230Th from 2015 in blue (81: dots; 117: squares; 125: triangles; same as symbols in Fig. 2a and c),
2007 in green (309), 2007 margin in pink and 1991 in grey (173). (b) Amundsen Basin salinity profiles from 2015 (Rabe et al., 2016), 2007
(Schauer and Wisotzki, 2010) and 1991 (Rudels, 2010) and Fram Strait from 2016 (Kanzow et al., 2017). (c) Dissolved 232Th from 2015
(81 = dashed, 117 = dashed dotted, 125 = solid), 2007 (309 = green), and 2007 margin (400 = pink) and (d) particulate 234Th from 2015 in
percent of total 234Th (81: dashed; 117: dashed–dotted; 125: solid).

sidering the similar concentrations in 1991 and 2007. Dis-
solved 230Th decreased by 0.32 fg kg−1 yr−1 at 300–500 m
water depth and by 0.52 fg−1 kg−1 yr−1 at 1000–1500 m.
230Th is known to respond to particle fluxes as well as ocean
circulation (Anderson et al., 1983b, a). A reduction in dis-
solved 230Th concentrations can therefore be caused by ei-
ther increased scavenging (Anderson et al., 1983b) or by
changing circulation (Anderson et al., 1983a).

4.2 Scavenging in the central Amundsen Basin

Biological production in the central Arctic Ocean in 2011
was not higher than in 2007 (Ulfsbo et al., 2014). There-
fore, enhanced biological production in the Amundsen Basin
and subsequent sinking particles can be excluded as a rea-
son for the changing Th distributions. Enhanced scavenging
by lithogenic material at these stations can also be excluded
because for all three stations from 2015, dissolved 232Th val-

Ocean Sci., 16, 221–234, 2020 www.ocean-sci.net/16/221/2020/
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ues at 1000 m are in the same range or lower than observed
in 2007 (Fig. 2c). Low dissolved 232Th is taken here as an in-
dicator of low amounts of lithogenic material. Enhanced par-
ticle loads would result in high concentrations of particulate
234Th, as observed in the deep Nansen Basin where partic-
ulate 234Th ranges between 3.3 % and 9.1 % of total 234Th
(Valk et al., 2018a). In the Amundsen Basin only station 125
(2015), located at the slope of the Lomonosov Ridge, shows
relatively high values of particulate 234Th in the deep wa-
ter from 1500 m downward (Fig. 2d). This feature could be
explained by the resuspension of slope sediments along the
Lomonosov Ridge, as no increased scavenging was observed
in the deep Amundsen Basin (Slagter et al., 2017). Slagter et
al. (2017) argue that similar riverine surface influence of hu-
mic substances in the Amundsen Basin and in the Makarov
Basin did not lead to increased scavenging at depth in the
Amundsen Basin, even at stations influenced by the TPD
(e.g. station 125) (Slagter et al., 2017; Rutgers van der Lo-
eff et al., 2018). This is in contrast to the Makarov Basin,
where Slagter et al. (2017) observed a slight increase in dis-
solved Fe-binding organic ligand concentrations and reduced
dissolved Fe concentrations that may point to more intense
scavenging or lower Fe inputs (Slagter et al., 2017; Klunder
et al., 2012), while the high 232Th observed at the surface of
station 125 points to a notable continental component, a sig-
nal that is not observed below (Fig. 2c). Hence, our observa-
tions are consistent with Slagter et al. (2017). To summarize,
dissolved 232Th generally did not increase since 2007, except
for station 117 at 2000 m and station 81 at 3500 m. Recent
studies about Ra isotopes, Fe-binding ligands, NCP estimates
and the particulate data (234Th, 232Th) do not point to en-
hanced particle fluxes in the central Amundsen Basin. There-
fore, and putting all these different parameters together, it can
be concluded that scavenging of 230Th within the Amundsen
Basin is unlikely to be the primary factor for the observed
reduction between 2007 and 2015 in the Amundsen Basin.

4.3 At 500–1500 m: intermediate water mass changes

The decrease in dissolved 230Th at depths between 500 and
1500 m for stations 81, 117 and 125 in the Amundsen Basin
(2015) is most prominent at 1000 m, where concentrations
decreased to half of the value in 2007 (Fig. 2a). This depth
range in the Amundsen Basin is ventilated on considerably
shorter timescales than in the Nansen and Makarov basins by
a westward boundary circulation (Tanhua et al., 2009).

The drop in dissolved 230Th at 1000 m corresponds to an
increase in the 129I/236U ratio (Fig. 3), implying a higher At-
lantic influence of younger waters (Casacuberta et al., 2018),
which in turn is in agreement with an increase in the circu-
lation or ventilation rate between 750 and 1500 m. For sta-
tion 81, in the central Amundsen Basin, Rutgers van der Lo-
eff et al. (2018) estimated a ventilation age based on SF6
data of 15–18 years at 1000 m. This estimate fits timescales
based on 228Ra data and is supported independently by the

Figure 3. (a) Dissolved 230Th and (b) 129I/236U (Casacuberta et
al., 2018) for three stations in the Amundsen Basin, 2015.

129I/236U ratio (Rutgers van der Loeff et al., 2018). While
anthropogenic radionuclides (Fig. 3) imply exchange with
young shelf waters of Atlantic influence, it is unclear to
what extent the change in 230Th may be caused by exchange
with the Makarov Basin. Tanhua et al. (2009) found no-
table changes in CFC tracer ages at the North Pole, indi-
cating older waters in 1994 compared to 1991 and 2005 at
400 m; a change that was also documented in silicate con-
centrations (Tanhua et al., 2009). This feature probably re-
flected a shift in the front of Eurasian and Canada Basin wa-
ter around the year 1994, with Canadian Basin water pene-
trating deeper into the central Amundsen Basin (Tanhua et
al., 2009). Unfortunately, there are no 230Th data from this
phase of penetration of Canada Basin water around 1994. If
the 230Th data from 1991 are connected to CFC data from
the same year, while the 230Th data from 2007 are con-
nected to CFC data of 2005 (Tanhua et al., 2009), they are
both representative of periods of low intrusion of Canada
Basin water over the Lomonosov Ridge. The renewed in-
trusion of Canada Basin water in 2015 can be excluded as
mechanism for the observed change in 230Th because this
would increase rather than decrease dissolved 230Th con-
centrations in the Amundsen Basin (Scholten et al., 1995;
Edmonds et al., 2004; this study). Moreover, the intrusion
of Canada Basin water would not match the ventilation age
estimated by Rutgers van der Loeff et al. (2018), since the
Canada Basin water is known to be much older than Amund-
sen Basin water at this depth (Tanhua et al., 2009). Hence,
it is suggested that the changes in the Amundsen Basin can-
not be explained by interaction with the Makarov Basin. On
the contrary, salinity distributions imply that the influence of
Atlantic waters in the Amundsen Basin had increased at 500–
1500 m by 2015, indicating that water masses changed after
2007 (Fig. 2b). Figure 2b shows salinity profiles for three
stations from the Amundsen Basin from 2007 (Schauer and
Wisotzki, 2010), three from 2015 (Rabe et al., 2016), and one
from 1991 (Rudels, 2010). In 2015, the intermediate waters
of the Amundsen Basin had a stronger Atlantic contribution
(Polyakov et al., 2017; Rabe et al., 2016). This change is cor-
related with the decrease in dissolved 230Th.
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Figure 4. Comparison of pCFC and pSF6 (partial pressures of CFC and SF6, respectively) ages from 2005 (red) and 2015 (blue) in the
Amundsen Basin at stations located in the return flow along the Lomonosov Ridge, distinguishing the depth ranges of FSBW (solid box)
and BSBW (dashed box). Locations of 2015 stations are marked in the map as blue symbols (81: dots; 85: squares; 89: diamonds) and 2005
stations in red (41: dots; 42: squares; 46: diamonds). Copyright: Schlitzer, R., Ocean Data View, odv.awi.de (2018).

Anthropogenic tracers can help determine whether the in-
creased Atlantic water contribution had resulted in increased
ventilation rates of the intermediate waters in the Amundsen
Basin. A comparison of CFC and SF6 ages between 2005
and 2015 (Fig. 4) shows that both the FSBW (approx. 425 m)
and the BSBW (approx. 1025 m) ventilation age did not de-
crease after 2005. The SF6 age for the Atlantic Water (BSBW
around 1000 m) at the northern end of the section in Fig. 4
is 12–15 years in 2005 and 15–18 years in 2015, suggest-
ing perhaps a slowdown of the transport of Atlantic Water
in the boundary current. That would indicate that a change
in scavenging along the flow path of the Atlantic water must
be responsible for the observed decrease in dissolved 230Th
rather than a change in ventilation.

4.4 230Th removal process in intermediate waters on
circulation pathways

In order to judge the scavenging intensity it is useful to
compare dissolved 230Th concentrations at various loca-
tions along the flow paths of the Atlantic waters. Arctic
Intermediate Water (AIW) is comprised of water from the
Greenland Sea and the Nordic Seas via the West Spitsber-
gen Current (WSC) (Rudels, 2009). In the north-east At-
lantic at 25◦ N (GEOTRACES section GA03_W, station 20),
dissolved 230Th concentrations are 8.23 fg kg−1 at 1000 m
and 13.17 fg kg−1 at 1500 m (Hayes et al., 2015) (Fig. 5).
At 55◦ N, dissolved 230Th concentrations in 1995 were
3.47 fg kg−1 at 500 m and 6.8 fg kg−1 at 1625 m (Vogler et
al., 1998) (station L3). In the Norwegian Sea, dissolved
230Th concentrations in 1993 were 5.81 fg kg−1 at 872 m
and 7.04 fg kg−1 at 1286 m (Moran et al., 1995) (station 13).
These values are above the highest value of dissolved 230Th

at 1000 m in the Amundsen Basin in 2015 (5 fg kg−1). That
means that these waters have lost 230Th during their tran-
sit to the central Amundsen Basin, through the productive
North Atlantic and Fram Strait (FSBW) and over the Bar-
ents Sea shelf (BSBW). These pathways are influenced by
an increased input of terrestrial matter (Günther et al., 2013)
and/or increased primary production at the shelf and the ice
edge compared to previous years (Arrigo and van Dijken,
2015; Ulfsbo et al., 2018). Relatively high concentrations of
Fe at the margin indicate the possibility of enhanced scav-
enging by iron oxides (Rijkenberg et al., 2018).

At station 400, located at the south-eastern margin of
the Eurasian Basin, the deepest water is in the influence of
BSBW, downstream of the Barents and Kara Sea shelf and
slope. At the largest depth of ∼ 1200 m, the 230Th concen-
tration is low and similar to concentrations in the central
Amundsen Basin in 2015. This is consistent with the hypoth-
esis that Atlantic waters that were depleted in 230Th on the
shelf contribute to the decrease in dissolved 230Th in the cen-
tral Amundsen Basin. Such a relic of the scavenging signal
implies that scavenging occurs on pathways of inflow waters
along the shelves rather than locally within the central basin.
The high surface values of dissolved 230Th at station 400 are
in line with low export production at this station compared to
shallower stations over the shelf (Cai et al., 2010).

Hence, the observed reduction in dissolved 230Th in the
intermediate water of the Amundsen Basin is attributed to a
combination of scavenging and advection. Scavenging takes
place locally on the shelves and along the slopes of the Bar-
ents, Kara and Laptev seas, causing the removal of 230Th ob-
served downstream in the central Amundsen Basin. Figure 5
shows pathways of intermediate waters and dissolved 230Th
profiles from 2015, illustrating the mechanism controlling
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Figure 5. (a) Circulation pathways of Atlantic waters to the central Amundsen Basin. (b) Conceptual drawing of scavenging and mixing
of water masses close to St. Anna Trough (black line in a represents the section of b). LR: Lomonosov Ridge; GR: Gakkel Ridge; BSS:
Barents Sea shelf; FS: Fram Strait. (c) Development of dissolved 230Th concentrations from the North Atlantic to the Amundsen Basin.
Atlantic values (open symbols; Hayes et al., 2015; Vogler et al., 1998; Moran et al., 1995) are represented by a deep box flowing in through
Fram Strait and a shallow box with lower activities flowing in over the Barents Shelf and exposed to additional scavenging on the shelf
(horizontal black arrow) before it is subducted and mixed with deeper Atlantic inflow to form the observed reduced concentrations in the
central Amundsen Basin. Stations 32 and 40 (red) are from Gdaniec et al. (2020). Copyright: Schlitzer, R., Ocean Data View, odv.awi.de
(2018).

the relatively low dissolved 230Th concentrations observed
in the central Amundsen Basin. Atlantic waters flowing over
the Barents and Kara shelves lose 230Th by increased scav-
enging. 230Th-depleted BSBW is subducted and gradually
mixes with deeper Atlantic inflow. The closer the stations
are to the Lomonosov Ridge, the younger the ventilation age
(Fig. 5) and the more the salinities are shifted towards At-
lantic values. Variability in temperature and salinity plots in-
dicate that this branch interacts with ambient waters (Rudels

et al., 1994). This is consistent with dissolved 230Th con-
centrations observed at stations 81, 117 and 125 (2015), with
station 125, located in the TPD and closest to the Lomonosov
Ridge, showing the lowest concentrations. The low 230Th
concentrations at station 125 may also be affected by addi-
tional scavenging due to resuspension on the slope of the
Lomonosov Ridge.
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4.5 Vertical transport of circulation-derived 230Th
scavenging signal and effects in deep waters

Intermediate waters in the central Amundsen Basin have a
lower dissolved 230Th in the depth range up to 1500 m due
to increased scavenging during the transport of Atlantic wa-
ter over the shelves and along the slope. The time series data
also reveal changing conditions below the intermediate wa-
ters, indicated by a decrease in dissolved 230Th in the deeper
water column (Fig. 2a).

This raises the question as to whether a change, as ob-
served for 500–1500 m, might cause a decrease in concen-
trations in the water column below that depth within just
8 years. Theoretically, such a decreasing signal could be
manifested by sinking particles via reversible scavenging of
sinking particles. With particle settling rates of 582 m yr−1

(Rutgers van der Loeff et al., 2018), an average particle needs
approximately 6 years from the depth of strongest deple-
tion (1000 m) to reach the bottom of the water column. That
would match the timescale of the decrease in 230Th observed
between 2007 and 2015. The time for particle transport to
depth is the limiting step because the timescale for particle
settling is longer than for adsorption and desorption of tho-
rium (Rutgers van der Loeff et al., 2018). On the basis of
these parameters, Rutgers van der Loeff et al. (2018) cre-
ated a model to illustrate the development of 228Ra and 228Th
over time. This model is modified here to simulate how the
full water column profile of dissolved 230Th in the Amund-
sen Basin reacts to a sudden change in circulation transport
of water with low 230Th into the intermediate depth layer
(Table 1). The model should be seen as a description of the
downward penetration of the removal signal rather than as
a precise retracing of profiles from the central Amundsen
Basin. The exchange process used to introduce the ventilated
water mass is not meant to reproduce the actual ventilation
with water from the Kara or Barents seas, but it merely serves
the purpose of creating a rapid reduction in 230Th in the up-
per 1500 m in order to model the downward propagation of
such a signal by reversible scavenging. The model results in
Fig. 6 show how fast a decrease in 230Th in the ventilated
layer (500–1500 m) is propagated into the deep water. Un-
certainties in the model assumptions, such as particle sink-
ing speed and exchange between dissolved and particulate
phases, might cause the difference between model and data.
This may also explain why the downward penetration of the
ventilation signal is slower in the model, where it has not
yet reached the seafloor after 8 years (Fig. 6), than in the
observed data. But the model results underpin the notion of
a dissolved 230Th decrease due to circulation and scaveng-
ing along the circulation pathways and account for the reduc-
tion in dissolved 230Th below the circulation influence. This
temporal change can therefore be explained by a significant
reduction in the input of low-230Th waters from shallower
depths, even if the scavenging rate in the deep basin remains
constant.

Figure 6. Modelled dissolved 230Th distribution in the Amundsen
Basin 0, 2, 4, 6, 8, 10, 15 and 20 years after the reduction in concen-
tration in the upper layer (0–1500 m) by continuous exchange with
230Th-free surface water. The model was modified after Rutgers van
der Loeff et al. (2018).

Hydrothermal plumes released by volcanoes at the Gakkel
Ridge could also decrease dissolved 230Th efficiently and pe-
riodically, as suggested by Valk et al. (2018a) for the deep
Nansen Basin. However, these plumes probably do not af-
fect the Amundsen Basin as much as the Nansen Basin due
to recirculation in the Nansen Basin that retains most of
the hydrothermal-plume-affected waters in the Nansen Basin
(Valk et al., 2018a). Additionally, the depths where the ma-
jor changes occurred in the Amundsen Basin are too shal-
low (the hydrothermal scavenging starts below 2000 m) and
the deep-water decrease in dissolved 230Th in the Amundsen
Basin since 2007 is much weaker than in the Nansen Basin
(Valk et al., 2018a).

5 Conclusion

Concentrations of dissolved 230Th throughout the entire wa-
ter column in the Amundsen Basin decreased since 2007.
There is no indication of increased scavenging removal of
230Th due to increased particle flux within the Amundsen
Basin. An increase in salinity of intermediate water (at 500–
1500 m) points to the influence of Atlantic-derived waters,
although SF6 data suggest that the ventilation of this layer
has not increased. The reduction in dissolved 230Th concen-
tration in the Amundsen Basin intermediate waters is there-
fore attributed to increased scavenging from source waters
and the transport of this relict scavenging signature by ad-
vection. Thus, these downstream waters reflect a scaveng-
ing history over the Siberian shelves and slope that results in
a reduction in 230Th relative to Atlantic source waters and,
in turn, reduced dissolved 230Th in the central Amundsen
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Basin. The low-230Th signal is propagated to deeper central
Arctic Ocean waters by reversible scavenging. These find-
ings highlight the close interaction of horizontal transport by
advection and particle scavenging removal, which combine
to generate far-field distributions of reactive trace elements.
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