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General context

In many industrial or natural configurations, involving heat and reactive
transport we face :

Stiff Nonlinear Differential-Algebraic Equations

−→ Chemical processes, Nuclear PWR clogging, Radioactive waste
recycling or disposal, Hydrogeology, CO2 underground storage...

Stiffness of a solution curve may result from chemical reactions
depending on temperature, catalytic processes or complex fluxes etc...
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General context

When looking for the steady state of a system, through a transient
simulation with stiff phenomena, adaptive time integration then becomes
a necessity, to adapt the timestep to local stiffness.

2 broad categories of time integrators are often used :

BDF (backwards differentiation formula) and MEBDF (modified
extended backwards differentiation formula) approaches (Gear,
DASSL or MEBDFDAE algorithms)
Runge-Kutta approaches

High order time discretization⇒ costly additional operations at each
iteration of the nonlinear solver

What if you only care for a precise evaluation of the steady state,
however precise the transient way to get there may be ?

−→ ARES may be of service.
You are the god(dess) of war aiming at a swift victory

over your nonlinear foe !
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Adaptive Relaxed Euler Scheme

−→ Let F : (R,Rp ,Rp) −→ R be a continuously differentiable nonlinear
function. A typical DAE solution y : R −→ Rp writes :

F
(
t , y,

dy
dt

)
= 0

∀t ,∀i ∈ ~1, p�, li ≤ yi (t) ≤ ui

−→ Euler implicit time integration scheme means that we solve at every tn :

F(tn, yn,
yn − yn−1

hn
) = 0

−→ Implicit Euler time schemes with an adaptive timestep differ mainly by
the strategy governing the choice of the next timestep hn = tn − tn−1.
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Adaptive Relaxed Euler Scheme

−→ As is done very often in adaptive time schemes, we use a predictor to
propose a prediction of yn, noted as y∗n(o), based upon a Taylor evaluation
of order o = 1 or o = 2

y∗n(1) = yn−1 + dn−1hn with dn−1 =
yn−1 − yn−2

hn−1

y∗n(2) = y∗n(1) +
1
2

d2
n−1h2

n with d2
n−1 =

dn−1 − dn−2

hn−1

−→ y∗n(o) is used as the initial guess for a classical Newton method.
−→We monitor the behaviour of the solution using the number of
iterations used by the Newton method (noted henceforth In) to converge
towards the solution. This value is a direct product of the Newton solver
and needs no further calculation.
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Adaptive Relaxed Euler Scheme

A very basic and simple idea :

−→ The Newton solver’s number of iterations is viewed here as an
indicator of the gap between yn and the predicted value y∗n(o).

−→ This gap between yn and y∗n(o) is informally related to the stiffness of
the solution.

−→We allow the timestep to increase when this number is low, because
the solution should be smooth enough between tn−1 and tn. Conversely,
we decrease the timestep when this number is high.

−→ Since we aim only for the steady state : F(t , y, 0) = 0, high order time

discretization of
dy
dt

is nullified in the end and order 1 is sufficient.

N. Leterrier (CEA-Saclay) RTM 19 29-30/04/19 7 / 22



Adaptive Relaxed Euler Scheme

In : number of iterations needed to compute yn

Iu : a user-defined "ideal" number of iterations
γa > 1 : acceleration rate
0 < γd < 1 : deceleration rate

At first, we take hn = hn−1 and then we apply the following choices,
naming h∗n the previous value of hn :

Convergence fails −→ hn = γdh∗n
Convergence succeeds in In iterations :

I In = Iu −→ next timestep with hn+1 = h∗n
I In > Iu −→ treated as failure
I In < Iu −→ next timestep with hn+1 = max(γah∗n, hmax)

Delayed version : In > Iu is not treated as a failure, but the timestep is
nevertheless reduced : hn+1 = γdh∗n.
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Adaptive Relaxed Euler Scheme

ARES fully solves at each timestep the equation F(tn, yn,
yn−yn−1

hn
) = 0,

through the Newton method, at any requested precision.

Stationary time : yn − yn−1 = 0 =⇒ F(tn, yn, 0) = 0

−→ yn solves the exact equation of the steady state equation (provided of
course that this solution remains within the boundaries).

ARES can also be used for a transient calculation, with h < hmax to ensure
a minimal precision, since the order of the time scheme remains 1.
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Why it works in theory

Let G : Rp −→ Rp be the following function :

G(y) = F(tn, y,
y − yn−1

hn
) (1)

At every timestep tn, we search for yn as the solution of G(y) = 0 through
the Newton method. Let J(y) be the jacobian of G for y. One Newton
iteration (step k ) verifies :

J(yk )(yk+1 − yk ) = −G(yk ) (2)
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Why it works in theory

If we decompose y = [yA , ..., yp] and G(y) = [g1(y), ..., gp(y)] accordingly
for a p-sized system, we have :

p∑
j=1

(yk+1
j − yk

j )
∂gi

yj
(yk

A , ..., y
k
p ) = −gi(yk

A , ..., y
k
p ) ∀i ∈ [1, p] (3)

Let z : R −→ Rp be solution of the following differential equation :

d
dt

[gi(z(t))] = −gi(z(t)) (4)

−→ ∀i ∈ [1, p] (3) can be seen as an implicit Euler time discretization of
(4), with a constant timestep=1.
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Why it works in theory

The solution z(t) ("Newton flow") verifies :

gi(z(t)) = gi(z(0)) exp−t (5)

If the Newton iterations run by (3) converge towards the solution yn, there
is by construction a discret solution of (4) ∀i ∈ [1, p].
The values of z(t) form then a trajectory towards yn, with a constant
timestep.
According to (5), the trajectory depends only on the values of gi(z(0)) or
the first iterate of the Newton method.

−→ Direct correspondence between the number of Newton iterations In
and the overall closeness of G(y∗n(o)) to zero.

−→ Preserving a low In ensures then a relative smoothness of the solution
between tn−1 and tn.
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Numerical results the SIDES code

SIDES is a module of the open source platform TRUST, dedicated to
thermohydraulics in the context of nuclear plant simulations :

C++ platform providing many numerical tools, such as PETSc linear
solvers, pre- and postprocessing tools etc...

Basis for TrioCFD, Genepi+, Cathare...

SIDES aggregates objects associated with numerical methods : being
given a nonlinear function of multipe variables, its jacobian and a set
of bounds, it may be used to solve any F

(
t , y, dy

dt

)
= 0

−→ ARES was used in SIDES for an industrial code dedicated to
Liquid-Liquid-Extraction :

reactive and heat transport between an organical and an aqueous
phase countercurrently,

both intra- and interphasic chemical reactions,

chemical reactions under kinetics or at equilibrium,

retroaction of chemistry on temperature.
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Numerical results Case study 1

2 Pulsed Colums, 2 chemical phases with 11 fictitious species

Aq Inlet 1

Org Inlet 1

Org Settler Org Settler

Aq Settler Aq Settler

Aq Inlet 3

Org Inlet 4

Aq Inlet 2

Org Inlet 2

Org Inlet 3

1 2

Aaq → Baq λ = 10xA

Aaq + Caq → Daq λ = 8xA xC

Aorg → Borg λ = 10yA

Corg + Dorg → Borg + Eorg λ = 200yC y2
D

Aaq + 2Baq ↔ Caq 0.1xCaq = xA x2
B

3Aorg + 2Borg ↔ Corg 0.1y2
C = y3

A y2
B

Aaq ↔ Aorg yA = 2xA
Baq ↔ Borg yB = 2xB
Baq + Daq ↔ Dorg yD = 100xB xB

Density laws : ρaq , ρorg

Variable fluxes with phase swelling
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Numerical results Case study 2

4 Pulsed Colums, 5 more fictitious species, 1 more kinetics and 3 more
equilibria

Aq Inlet 1

Org Inlet 1

Org Settler Org Settler

Aq Settler Aq Settler

Aq Inlet 3

Org Inlet 4

Aq Inlet 2

Org Inlet 2

Org Inlet 3

Org Settler

Aq Settler Aq Settler

Org Settler

Org Inlet 4 Org Inlet 6

50%

50%

1 32 4

Aaq + Daq → 2Eaq + 3Faq λ = 12xC xD

Eaq + 3Faq ↔ Gaq 10−15xG = xEx3
F

Faq ↔ Forg yF = 2x1.5
F

Gaq ↔ Gorg
1
2 y2

G = xG

N. Leterrier (CEA-Saclay) RTM 19 29-30/04/19 15 / 22



Numerical results Case study 3

Analytical case study : 2 fast reactions, with a threshold temperature.

A → B λ(θ ≥ 1100) = 0.001a H = 45000

B → C λ(θ ≥ 2100) = 0.005b H = −25000

Heating device : θ(t) = 100 + 0.1t . We monitor the needed heat flux Φ :

−→ Steady plateaux Φ = 5, Φ = 6 and Φ = 1 accurately given by ARES,
with much less simulation times.
−→ As expected : Gear or DASSL more accurate on transient regimes.
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Numerical results CPU cost

method Gear DASSL ARES ARES delayed
case study 1 114 172 78 81
case study 2 294 492 295 189
case study 3 3.6 6 0.8 0.8
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A good rule of thumb

How to choose an ideal number of iterations Iu ?

A DAE system contains both algebraic and differential equations :

For differential equations, decreasing the timestep hopefully means
that the overall function giving yk+1 in relation to yk may become
contractive.

However, the presence of purely algebraic equations, independent
from time derivatives, invalidates or at least challenges this strategy.

Let us consider a DAE system containing only one algebraic equation :
yA − yn−1

A − hnf1(y)
...

yp−1 − yn−1
p−1 − hnfp−1(y)

fp(y)

 = 0 (6)
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A good rule of thumb

If we decompose the jacobian J = J1 + hnJ2, where J1 gathers all terms
independant of hn, the Newton step writes :


yk

A − yn−1
A − hn f1(yk )

...

yk
p−1 − yn−1

p−1 − hn fp−1(yk )

fp(yk )

 =


(1 +
∂fp
∂yA

(yk ))(yk
A − yk+1

A )

...

(1 +
∂fp
∂yp−1

(yk ))(yk
p−1 − yk+1

p−1 )

p∑
j=1

∂fp
∂yj

(yk )(yk
j − yk+1

j )


+ hnJ2[yk − yk+1] (7)

This simplifies as :


−yn−1

A − hn f1(yk )
...

−yn−1
p−1 − hn fp−1(yk )

fp(yk )

 = −yk+1 +



∂fp
∂yA

(yk )(yk
A − yk+1

A )

...
∂fp
∂yp−1

(yk )(yk
p−1 − yk+1

p−1 )

yk+1
p +

p∑
j=1

∂fp
∂yj

(yk )(yk
j − yk+1

j )


+ hnJ2[yk − yk+1] (8)
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A good rule of thumb

Convergence leading to yn can be interpeted here as the fixed point of that
function :

yk+1 = M−1(


yn−1

A + hn f1(yk )
...

yn−1
p−1 + hn fp−1(yk )

fp(yk )

 +


∂fp
∂yA

(yk )yk
A

...
∂fp
∂yp−1

(yk )yk
p−1

p∑
j=1

∂fp
∂yj

(yk )yk
j


+ hnJ2yk ) (9)

−→ Strong assumptions on fp and its derivatives to ensure contraction !
Whereas, in the purely differential case (fp and the pth line disappear) :

yk+1 = (Idp + hnJ2)
−1(


yn−1

A + hn f1(yk )
...

yn−1
p−1 + hn fp−1(yk )

 + hnJ2yk ) (10)

−→ M = Idp + hnJ2 can be made contractive for a certain hn, in the vicinity
of the Newton search
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A good rule of thumb

In the general context of real chemical equilibria, the algebraic equations
will come in many unpleasant shapes and impose (at best !) a lower
bound to the number of Newton iterations needed, independently of
the value of hn.

−→ A good rule of thumb is to give Iu a value close to that of the lower
bound, which depends on the system.

−→ A guess can be made from the behaviour of the system in the first
timesteps : Iu = I1 and Imax = 3Iu (γa = 1.2 and γd = 0.5 for ARES and
γa = 1.5 and γd = 0.8 for ARES delayed).
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Conclusions

ARES aims at solving a paradox : due to Stiff Nonlinear DAE, reactive
transport simulations are usually very costly but it is common to have
to run a transient calculation in order obtain a steady state in a robust
way, although this costly transient calculation itself is not necessarily
of interest.

By allowing a relative loss of accuracy on a transient calculation,
ARES may help in providing the desired result at a reduced cost, by
proposing an intermediate approach between overly simple methods
such as the constant timestep Euler scheme and complex high-order
approaches.

ARES is very easy to implement and to use, since it uses very few
parameters.
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