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E Background

* CEAis focused on the development of next amed Scrammed
generation nuclear reactors e
* Current development for Reactivity Control clectro-magnet [[l] - ASove Core I
Systems (RCS) — -
— Main use: Control output of reactor Vessel
* Exhibit difficult case of forced excitation ——— [l Cower ieeve
and multi-body interactions with frictional m Or Abserber)
contacts AN (S —

* Desire: a simplified tool for early design

phase simulations for safety during seismic
eve nt Below Core
Structure

— Easy to modify/adjust test system
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* To study these systems, PIRAT (Python
Implementation for Reliability Assessment
Tools) is currently being developed

Model Geometry Analysis
and Properties Parameters

— StaBl — Statically enforced boundary | |

— DEBSE — Dynamically enforced boundary ¢
(Focus of this work)

e Based on 3 main tools:

SIKI = Kinetic i tion t d : ; :
o INELIC Insertion to measure drop- Deformed Contact | | Post-Processing
time Geometry Forces Variables

e Uses analytical (continuous) modeling
approaches

— Opposed to FE
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E Types of Systems

* RCSs control the output of the reactor

— Primarily during earthquake

10

e Comprised of 3 main subsystems

— Mobile Part (MP) containing the of EMP\ Us |

absorbing material

— Lower Sleeve (LS) that enforces the
dynamic excitation caused by the core

Altitude [m]

— Upper Sleeve (US) that is more rigid than af

MP but has relatively free movement \[G/
* To study these systems, the Model di —_| I_i -
System Configuration (MSC) system is ‘@* N LS
used Y00 0 : 5 100

Radial Distance [mm)]

— Modeled after past French fast reactors
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* Based on Euler-Bernoulli beam segments | w0
Pwint)  Bwlt)  Pwkt) =
Bl G+ el — 4 pA—— S = z F ()8 (x — x;) + 2 E. ()8(x — x,,)
* Treat contact as externally applied, point-force .
— k for contact with LS and m for contact with US i

* Contact forces and deformation relationship described by

contact models (focus of this work) X
* Due to excitation (fixed displacement), simple BC with

change of CS is used to simplify analysis :

N i
w(x, t) = ¢po(t)Do(x) + ¢ (1) Dy (x) + z Yn () qn(t) }k
(E]

Same type of analysis for US, assumed to be cantilever
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E Contact Models

e 2 models considered

 Both are regulation based and depend on relative penetration of MP and the
sleeves

AD =

L

b b J
D+ p,| D, — Py - + Contact on Right
— ) - 5 =4{— Contact on Left

0 No Contact

* First model: a mass-less, two-stage linear spring with a gap

Km (pr - gi) + |pr - gil if Pr = gi
Fi:KcAi"'T (mtg)—lp+agil ifoi<-—g
0 else

 Second model: Lankarani and Nikravesh (L&N) contact model
F, = gnE;\/R_; L;A? b € [1.0,1.5]

* Both characterize different aspects and simplifications for these types of
systems
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E Simulation Results

* 3 types of excitations considered ol

Excitation at 1G

— Nearly same maximum displacement of excitation
locations

— Safe Shutdown Earthquake (SSE) magnitude

20

Displacement [mm]
=

=20 |

e 15t—Stepped-Sine excitation
— Easier to understand interactions D T Ve
— Adjust applied frequency w | Excitation at G

— ldentify resonance behavior

o 2nd /3rd _ Realistic excitations
— Generated from whole-core simulations

Displacement [mm]

— Reactor is not expected to restart ol

* Focus on early time °0 3 10 i 0 =

Time [s]
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E First Results — Stepped Sine Excitation

* The first result is for LS motion via Sine wave with variable frequency

* Plot shows maximum displacement magnitude of Upper Guide (UG) normalized
to static deformation estimate — Dynamic Amplification Factor (DAF)

 Shows 4 distinct regions based on frequency

F.=24Hz
8 T Y ——
g o , 2 =—a Spring
= \b\ —e b=10 |
6 ¢ b=125H i
o - :
10 3 < gt 10 :
Time [s] Q Time [s] -MP us
-\
55 F.=10Hz g 4 100 H 2 :
E 3 — —_—
15 % 3} ' e 2 ( :)
10 g ‘: ' < :
2 2 | B R o) N
J 16
g oo 3 8 : A :
-05 1 -0 e :\_/\ T‘:
10 T \ |,' . U :
s 0 R R AR ., RO
2 3 4 -] F [H ] 72000 02 04 06 08 10 12 e = Ridld'DiS“;ﬂC?[mml *
Time [s] requency z Time [s]
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E Sine Excitation Discussion

 Low frequency region e
— Nearly identical results AL 2 =
— Some numerical issues at very low frequencies _ : =57
* Resonant region AANAN / 1 NS
— MP mode at 2.3 Hz and US mode at 2.1 Hz e T 1
— Causes numerical instabilities ’
 Mid frequency region
— Large variability g
— Response dominated by low frequency motion, é
not excitation 2
* High frequency region

— Multi-mode response -
Frequency [Hz]
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E Resonance Effects

e 2 Aspects of resonance effects

— Variability (partially due to numerical —
conditioning) .

— Increase in response

* Increase in response due to imposing
large displacement at mode shape max
— Large energy due to resonance, but

fixed amount of energy in 2" mode
due to fixed displacements

Dynamic Amplification Factor

— Energy transferred to 1t mode where
UG has large displacement

Frequency [Hz]
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E Realistic Excitation — BASILIQ excitation

 To mimic more realistic excitation, response of whole core simulation of
seismic event is used (From BASILIQ®5T3M 3 CEA code)

* Uses dynamics of fuel rods, RCS, and core
e Based on realistic seismic spectrum to get deflection of LS

101

Excitation at IG

102 |

109k

Displacement FRF
Displacement [mm]

10 |

1 1 Il 1 1
10° - . 0 5 10 15 20 =
10 10 10 10

Frequency [Hz] Time [s]
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E BASILIQ Excitation — Results

* For short-time (<8 seconds), little variability
* |n general for this excitation only focused on short-time
— Reactor is not expected to restart after this level of earthquake

* Within short-time, | DAF|<1 suggesting that static estimate might be
conservative ;

Spring
b=1.0

[ )

b=1.25
b=15

Time[s]




E Realistic Excitation — Dynamic Excitation on Statically Deformed System

* |n actuality, the deformation is comprised of
several components, some static and some
dyn am |C 0 . Elxcitation af: IG

e Static contributions:
— Installation misalignment
— Fabrication uncertainty

— lrradiation

Displacement [mm]

 Dynamic contributions:

— Primarily seismic activity ' é' i Ti []1I5 " "
Ime [5

* To simulate this, apply dynamic excitation to
statically deformed system

* Nearly same maximum deformation
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E Static + Dynamic— Results

e Almost no variability in short time (<10 seconds)
* Largest DAF <1

 Some instances where IG is positive (at all times) and UG is negative
— Induces large shear forces that hinder the safety function of RCS

10
0.8 |
06
0.4 3 §
TR
& 0.2
& |
00 | S ozp lm 1
— b=10 — Spring
-0z H = b=1.25 [l — b=1.0
_ Sl =— b=125
b=15 — b=15
0.4 L L 04 T I L i L
0 2 4 0 5 10 5 20 5

Timel[s] Timel[s]
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E Conclusions

 CEA is developing tools to study Reactivity Control Systems that consist of
multiple sub-systems

* One of the most difficult aspects is the interaction between sub-systems
* For the dynamic tool DEBSE, 2 candidate contact models are compared

— 2-stage spring, L&N contact model (with various exponential values)

 Both are implemented and can produce similar results

e Differences were noticed for both higher frequency (especially resonance
range) sine excitation and parts of more realistic excitation

e Large dynamic excitations shows variability in contact models

e But for the scope of early design phase/excitations of interest, current
modeling is sufficient

— Just needs experimental validation
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Thank you for your
Cea attention
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E Early Career Researchers Social

* Tonight at 6pm, Early Career Researcher Social

e At Valhalla Bar [6100 Main St, Houston, TX 77005]
— Next to Engineering Building

 Meet other early career researchers (Grad-students, post-docs, entry
professors/lecturers, etc.)

* Drinks & Food provided

— Torchy’s Tacos for food and Valhalla for drinks

FREE!!!
Come hang out!
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E Extra Slide — Penetration Variables

. . + |p,| b Ip,| — b - + Contact on Right

[ = <T> —< > ) =<{— Contact on Left
0 No Contact

pr > 0 for contact on Right, and p; < 0 for contact on Left

Depends on US or LS

For LS:

N
Dr = Po(t)Do(xx) + ¢ (6)Dy(xx) + z Yn () qn () — Vi (t) — (RLS(xk) - RMP(xk))

N
D1 = o (t)Do(x) + ¢ (6D (xp) + z Yn (%) qn () = Vie(®) + (Rps (i) — Rugp (i)

For US:

N r
br = ¢0(t)D0 (xm) + ¢L (t)DL(xm) + z wn(xm)Qn(t) - Z qjy(zm)Qy(t) - (RUS(Zm) - RMP (xm))

N r
b = ¢O(t)DO(xm) + ¢L (t)DL (xm) + 2 1/Jn(xm)qn(t) - 2 pr(zm)Qy(t) + (RUS(Zm) - RMP(xm))
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Maximum |DAF|

Maximum |DAF|

Commissariat a I’énergie atomique et aux énergies alternatives

Extra Slide — Stepped-Sine DAF

: [ ]

4 & 8 10
Frequency [Hz]

Frequency [Hz]

Maximum |DAF|

Maximum |DAF|

25

4 6 8 10
Frequency [Hz]

20

15+

10+

w—k ph=15

0.5

Frequency [Hz]



Extra Slide — Separate Time Histories

20 UG Deflection with Springs UG Deflection when N, =1.0
T T T T T 15 T T T - T T
15+ g 10k
] s |
|
0.0
o |
% -0.5 |
=10
15 | | =15 | g
_2 D 1 1 1 1 1 _2D 1 1 1 1 1
0 5 10 15 20 25 o 5 10 15 20 25
Time [s] Time [s]
20 UG Deflection when N, =1.25 3 UG Deflection when N, =1.5
Il
15 20 25

Time [s] Time [s]
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