When looking for the steady state of a system, through a transient simulation with stiff phenomena, adaptive time integration then becomes a necessity, to adapt the timestep to local stiffness.

2 broad categories of time integrators are often used : BDF (backwards differentiation formula) and MEBDF (modified extended backwards differentiation formula) approaches (Gear, DASSL or MEBDFDAE algorithms) Runge-Kutta approaches High order time discretization ⇒ costly additional operations at each iteration of the nonlinear solver What if you only care for a precise evaluation of the steady state, however precise the transient way to get there may be ? -→ ARES may be of service.

You are the god(dess) of war aiming at a swift victory over your nonlinear foe ! -→ Let F : (R, R p , R p) -→ R be a continuously differentiable nonlinear function. A typical DAE solution y : R -→ R p writes :

F t, y, dy dt = 0 ∀t, ∀i ∈ 1, p , l i ≤ y i (t) ≤ u i -→ Euler implicit time integration scheme means that we solve at every t n :

F(t n , y n , y n -y n-1 h n) = 0 -→ Implicit
= 1 or o = 2            y * n (1) = y n-1 + d n-1 h n with d n-1 = y n-1 -y n-2 h n-1 y * n (2) = y * n (1) + 1 2 d 2 n-1 h 2 n with d 2 n-1 = d n-1 -d n-2 h n-1 -→ y * n (o)
is used as the initial guess for a classical Newton method. -→ We monitor the behaviour of the solution using the number of iterations used by the Newton method (noted henceforth I n) to converge towards the solution. This value is a direct product of the Newton solver and needs no further calculation.

A very basic and simple idea :

-→ The Newton solver's number of iterations is viewed here as an indicator of the gap between y n and the predicted value y * n (o).

-→ This gap between y n and y * n (o) is informally related to the stiffness of the solution.

-→ We allow the timestep to increase when this number is low, because the solution should be smooth enough between t n-1 and t n . Conversely, we decrease the timestep when this number is high.

-→ Since we aim only for the steady state : F(t, y, 0) = 0, high order time discretization of dy dt is nullified in the end and order 1 is sufficient.

I n : number of iterations needed to compute y n I u : a user-defined "ideal" number of iterations

γ a > 1 : acceleration rate 0 < γ d < 1 : deceleration rate
At first, we take h n = h n-1 and then we apply the following choices, naming h * n the previous value of h n :

Convergence fails -→ h n = γ d h * n
Convergence succeeds in I n iterations :

I n = I u -→ next timestep with h n+1 = h * n I n > I u -→ treated as failure I n < I u -→ next timestep with h n+1 = max(γ a h * n , h max)
Delayed version : I n > I u is not treated as a failure, but the timestep is nevertheless reduced :

h n+1 = γ d h * n .
ARES fully solves at each timestep the equation

F(t n , y n , y n -y n-1 h n) = 0,
through the Newton method, at any requested precision.

Stationary time :

y n -y n-1 = 0 =⇒ F(t n , y n , 0) = 0
-→ y n solves the exact equation of the steady state equation (provided of course that this solution remains within the boundaries).

ARES can also be used for a transient calculation, with h < h max to ensure a minimal precision, since the order of the time scheme remains 1.

Let G : R p -→ R p be the following function :

G(y) = F(t n , y, y -y n-1 h n) (1)
At every timestep t n , we search for y n as the solution of G(y) = 0 through the Newton method. Let J(y) be the jacobian of G for y. One Newton iteration (step k) verifies :

J(y k)(y k +1 -y k) = -G(y k) (2)
If we decompose y = [y A , ..., y p] and G(y) = [g 1 (y), ..., g p (y)] accordingly for a p-sized system, we have :

p j=1 (y k +1 j -y k j) ∂g i y j (y k A , ..., y k p) = -g i (y k A , ..., y k p) ∀i ∈ [1, p] (3)
Let z : R -→ R p be solution of the following differential equation :

d dt [g i (z(t))] = -g i (z(t)) (4) -→ ∀i ∈ [1, p]
(3) can be seen as an implicit Euler time discretization of (4), with a constant timestep=1.

The solution z(t) ("Newton flow") verifies :

g i (z(t)) = g i (z(0)) exp -t
(5)

If the Newton iterations run by (3) converge towards the solution y n , there is by construction a discret solution of (4

) ∀i ∈ [1, p].
The values of z(t) form then a trajectory towards y n , with a constant timestep.

According to (5), the trajectory depends only on the values of g i (z(0)) or the first iterate of the Newton method.

-→ Direct correspondence between the number of Newton iterations I n and the overall closeness of G(y * n (o)) to zero.

-→ Preserving a low I n ensures then a relative smoothness of the solution

A aq → B aq λ = 10x A A aq + C aq → D aq λ = 8x A x C A org → B org λ = 10y A C org + D org → B org + E org λ = 200y C y 2 D A aq + 2B aq ↔ C aq 0.1x Caq = x A x 2 B 3A org + 2B org ↔ C org 0.1y 2 C = y 3 A y 2 B A aq ↔ A org y A = 2x A B aq ↔ B org y B = 2x B B aq + D aq ↔ D org y D = 100x B x B
A aq + D aq → 2E aq + 3F aq λ = 12x C x D E aq + 3F aq ↔ G aq 10 -15 x G = x E x 3 F F aq ↔ F org y F = 2x 1.5 F G aq ↔ G org 1 2 y 2 G = x G N. Leterrier (CEA-Saclay) RTM 19 29-30/04/19
Analytical case study : 2 fast reactions, with a threshold temperature.

A → B λ(θ ≥ 1100) = 0.001a H = 45000

B → C λ(θ ≥ 2100) = 0.005b H = -25000
Heating device : θ(t) = 100 + 0.1t. We monitor the needed heat flux Φ :

-→ Steady plateaux Φ = 5, Φ = 6 and Φ = 1 accurately given by ARES, with much less simulation times.

-→ As expected : Gear or DASSL more accurate on transient regimes. How to choose an ideal number of iterations I u ?

A DAE system contains both algebraic and differential equations :

For differential equations, decreasing the timestep hopefully means that the overall function giving y k +1 in relation to y k may become contractive.

However, the presence of purely algebraic equations, independent from time derivatives, invalidates or at least challenges this strategy.

Let us consider a DAE system containing only one algebraic equation :

                y A -y n-1 A -h n f 1 (y) ... y p-1 -y n-1 p-1 -h n f p-1 (y) f p (y)                 = 0 (6)
If we decompose the jacobian J = J 1 + h n J 2 , where J 1 gathers all terms independant of h n , the Newton step writes :

               y k A -y n-1 A -h n f 1 (y k) ... y k p-1 -y n-1 p-1 -h n f p-1 (y k) f p (y k)                =    (1 + ∂f p ∂y A (y k))(y k A -y k +1 A) ... (1 + ∂f p ∂y p-1 (y k))(y k p-1 -y k +1 p-1) p j=1 ∂f p ∂y j (y k)(y k j -y k +1 j)    + h n J 2 [y k -y k +1] (7)
This simplifies as :

               -y n-1 A -h n f 1 (y k) ... -y n-1 p-1 -h n f p-1 (y k) f p (y k)                = -y k +1 +    ∂f p ∂y A (y k)(y k A -y k +1 A) ... ∂f p ∂y p-1 (y k)(y k p-1 -y k +1 p-1) y k +1 p + p j=1 ∂f p ∂y j (y k)(y k j -y k +1 j)    + h n J 2 [y k -y k +1] (8)
Convergence leading to y n can be interpeted here as the fixed point of that function :

y k +1 = M -1 (               y n-1 A + h n f 1 (y k) ... y n-1 p-1 + h n f p-1 (y k) f p (y k)                +    ∂f p ∂y A (y k)y k A ... ∂f p ∂y p-1 (y k)y k p-1 p j=1 ∂f p ∂y j (y k)y k j    + h n J 2 y k) (9)
-→ Strong assumptions on f p and its derivatives to ensure contraction ! Whereas, in the purely differential case (f p and the p th line disappear) :

y k +1 = (Id p + h n J 2) -1 (          y n-1 A + h n f 1 (y k) ... y n-1 p-1 + h n f p-1 (y k)           + h n J 2 y k) (10)
-→ M = Id p + h n J 2 can be made contractive for a certain h n , in the vicinity of the Newton search

In the general context of real chemical equilibria, the algebraic equations will come in many unpleasant shapes and impose (at best !) a lower bound to the number of Newton iterations needed, independently of the value of h n .

-→ A good rule of thumb is to give I u a value close to that of the lower bound, which depends on the system.

-→ A guess can be made from the behaviour of the system in the first timesteps : I u = I 1 and I max = 3I u (γ a = 1.2 and γ d = 0.5 for ARES and γ a = 1.5 and γ d = 0.8 for ARES delayed).

ARES aims at solving a paradox : due to Stiff Nonlinear DAE, reactive transport simulations are usually very costly but it is common to have to run a transient calculation in order obtain a steady state in a robust way, although this costly transient calculation itself is not necessarily of interest.

By allowing a relative loss of accuracy on a transient calculation, ARES may help in providing the desired result at a reduced cost, by proposing an intermediate approach between overly simple methods such as the constant timestep Euler scheme and complex high-order approaches.

ARES is very easy to implement and to use, since it uses very few parameters.

 Euler time schemes with an adaptive timestep differ mainly by the strategy governing the choice of the next timestep h n = t nt n-1 .

	-→ As is done very often in adaptive time schemes, we use a predictor to
	propose a prediction of y n , noted as y * n (o), based upon a Taylor evaluation
	of order o

 between t n-1 and t n .SIDES is a module of the open source platform TRUST, dedicated to thermohydraulics in the context of nuclear plant simulations : C++ platform providing many numerical tools, such as PETSc linear solvers, pre-and postprocessing tools etc...

	2 Pulsed Colums, 2 chemical phases with 11 fictitious species
	Org Settler	Org Settler
	Aq Inlet 1	
	Basis for TrioCFD, Genepi+, Cathare... Aq Inlet 2
	SIDES aggregates objects associated with numerical methods : being
	given a nonlinear function of multipe variables, its jacobian and a set Aq Inlet 3 1 2
	of bounds, it may be used to solve any F t, y, Org Inlet 4 Org Inlet 2	dy dt = 0
	-→ ARES was used in SIDES for an industrial code dedicated to Org Inlet 1 Org Inlet 3
	Liquid-Liquid-Extraction : Aq Settler	Aq Settler
	reactive and heat transport between an organical and an aqueous
	phase countercurrently,
	both intra-and interphasic chemical reactions,
	chemical reactions under kinetics or at equilibrium,
	retroaction of chemistry on temperature.

 Density laws : ρ aq , ρ org

	4 Pulsed Colums, 5 more fictitious species, 1 more kinetics and 3 more
	equilibria				
	Org Settler	Org Settler	Org Settler		Org Settler
	Aq Inlet 1				
	Aq Inlet 2				
	Aq Inlet 3	1	2	3	4
		Org Inlet 2			
			Org Inlet 4		
		Org Inlet 1	Org Inlet 3	Org Inlet 4	Org Inlet 6
	Aq Settler		Aq Settler	Aq Settler	Aq Settler
					50%
					50%
			Variable fluxes with phase swelling

29-30/04/19