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Abstract. The coupling between the poloidal distribution and the collisional flux of

impurities can be exploited to derive a simplified analytical model covering toroidal

rotation and electrostatic potential asymmetry effects, valid in the Pfirsh-Schlüter

regime. This model is compared with earlier works and with the drift-kinetic code

NEO, which includes the full Fokker-Planck collision operator. The low computational

cost of the model, compared to NEO, is particularly adapted for fast integrated

simulation purposes.

1. Introduction

The transport of impurity ions (i.e. other than Deuterium and Tritium) represents a key

issue in magnetic fusion research, mainly because of the radiative losses that they can

induce in the plasma core. Metallic walls surrounding the plasma constitute a source

of heavy and highly radiative ions that are of particular concern. Both collisional and

turbulent processes impact impurity transport, and although in many cases turbulent

transport is dominant [1, 2, 3], there is experimental evidence that collisional transport

can compete and even overcome it in the plasma core where turbulence is reduced [4], or

when it is largely reduced by a transport barrier [5, 6, 7, 8], in presence of large toroidal

rotation [9, 10, 11, 12, 13, 14] or when using Ion Cyclotron Resonance Heating (ICRH)

[15, 16, 17, 18, 14, 19, 20, 21]. These situations are not unusual in a tokamak, and often

decide on the robustness of a scenario [22, 23, 24, 25].

The collisional impurity flux is composed of a classical part, independent of the

poloidal variation of the magnetic field amplitude, and of a neoclassical part that is due

to this poloidal variation. In the Pfirsh-Schlüter regime that is considered here, this

neoclassical component is usually larger than the classical one, by a factor 2q2 (with
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q the safety factor), but it is also strongly dependent on the poloidal distribution of

the impurity [26, 27, 28]. The relation between the neoclassical flux and the poloidal

asymmetry of the impurity can be formulated in a geometrical representation [29]. In

this representation, the horizontal and vertical poloidal asymmetries are positioned

on a circle whose characteristics depends on the plasma equilibrium, and the actual

position on the circle is given by an angle depending on the collision frequency of the

impurity with the main ions. The impurity flux derives directly from the resulting

poloidal asymmetry, and for a given impurity profile, it can be sufficiently reduced

by this asymmetry to become lower than the classical flux [26]. But the poloidal

asymmetry changes as the impurity profile evolves to steady-state. This results from

the fact that the impurity gradient is taken into account in the parallel force balance,

thus coupling the poloidal distribution to the radial profile of the impurity. This

coupling falls out of the conventional ordering of neoclassical theory [30], and generates

a nonlinear dependence of the flux on the impurity gradient. In the simplest case (no

toroidal rotation, poloidally symmetric electrostatic potential), the steady state impurity

distribution has no asymmetry, so that the impurity peaking would be identical to the

neoclassical prediction without poloidal asymmetry [29].

In the present work, we extend our analytic model to describe finite toroidal rotation

(section 2), and we consider in section 3 three academic applications of interest for

present fusion plasma experiments: the case of a ”natural” plasma (no toroidal rotation,

no ICRH heating), where we discuss the implication of a residual asymmetry of the

electrostatic potential; the case of pure toroidal rotation; and the case of plasma heating

at the Ion Cyclotron Resonance Frequency (ICRF) with the Hydrogen minority heating

scheme. As mentioned above, the two last situations are well known to be prone to

increase collisional transport at a level comparable or even above the turbulent one:

centrifugal forces by pushing heavy impurities on the Low Field Side (LFS) of the torus,

and ICRF heating by pushing them on the High Field Side (HFS) or LFS depending

on the cyclotron resonance position [31], generate strong poloidal asymmetries that

greatly enhance their neoclassical transport and can lead to deleterious accumulation

in the plasma core [14]. Because of the strong link between the impurity gradient, the

poloidal asymmetry and the flux, the impurity distribution, diffusion and pinch velocity

vary during the evolution to steady state, invalidating some features of the flat profile

situation, as exemplified by the ”natural” case where the final impurity peaking loses any

potential reduction. We compare our model with the drift-kinetic code NEO [32, 33, 34]

for the three cases mentioned above, at the impurity gradient where the neoclassical flux

cancels. This comparison is of particular interest since it allows evaluating the impact

of breaking the standard neoclassical ordering that is used in NEO. The main results

are summarized in section 4.
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2. Collisional impurity flux and poloidal asymmetry

The collisional impurity flux can be expressed as the sum of a neoclassical and a classical

parts. The neoclassical component is generally considered as dominant, since in the

absence of poloidal asymmetries it exceeds the classical part by a factor 2q2 in the

Pfirsh-Schlüter regime. But while the classical part is weakly affected by the poloidal

distribution of the impurity, the neoclassical part can be drastically reduced and can

become subdominant, in particular for highly charged species [26]. In this section, we

express these two components of the flux in the general case together with the poloidal

asymmetry constraint, and then we derive the analytic model in the large aspect ratio

limit.

2.1. General case

In the Pfirsh-Schlüter regime, the neoclassical flux of an impurity species ”a” in presence

of toroidal rotation can be expressed as (see Appendix A):

〈Γneoa · ∇ψ〉 = maνa 〈na〉
F 2Ta
e2
a 〈B2〉

[(
1

〈b2/n〉
−
〈 n
b2

〉)
Gψ +

(
〈b2/N〉
〈b2/n〉

−
〈 n
N

〉)
Uψ

+
maΩ

2

2Ta

(
1− mi

ma

ea
ei

)(〈
n∂ψR

2

b2

〉
− 〈∂ψR

2〉
〈b2/n〉

)]
(1)

where the equilibrium magnetic field is parametrized as B = F∇ϕ+∇ϕ×∇ψ with ϕ

the toroidal angle and ψ the poloidal magnetic flux. We note ma the impurity mass, na
its density, Ta its temperature and ea its electric charge, νa the impurity-ion collision

frequency, Ω the toroidal angular frequency, R is the major radius and the label ”i” refers

to the main ion species. In addition to toroidal rotation, the drive for the impurity flux

is the impurity and main ion density and temperature gradients, that are contained in

Gψ and Uψ as follows:

Gψ ≡ ∂ψ ln pa −
Ti
Ta

ea
ei
∂ψ ln pi + Ca

0

Ti
Ta

ea
ei
∂ψ lnTi (2)

Uψ ≡ u(ψ)
〈B2〉
F

ea
Ta

(3)

where u(ψ) is a term related to thermal screening (see eq. (45)), and Ca
0 ≈ 1.5 for heavy

impurities (see also Appendix A).

This neoclassical flux is complemented by a classical flux that can be expressed, in

the limit where ∇ψ · ∇θ ≈ 0, as:〈
Γcla · ∇ψ

〉
≈ − maνa 〈na〉F 2Ta

e2
a 〈B2〉

[(
〈B2〉
F 2

〈
nR2

〉
−
〈 n
b2

〉)
Gψ

−maΩ
2

2Ta

(
1− mi

ma

ea
ei

)(
〈B2〉
F 2

〈
nR2∂ψR

2
〉
−
〈
n∂ψR

2

b2

〉)]
(4)

that can be further approximated as (see Appendix B):〈
Γcla · ∇ψ

〉
≈ − maνa 〈na〉F 2Ta

e2
a 〈B2〉

(
ε

q

)2 [〈 n
b2

〉
Gψ −

maΩ
2

2Ta

(
1− mi

ma

ea
ei

)〈
n∂ψR

2

b2

〉]
(5)
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with ε = r/R0 and R0 the major radius of the magnetic axis. The poloidal variation of

the magnetic field, and of the impurity and main ion densities are contained respectively

in b, n and N :

b2 = B2/
〈
B2
〉

(6)

n = na/ 〈na〉 (7)

N = ni/ 〈ni〉 (8)

The neoclassical impurity flux is primarily driven by the poloidal variation of the

equilibrium magnetic field, but the poloidal distribution of the impurity density also

responds to this inhomogeneity and can strongly alter in return the amplitude of the

flux. The poloidal distribution of the impurity can be determined from the parallel force

balance (see Appendix A.3):

∂θ lnna +
ea
Ta
∂θφ−

maΩ
2

2Ta
∂θR

2 = Aψ
{(

1− b2/n

〈b2/n〉

)
Gψ +

(
b2

N
−
〈
b2

N

〉
b2/n

〈b2/n〉

)
Uψ

+
maΩ

2

2Ta

(
1− mi

ma

ea
ei

)(
b2/n

〈b2/n〉
〈
∂ψR

2
〉
− ∂ψR2

)}
(9)

with Aψ = JF maνa/ea, and J is the Jacobian of the co-ordinate system (ψ, θ, ϕ). It

depends therefore on toroidal rotation and on the poloidal asymmetry of the electrostatic

potential, but also on the friction force with the main ions.

2.2. Large aspect ratio limit

2.2.1. Radial flux The neoclassical impurity flux (equation 1) and the poloidal

asymmetries (equation 9) can be both related in a simple way in the large aspect

ratio limit, when retaining only the sine and cosine components of the poloidal Fourier

decomposition:

b = 1− ε cos θ (10)

n = 1 + δ cos θ + ∆ sin θ (11)

N = 1 + δN cos θ + ∆N sin θ (12)

eφ

Te
=
e 〈φ〉
Te

+ δφ cos θ + ∆φ sin θ (13)

In the following we note
(
δaφ, ∆a

φ

)
= Za(Te/Ta) (δφ, ∆φ). We then obtain for the

neoclassical impurity flux (see Appendix B):

〈Γneoa · ∇r〉 ≈ − 〈na〉
Da
PS

R0

[(
1 +

δ

ε
+
δ2 + ∆2

4ε2

)
G

+
1

2

(
δ − δN
ε

+
δ2 + ∆2 − δδN −∆∆N

2ε2

)
U

−δM
2ε2

(
1− mi

ma

ea
ei

)(
1 +

δ

2ε

)]
(14)

with Da
PS ≡ 2q2maνaTa/(e

2
a 〈B2〉), q = rB0/∂rψ with B0 the magnetic field at the

magnetic axis, δM = εma(R0Ω)2/Ta, G = (rR0B0/q) Gψ and U = (rR0B0/q) Uψ. Note

that we have also δM = 2ε(ma/mi)(Ti/Ta)M
2
i with Mi the ion Mach number.
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The classical heat flux can be derived in a similar way from equation (5):〈
Γcla · ∇r

〉
≈ − 〈na〉

Da
PS

2q2R0

[(
1 + εδ + 2ε2

)
G − 3δM

2

(
1− mi

ma

ea
ei

)(
1 +

δ

3ε

)]
(15)

This flux is typically lower than the neoclassical one by a factor ∼ 2q2 when poloidal

asymmetry is neglected. But for highly charged impurities, the neoclassical flux can

be strongly reduced by poloidal asymmetries and the classical flux can then represent

a larger contribution [26, 29]. The classical flux is also less sensitive to the poloidal

impurity distribution, except for the toroidal rotation term.

2.2.2. Poloidal asymmetry The equation (9) containing the constraints on the poloidal

asymmetry parameters can be expressed as a system of equations relating the sine and

cosine components:

δ + δaφ − δM = −A [∆G + (∆−∆N)U −RδMε∆] (16)

∆ + ∆a
φ = A [(2ε+ δ)G + (δ − δN)U − 2RδM ] (17)

with A = q/(rR0B0)Aψ and

R =
1

2ε

(
1− mi

ma

ea
ei

)
(18)

The parameter A measures the collisional friction, G the radial gradients, U the ion

temperature gradient, and R the weight of toroidal rotation. These relations evidence

the tilting of the poloidal asymmetry of the impurity due to parallel friction forces that

couple the horizontal and vertical components (δ, ∆) [26, 12, 35].

The poloidal asymmetry parameters for the density of the impurity (δ, ∆) can be

related by eliminating the collisionality parameter A in the system of equations (17)

and (16), as was done in [29]. We introduce the following notations:

C0
δ = − ε/ (1 + U/G) (19)

F = C0
δ

(
1− δN

2ε

U
G
− δM

ε

R
G

)
(20)

H = 1 + δMC
0
δ

R
G

(21)

Q = C0
δ

∆N

ε

U
G

(22)

so that equations (16) and (17) can be expressed as:

δ + δaφ − δM =
AGε
C0
δ

[∆H +Q] (23)

∆ + ∆a
φ = − AGε

C0
δ

[δ − 2F ] (24)

This leads to

(δ − Cδ)2 +H (∆− C∆)2 = R2
∆ (25)
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with

Cδ = F −
δaφ − δM

2
(26)

C∆ = − 1

2

(
Q
H

+ ∆a
φ

)
(27)

R2
∆ =

(
F +

δaφ − δM
2

)2

+
H
4

(
∆a
φ −
Q
H

)2

(28)

The curve (δ, ∆) defined in equation (25) is an ellipsis when toroidal rotation is present

(H 6= 1) and it can be parametrized as:

δ = Cδ +R∆ cosα (29)

∆ = C∆ +R∆ (H)−1/2 sinα (30)

The collisional angle α can then be derived and we obtain:

cosα =
R∆C

0
δ

D

{[(
AGε
C0
δ

)2

H− 1

](
F
C0
δ

+
δaφ − δM

2C0
δ

)
+
AGε
C0
δ

[
∆N

2ε

U
G
−H

∆a
φ

2C0
δ

]}
(31)

sinα =
R∆C

0
δ

D
H1/2

{[(
AGε
C0
δ

)2

H− 1

](
∆a
φ

2C0
δ

− ∆N

2ε

U
GH

)
+2
AGε
C0
δ

(
F
C0
δ

+
δaφ − δM

2C0
δ

)}
(32)

with D = R2
∆ + H (AGε)2 (R∆/C

0
δ )

2
. The system of equations (26), (27), (28), (29),

(30), (31), (32) fully determines the asymmetry of the impurity density as a function of

its collisional friction with the main ions (A), of the main ion and impurity gradients (G
and U), toroidal rotation (H) and of the asymmetries of the main ion density (δN , ∆N)

and electrostatic potential (δφ, ∆φ). This asymmetry gives in return the impurity flux

expressed in equations (14) and (15). From these equations we can extract the total

(classical plus neoclassical) diffusion coefficient Da and pinch velocity Va:〈
Γtota · ∇r

〉
= −Da∂r 〈na〉+ 〈na〉Va (33)

Da = Dneo
a +Dcl

a (34)

Va = V neo
a + V cl

a (35)

where:

Dneo
a = Da

PS

(
1 +

δ

ε
+
δ2 + ∆2

4ε2

)
(36)

Dcl
a =

Da
PS

2q2

(
1 + εδ + 2ε2

)
(37)

V neo
a = − Da

PS

R0

[(
1 +

δ

ε
+
δ2 + ∆2

4ε2

)
GV

+
1

2

(
δ − δN
ε

+
δ2 + ∆2 − δδN −∆∆N

2ε2

)
U



7

−δM
2ε2

(
1− mi

ma

ea
ei

)(
1 +

δ

2ε

)]
(38)

V cl
a = − Da

PS

2q2R0

[(
1 + εδ + 2ε2

)
GV − 3δM

2

(
1− mi

ma

ea
ei

)(
1 +

δ

3ε

)]
(39)

with GV ≡ R0

(
∂r lnTa − Ti

Ta
ea
ei
∂r ln pi + Ca

0
Ti
Ta

ea
ei
∂r lnTi

)
.

3. Applications

In this section, we illustrate the potential applications of the analytic model by

considering first the ”natural” case, and then two situations where the neoclassical

transport of impurities can compete with turbulent processes: toroidal rotation and

Ion Cyclotron Resonance Heating, in the core region. For this, we need to determine

the asymmetries of the main ion density and electrostatic potential. We consider a

Boltzmann distribution of both electrons and main ions, and this leads to an electrostatic

potential that has a horizontal asymmetry driven by the anisotropic temperature of the

minority ions and by toroidal rotation [17, 16]:

δφ =
ε

1 + ZiTe/Ti

[
fH

(
T⊥
T‖
− 1

)
bC

bC + T⊥
T‖

(1− bC)
+mi

(R0Ω)2

Ti

]
(40)

with fH the Hydrogen minority fraction, bC = Bres/B0 and Bres the magnetic field where

the ICRH frequency matches the fundamental cyclotron resonance of the minority ion.

In addition to this horizontal asymmetry driven by rotation and ICRF heating,

a small residual asymmetry of the electrostatic potential is spontaneously driven by

collisions, and this residual is particularly important in the ”natural” case. This

asymmetry is essentially vertical [36], as found with PIC simulations [37] and with

NEO [32]. An analytic derivation by Wong et al [38] will be used here. It exhibits a

sharp discontinuity at θ = ±π that is expected to be smoothed by collisions, and a

simplified expression for the natural ∆φ can be derived from this work:

∆nat
φ ≈ Cnat.

Zi + Te/Ti

q2x

ε5/2
∂x lnTi
τiiΩi

(41)

with Cnat ≈ −0.165 and Ωi ≡ eiB0/mi.

For the poloidal variation of the main ion density, we get from the parallel force

balance without collisions (equation 9):

ni = 〈ni〉 exp

(
−eiφ
Ti

+
miΩ

2

2Ti

(
R2 −

〈
R2
〉))

(42)

which gives :

δN = − Zi
Te
Ti
δφ +

εmi(R0Ω)2

Ti
(43)

∆N = − Zi
Te
Ti

∆φ (44)
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The parameter U can be expressed in a simple way after considering the fact that

neoclassical friction constrains the poloidal flow. This gives (see [29]):

u(ψ) ≈ − Ca
0 + ki
〈B2〉

Ti
ei

q

ε
∂r lnTi (45)

with ki a neoclassical friction coefficient that tends asymptotically to −1.17 in the

banana regime. This coefficient as well as the collision frequency νa are computed

following the model described in Kessel [39]. Note that this model, as the NCLASS

model [40], is inaccurate in the high collisionality regime where ion-electron coupling

becomes important, i.e. typically in the edge region [41].

We consider geometrical parameters typical for the large aspect ratio WEST

tokamak [42] with inverse aspect ratio a/R0 = 0.2, B0 = 3.7 T, R0 = 2.5 m. Equilibrium

profiles are defined as:

q = 1 + (qa − 1)x2 (46)

Ti = T 0
i (1− x2)2 (47)

ni = n0
i (1− x2) (48)

with x = r/a, Ti/Te = 0.5, qa = 4, T 0
e = 3 keV and n0

i = 4× 1019 m−3.

We show in figure 1 the profiles of the neoclassical coefficient ki and of the

normalized collisionality ν∗ji = Rq/
(
ε3/2τjivT i

)
, with vT i = (2Ti/mi)

1/2 and

τji =
3π3/2ε20m

2
jv

3
T i

e2
i e

2
jni ln Λji

(49)

The Coulomb logarithm ln Λji is taken from the NRL formulary [43]. The banana regime

corresponds to ν∗ < 1 and the Pfirsh-Schlüter regime to ν∗ > ε−3/2. The plateau regime

is in between. We see that the main ions are marginally in the banana regime and this

causes ki to be larger than −1. The ionization state of Tungsten that we will consider in

the following, W 44+, is close to the boundary between the plateau and Pfirsh-Schlüter

regimes in the plasma core (r/a < 0.5), and in the Pfirsh-Schlüter regime in the outer

part of the plasma.

The pinch velocity and poloidal asymmetry derived from our model will be

compared with the Fülöp-Helander model [26, 35] that describes the collisional transport

and asymmetry of highly charged impurities (Za � 1), in a limit where the role of the

impurity gradient in the flux is not taken into account, but where radial gradients of

the ion species are considered in the parallel force balance, as in our model. The pinch

velocity of the impurity given in eq. (36) of [35] can be expressed with our notations as:

V FH
r,a = − Zi

Za

Ta
eB0R0q2

AG0ε

{
1 +

(
1 +M2

0

)(
1− εM2

0

C0
δ

)
2q2(C0

δ )2

(AG0ε)
2 + (C0

δ )2

}
(50)

with

M2
0 =

δM
2ε

(
1− Za

mi

ma

Te
Te + Ti

)
(51)

Here G0 corresponds to G without the impurity pressure gradient. The latter is not

present in this model because the diamagnetic rotation of the impurity, considered as
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Figure 1. Neoclassical coefficient ki (top) and collisionality regimes for the main

ion species D+, W 44+ (middle), and parameters |AG0| and
∣∣AG0ε/C0

δ

∣∣ (bottom) as a

function of the plasma radius. The collisionality domains are labelled by ’B’ for the

banana regime, ’P’ for the plateau regime and ’PS’ for the Pfirsh-Schlüter regime.

small compared with the E×B rotation, is neglected. The asymmetry is expressed in

this model as :

δFH = 2C0
δ

(AG0ε)
2 + εC0

δM
2
0

(AG0ε)
2 + (C0

δ )2
(52)

∆FH = 2AG0ε
(C0

δ )2 − εC0
δM

2
0

(AG0ε)
2 + (C0

δ )2
(53)

M2
0 =

δM
2ε

(
1− Za

mi

ma

Te
Te + Ti

)
(54)

This can be expressed in a geometrical representation as:

CFH
δ = C0

δ + εM2
0 (55)

CFH
∆ = 0 (56)

RFH
∆ =

∣∣C0
δ − εM2

0

∣∣ (57)

cosαFH = sign
(
C0
δ − εM2

0

) (AG0ε)
2 − (C0

δ )2

(AG0ε)
2 + (C0

δ )2
(58)

sinαFH = sign
(
C0
δ − εM2

0

) 2 (AG0ε)C
0
δ

(AG0ε)
2 + (C0

δ )2
(59)

In figure 1 (bottom plot), we display the radial profile of the parameter |AG0| that

represents the strength of collisional processes in the parallel force balance (RHS

of equation (9) and parameter ”g” in [35]), and the parameter |AG0ε/C
0
δ | that

represents the collisional titling amplitude (in the ”natural” case discussed below, it
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is approximately equal to the ratio δ/∆). Although |AG0| � 1 in the core region,

meaning that the poloidal asymmetry of the impurity is small (for symmetric φ and

without rotation), the tilting amplitude is larger than unity, meaning that the poloidal

distribution (and therefore the impurity flux) can depart from conventional neoclassical

theory predictions. Note that the difference between the two quantities |AG0| and

|AG0ε/C
0
δ | comes from the ion temperature gradient contribution contained in parameter

U (see eq. (19)).

We will also compare our results with computations performed with the Drift-

Kinetic code NEO [32]. NEO is based on the conventional neoclassical ordering [30]

where radial gradients are assumed to be small (i.e. |AG0| small), and the RHS of the

parallel force balance is neglected at lowest order. This contrast with the approach

initiated by Helander and followed in the present model, where this assumption is

relaxed. Additionnaly, the second order neoclassical flux computed in NEO, which is

compared to our model, does not depend on the first order electrostatic potential and its

associated asymmetries [32]. This results in an other fundamental difference since such

asymmetries are accounted for in the computation of the impurity flux (eq. 33). NEO

does not compute the classical flux, so that the comparison with our model requires

considering the neoclassical flux only. The impurity profile from NEO at vanishing

neoclassical flux can be deduced from ∂r ln 〈na〉 = V neo
a /Dneo

a , in the trace limit where

the impurity concentration does not impact the main ion concentration. In our model,

the neoclassical flux must be computed as a function of the impurity gradient to identify

the stationnary point and determine the neoclassical diffusion and pinch velocity, as well

as the poloidal distribution of the impurity. NEO computations are performed using

the full Fokker-Planck collision operator with 5 Laguerre and 17 Legendre polynomials.

The circular geometry and kinetic electrons are also considered. The horizontal and

vertical asymmetry parameters (δ, ∆) are obtained by fitting the poloidal distribution

given by NEO with formula (11). The simplified description of poloidal asymmetries in

the model limits its applicability to moderate deformation of the impurity distributions,

namely (δ, ∆) < 1, and therefore the levels of toroidal Mach number and Hydrogen

minority temperature anisotropy that can be studied.

3.1. The ”natural” case

We consider first the situation where there is no toroidal rotation and no ICRF heating.

In this case, if we assume that the electrostatic potential has no asymmetry, the

neoclassical pinch can be strongly reduced by the self-consistent poloidal asymmetry

when the impurity profile is flat [26]. This is illustrated in figure 2 (left plots) where

the profiles of the classical (”cl.”), neoclassical (”neo”), neoclassical without poloidal

asymmetry (”neo.(0)”) and total (”tot.”) pinch velocities are shown, together with the

asymmetry parameters (δ, ∆) of the impurity. This strong reduction of the flux occurs

in the region where the collisional tilting is large (see figure 1), while the poloidal

asymmetry remains small in amplitude.
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Figure 2. Natural case: profiles of the components of the pinch velocity, classical

(”cl.”), neoclassical (”neo”), neoclassical without poloidal asymmetry (”neo.(0)”) and

total (”tot.”) (top plots), and poloidal asymmetry parameters (δ, ∆) (bottom plots)

in a situation without (left plots) and with (right plots) the natural asymmetry of the

electric potential determined from equation (41).

However, given the low amplitude of the poloidal asymmetry and the sensitivity of

the flux on its amplitude, any residual asymmetry of the electrostatic potential can be

instrumental in determining the impurity flux. The amplitude of the vertical asymmetry

derived from equation (41), shown in the top plot of figure 5 for the plasma parameters

considered here, is small in the plasma center but can reach several percents in the edge

region. If we use this expression in the analytic model, we find a drastic change in the

neoclassical pinch velocity: it becomes inward instead of outward, and much larger than

the pinch evaluated at ∆φ = 0 (figure 2, right plots).

The sensitivity of the impurity distribution on the poloidal asymmetry of the

electrostatic potential is outlined in figure 3, where we show the contours of the

total diffusion coefficient (classical plus neoclassical), pinch velocity, the horizontal and

vertical asymmetries in the (δφ, ∆φ) plane at r/a = 0.2 for a flat impurity profile (left

column) and at steady-state, i.e. when by changing the impurity gradient, the total

collisional flux cancels (right column). The pinch velocity and diffusion coefficients

show a nearly parabolic variation with respect to both δφ and ∆φ. Note that, in this

representation, minority ICRF heating (T⊥/T‖ > 1) means a positive δφ.

The steady state is also strongly impacted by the asymmetry of the electrostatic

potential. As shown in the right plots of figure 3, the pinch velocity and diffusion

coefficient keep having a nearly parabolic variation in the (δφ, ∆φ) plane. In the absence

of any source of horizontal asymmetry, the steady state value of δ remains close to zero

at this radial position but the vertical asymmetry of the impurity reflects the amplitude

of ∆nat
φ , with an opposite sign. The consequence in terms of steady state normalized

logarithmic impurity gradient (i.e. ∂x lnna with x = r/a) is shown in figure 4 for W44+

at r/a = 0.2 and r/a = 0.4, where we find again a strong sensitivity with respect to the
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Figure 3. From top to bottom: contours of the total pinch velocity, diffusion

coefficient, horizontal and vertical asymmetries for W44+ at r/a = 0.2 for a flat

impurity profile (left) and at steady state (right), in the (δφ, ∆φ) plane. The natural

asymmetry of the electrostatic potential given by equation (41) is shown with a red

star.

natural vertical asymmetry ∆nat
φ . It is interesting to note that the favourable region at

∆φ < 0 cannot be accessed by reversing the sign of the magnetic field, which reverses

the sign of ∆nat
φ : by doing so, all the diagrams of figure 3 are reversed as well with

respect to ∆φ = 0, and the area with the most hollow steady state impurity profile in

figure 4 remains out of reach.

The ”natural” case is now addressed with the NEO code and compared with the

analytical model at Γneo = 0. The profiles of the neoclassical pinch velocity and diffusion

coefficient, asymmetry parameters and logarithmic impurity gradient found with the

analytic model with and without ∆nat
φ are shown in figure 5, together with the results

from NEO. A variation of the vertical asymmetry ∆nat
φ by 50% is also considered for



13

Figure 4. Normalized logarithmic density gradient (≡ ∂x lnna) of W44+ at steady

state (Γtot = 0), in the (δφ, ∆φ) plane at r/a = 0.2 and r/a = 0.4. The natural

asymmetry of the electrostatic potential as given by equation (41) is shown with a red

star.

evidencing its impact on the predictions of the model. In this ”natural” case, the vertical

asymmetry of the electrostatic potential at lowest order is zero in NEO, but it is finite

at next order and agrees well with the formula of equation (41), as shown in figure 5

(top plot) [32]. However, the impurity flux is computed in NEO with the lowest order

electrostatic potential (that is symmetric), and the importance of the vertical asymmetry

in the ”natural” case leads to inevitable differences in the evaluation of the impurity

transport. In the limit ∆φ = 0 used in NEO for the computation of the flux, diffusion

coefficients from the model and NEO are in excellent agreement, but the pinch velocity

is clearly inward in NEO, while it is outward and much smaller in the model. In this

respect, the relative agreement between the prediction of the model with ∆nat
φ and NEO

in the central region of the plasma might just be a coincidence. The poloidal impurity

asymmetry given in the NEO output takes into account ∆nat
φ but ignores the collisional

tilting due to the friction force from equation (9). It is therefore purely vertical, while

the model predicts a remaining coupling between the two asymmetry components at

steady state. This coupling is visible in figure 3 (r/a = 0.2), and it is more pronounced

at larger radius where ∆nat
φ and the friction force become larger. Globally speaking,

we conclude that the predictions from the analytical model and from NEO disagree

in the ”natural” case. This comes from two components entering the neoclassical flux

computations that are not included in the standard neoclassical ordering used in NEO,

namely the induced asymmetry from the first order electrostatic potential and the tilting

term.

3.2. Effect of toroidal rotation

3.2.1. Pinch velocity and poloidal asymmetry We first consider the case of a flat

impurity profile. This allows, in the case of toroidal rotation, a comparison with the

Fülöp-Helander model that does not address the steady state solution. A scan in the

ion Mach number is performed for W44+ at r/a = 0.2, a region of the plasma where
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Figure 5. From top to bottom: vertical asymmetry of the electrostatic potential,

neoclassical pinch velocity and diffusion coefficient, horizontal and vertical asymmetry

and normalized logarithmic density gradient (∂x lnna) at Γneo = 0 for W44+ with and

without the natural vertical asymmetry of the electrostatic potential, as a function of

the minor radius. The shaded area indicates the variation of these parameters when

∆nat
φ is varied by 50%. Results from NEO are shown with hastags and the solution at

Γtot = 0 is indicated in the bottom plot.

neoclassical transport can easily overcome turbulent transport. We show in figure 6 the

pinch velocity, diffusion coefficient, and the asymmetry parameters (δ,∆) as a function of

Mi. Toroidal rotation is shown to drive a strong inward pinch, as well as a large diffusion

coefficient. The horizontal asymmetry becomes positive as a result of the centrifugal

force, but the vertical asymmetry is also significant, although with a lower amplitude.

The pinch velocity and the poloidal asymmetry predicted by the Fülöp-Helander model

are in excellent agreement with our model. We also display for comparison the result of

NEO calculations in the same figure 6. We will discuss later (section 3.2.2) the evolution

of these parameters with the impurity gradient, but we can notice here the relatively

good match of the pinch and diffusion coefficient for Mi < 0.3 despite the imperfect

match of the poloidal asymmetry, in particular its vertical component.

We can also illustrate the evolution of the poloidal asymmetry using a geometrical

representation, as shown in figure 7. A larger Mach number translates into an ellipsis

with larger dimensions. We note that the circle moves away from the symmetric point
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Figure 6. From top to bottom: neoclassical pinch velocity, diffusion coefficient,

horizontal and vertical asymmetries for a flat radial profile of W44+ at r/a = 0.2,

as a function of the ion Mach number. Dotted lines correspond to the Fülöp-Helander

model (F-H) and hashtags to NEO (steady state) results.

(δ, ∆) = (0, 0) in the direction of larger δ as the ion Mach number increases, a feature

that is not captured by the Fülöp-Helander model. This gap is precisely 2F and increases

with toroidal rotation (see equation 20), while it is simply 2C0
δ ≈ 6× 10−4 in the Fülöp-

Helander model. This can lead to a discrepancy in the horizontal asymmetry prediction

between the two models for a large value of |AG0| (highly charged impurities, low ion

temperature or large gradients). As an example we show in figure 8 the asymmetry

reconstruction for Ti/Te = 0.2 instead of 0.5. The collisional angle α being close to

180o, the vertical asymmetry is comparable for the two models, while the difference in

the predicted horizontal asymmetry is large.

Figure 7 also shows that, as the ion Mach number is increased, the asymmetry

parameters follow a trajectory that is quasi linear (black line for our model, and dotted

line for the Fülöp-Helander model). It is in fact exactly linear in the Fülöp-Helander

model since we have

∆FH =
(
δFH − CFH

δ

) 2 (AG0ε)C
0
δ

(AG0ε)
2 − (C0

δ )2
(60)

where the toroidal rotation effect is contained in CFH
δ . For the model derived here, we
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Figure 7. Geometrical representation of the elliptic curves (δ,∆) for different values of

the ion Mach number, trajectory followed during the scan in Mi (full line), and actual

positions at their intersection (on), for W 44+ at r/a = 0.2. The prediction from the

Fülöp-Helander model are also shown (colored dashed lines, grey dots and on symbol

respectively).

Figure 8. Geometrical representation of the elliptic curves (δ,∆) for Mi = 0.4 and

Ti/Te = 0.2 (same legend as figure 7).

also have a linear relation for ∆N = ∆φ = 0, provided H ≈ 1 since we then have:

∆ = (δ − Cδ)
2 (AGε)C0

δ

(AGε)2H− (C0
δ )2

(61)

3.2.2. Steady-state impurity profile The logarithmic density gradient at Γneo = 0 is

shown as a function of the ion Mach number in figure 9 for W44+ at r/a = 0.2. The

core accumulation of the charged impurity ions is rapidly growing and tends to saturate
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above Mi ∼ 0.2. The poloidal asymmetry is characterized by a large accumulation on

the low field side of the plasma, with an horizontal asymmetry that increases with Mi,

while the vertical asymmetry is nearly zero. When the natural vertical asymmetry of the

electrostatic potential is added, the impurity gradient at low rotation is moving towards

more negative values, but the solution at Mi > 0.1 is not affected, apart from the vertical

asymmetry that has a small remaining negative value. The agreement with NEO is good

for Tungsten diffusion and pinch velocity, as well as for the horizontal asymmetry, up

to Mi ∼ 0.3. At low Mach number, taking into account the natural vertical asymmetry

of the electrostatic potential improves the matching, with a Tungsten density gradient

that remains negative as Mi → 0, although the reason for this better agreement is not

well understood, as explained earlier. For toroidal rotation larger than Mi ∼ 0.3, the

horizontal asymmetry approaches 100% and cannot be fitted accurately with (δ, ∆).

The comparison with figure 6 outlines the dependence of the poloidal asymmetry on

the impurity profile since the horizontal asymmetry from the model and from NEO are

now in perfect agreement. The vertical asymmetry vanishes almost exactly following

the model predictions with ∆φ = 0, while the fit of na(θ)/ 〈na〉 from NEO still identifies

a small remaining positive contribution.

The details of the variation of the radial velocity and poloidal asymmetry with

the impurity gradient is shown in figure 10 for ∆φ = 0. Toroidal rotation strongly

enhances the inward neoclassical impurity pinch so that the weight of the classical flux

is negligible above Mi = 0.1. This figure also illustrates the variation of the poloidal

asymmetry with the impurity gradient, with an horizontal asymmetry that increases as

∂x lnna is evolving from zero to steady state, while the vertical asymmetry practically

vanishes when assuming ∆φ = 0.

3.3. Effect of anisotropic minority ion temperature

We now consider the case of ICRH-driven temperature anisotropy, with 10% of Hydrogen

minority, and a minority temperature anisotropy T⊥/T‖ ranging from 1 to 4. The scan is

extended to T⊥/T‖ ∈ [0, 1], a range that is not relevant for ICRH but connects with the

figures of section 3.1. This temperature anisotropy is used in equation (40) to compute

the horizontal asymmetry of the electrostatic potential. The parameter fH(T⊥/T‖ − 1),

representative of δφ variation, varies up to 0.3, a value that is typical in experimental

situations [16]. The dependence of the neoclassical velocity pinch, diffusion coefficient

and asymmetry parameters on T⊥/T‖ is shown in figure 11 for a flat impurity profile.

The horizontal asymmetry is driven negative by a dominant perpendicular minority

temperature, as observed experimentally [44, 16, 18, 31, 20]. At the same time, the

pinch velocity follows a nearly parabolic curve: it moves to the outward direction first,

and then becomes more inward again. This reversal of the flux is obtained with a

moderate level of electrostatic potential anisotropy for Tungsten due to its large electric

charge (see also figure 3 of [29]). The computation has been done for ∆φ = 0 but also

for ∆φ = ∆nat
φ , where we assume for simplicity that this imposed vertical asymmetry
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Figure 9. From top to bottom: normalized logarithmic impurity density gradient,

neoclassical pinch velocity, diffusion coefficient, horizontal and vertical asymmetries at

Γneo = 0 as a function of the ion Mach number, at r/a = 0.2 for W44+, with ∆φ = 0

and ∆φ = ∆nat
φ . The results from NEO are shown with hashtags symbols. We also

show the steady state solution including classical transport and ∆φ = ∆nat
φ on the top

plot (Γtot = 0).

of the electrostatic potential does not impact the poloidal distribution of the minority

ions. The impact is limited to a shift in the vertical asymmetry of the impurity and

a change of the pinch and diffusion at low T⊥/T‖ that will appear more clearly when

computing impurity gradient at vanishing flux. We show on the same plot the results

obtained with the NEO code (hashtags symbols in figure 11). The pinch velocity and

diffusion coefficient computed with NEO are in good agreement with the ones obtained

with the model. It is worth noting that, at the temperature anisotropy that minimizes

the diffusion coefficient (around T⊥/T‖ ≈ 2), the neoclassical diffusion is below the

classical one. The horizontal asymmetry is also in good agreement between the two

approaches, but a large mismatch can be noted on the vertical asymmetry, due to the

absence of the collisional tilting effect in NEO. Taking into account the natural vertical

asymmetry ∆nat
φ has little effect except in the domain of low diffusion where it adds a

small contribution, and as for the rotation case, it slightly shifts the vertical asymmetry
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Figure 10. Total, neoclassical and classical impurity flow (left), horizontal (middle)

and vertical (right) asymmetry, as a function of the logarithmic impurity gradient for

different values of the ion Mach number, for W44+ at r/a = 0.2 (∆φ = 0).

of the impurity downwards.

3.3.1. Steady-state impurity distribution in the case of anisotropic minority ion

temperature We show in figure 12 the neoclassical steady state value (Γneo = 0) of

the logarithmic density gradient of W44+ at r/a = 0.2, as a function of T⊥/T‖. We

find that except in a limited range of T⊥/T‖ values just above unity, the asymmetry

of the electrostatic potential induced by ICRH leads to impurity accumulation in the

core. The region around T⊥/T‖ ∼ 2 is particular. Indeed, the neoclassical diffusion

coefficient is vanishing around T⊥/T‖ ∼ 2 when the natural asymmetry of φ is neglected

so that the neoclassical flux cannot be cancelled by changing the impurity gradient.

This gives a divergence in the steady state Tungsten density gradient (top plot). The

contribution of the classical flux is then essential. This divergence is also removed when

we take ∆φ = ∆nat
φ because the minimum of the neoclassical diffusion is not as low as

with ∆φ = 0. The horizontal asymmetry at steady state is decreasing quasi-linearly

with T⊥/T‖, being positive for T⊥/T‖ < 1 and negative for T⊥/T‖ > 1. The vertical

asymmetry is slightly negative with a minimum of a few percents for T⊥/T‖ between 2

and 4, and goes back towards zero as T⊥/T‖ increases further. Computations with NEO

show a good agreement, with a comparable steady state impurity gradient. In particular,
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Figure 11. From top to bottom: neoclassical pinch velocity and diffusion coefficient,

horizontal and vertical asymmetries for a flat profile of W44+ at r/a = 0.2, as a function

of the Hydrogen temperature anisotropy T⊥/T‖ and of fH(T⊥/T‖ − 1). Results from

the code NEO are shown for comparison.

the transition between a positive density gradient (hollow impurity profile) for T⊥/T‖
just above unity to a large negative gradient (peaked impurity profile) is also found.

The horizontal asymmetry is in good agreement between the model and NEO and, in

contrast with the transient case with a flat impurity profile (see figure 11), the vertical

asymmetry is small and negative in the two cases. The steady state characteristics are

weakly dependent on the natural vertical asymmetry of the electrostatic potential, also

shown in the figure.

The variation of the collisional flux and poloidal asymmetry of W44+ with the

impurity gradient is detailed in figure 13 for increasing temperature anisotropy. For

T⊥/T‖ ∼ 2, the neoclassical flux is small and nearly independent from the impurity

gradient, which gives particular importance to the classical flux, as mentioned earlier.

The figure also shows that the variation of the asymmetry with the impurity gradient

can be relatively large, as evidenced also by the comparison between figures 11 and 12.

The result that ICRH can lead to Tungsten accumulation seems to contradict

experimental analyses where on the contrary ICRH was found to be beneficial for

impurity removal from the core plasma [45, 14, 19, 20, 21]. In these experimental
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Figure 12. From top to bottom, as a function of the minority ion temperature

anisotropy: normalized logarithmic impurity gradient, neoclassical pinch velocity and

diffusion coefficient, horizontal and vertical asymmetries at Γneo = 0 for W44+ at

r/a = 0.2, with ∆φ = 0 and ∆φ = ∆nat
φ . The steady state impurity gradient obtained

by cancelling the total flux (Γtot = 0) at ∆φ = ∆nat
φ is also indicated, and the results

from NEO are shown with hashtags symbols.

cases however, several additional effects should be considered. First, ICRH provides

ion and electron heating that are not considered in our analysis. These heatings

have an impact on the neoclassical transport: thermal screening via ion temperature

increase, as well as lower peaking via the change of the electron density profile induced

by the modified turbulent transport properties [20, 21]. Second, the friction of the

impurity with the minority species provides an additional screening effect that is not

considered here (temperature and density gradients of fast ions were set to zero) [14, 20].

Moreover, these experimental results were also obtained in a situation where ICRH was

combined with toroidal rotation. And the variation of horizontal asymmetry induced by

ICRH opposes that due to toroidal rotation, thus reducing the steady state Tungsten

accumulation. This issue is illustrated in figure 14 where we scan both the ion Mach
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Figure 13. Total, neoclassical and classical impurity flux (left), horizontal (middle)

and vertical (right) asymmetries as a function of the logarithmic impurity gradient for

different values of the minority ion temperature anisotropy, for W44+ at r/a = 0.2

(∆φ = 0).

number and the ratio T⊥/T‖ to determine the steady state gradient together with the

poloidal asymmetry parameters of W44+ at r/a = 0.2. The favourable window in T⊥/T‖
where Tungsten is expelled moves to higher values as toroidal rotation is increased. At

finite ion Mach number, increasing the minority ion temperature anisotropy leads in

the first place to a reduction of impurity accumulation, consistent with experimental

observations. Increasing T⊥/T‖ above the range where the impurity is expelled should

lead however to an abrupt transition to a regime of strong accumulation that has not

been encountered (or documented) so far in experiments. This critical value can be

estimated by considering the following points:

(i) the transition in the steady state impurity peaking seems closely related with the

minimum of the neoclassical diffusion coefficient (see figure 12), i.e. for δ/ε ≈ −2

(see eq. 36)

(ii) the collisional tilting of the poloidal asymmetry (RHS of equation 16) is about its

minimum value at steady state (the vertical asymmetry is about zero when the

drive is horizontal), so that we have δ ≈ −δaφ + δM
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Figure 14. From top to bottom: steady state normalized logarithmic W44+ gradient,

horizontal and vertical asymmetry, as a function of the ion Mach number and of the

parameter fH(T⊥/T‖−1) at r/a = 0.2 and with ∆φ = 0. The critical anisotropy given

by equation (62) is shown with the red dashed line.

This gives the following estimate:[
fH

(
T⊥
T‖
− 1

)]crit
≈ 2

Zi + Ti/Te
Za

+ 2M2
i

[
ma

mi

Zi + Ti/Te
Za

− 1

]
(62)

This estimate is shown in figure 14 with a red dashed line, and falls close to the

level of anisotropy that leads to impurity accumulation.

4. Conclusion

We have derived in this paper a simplified analytic formulation of the self-consistent

problem of poloidal impurity distribution and radial flux in the Pfirsh-Schlüter regime,

covering the effect of anisotropic electrostatic potential and of toroidal rotation. This

work extends earlier findings that the poloidal distribution can be formulated in a

geometric representation [29]. The poloidal asymmetry varies in particular with the

impurity gradient via the combination of the diamagnetic velocity and the friction force,

adding a nonlinear dependence of the flux on the impurity gradient through the poloidal

distribution that is not assumed in standard neoclassical theory. Three applications of
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experimental interest (”natural” case, toroidal rotation and ICRH heating) have been

considered, and the predictions of the model have been compared with earlier works

applicable to a flat impurity profile [26, 35], where a good agreement is found, and with

computations of the steady state using the NEO code [32].

Focusing on the comparison with NEO, evaluated at the cancellation of the

neoclassical flux, we reported a satisfactory agreement with the neoclassical diffusion,

pinch velocity and poloidal asymmetry of Tungsten for a toroidal plasma rotation raising

up to a ion Mach number of about 0.3. Regarding ICRH heating, a good agreement

is also found, with a Tungsten profile that tends to be flat or hollow at moderate

temperature anisotropy, reflecting the beneficial effect of ICRH heating reported in

experimental observations. But both our model and NEO are predicting a strong

accumulation above some critical value, for which an analytical estimate is given. To

our knowledge, this situation has not been reported so far in experimental analyses.

The reason may be that this accumulation is compensated, fully or partly, by additional

thermal screening from the minority species [14], not considered here, or that toroidal

rotation is always sufficiently strong to push this situation outside the accessible range

in experiments. Another interesting result found when applying the model to ICRH

heating is that retaining the classical flux in addition to the neoclassical one can be

important for determining the steady-state impurity gradient in particular ranges of

parameters where the neoclassical diffusion coefficient can be nearly suppressed by

the self-consistent poloidal asymmetry of the impurity. The results obtained with our

analytical model indicate that the steady state impurity profile tends to minimize the

contribution of the collisional terms in the parallel force balance, so that the horizontal

asymmetry drive from toroidal rotation or ICRH heating results in a nearly pure

horizontal asymmetry of the impurity distribution, which is not the case as long as

the collisional flux is finite. To this respect, the conventional neoclassical ordering used

in NEO seems to be justified in the steady state regime.

In the ”natural” case (no toroidal rotation and no ICRH heating), we have shown

that even a small residual asymmetry of the electrostatic potential can considerably

change the steady state impurity gradient. This sensitivity has been evidenced here

with respect to the positive vertical asymmetry of the electrostatic potential driven by

collisions. It is proportional to the ion temperature gradient and drives an inward pinch.

We note that a significant contribution of the electrostatic potential asymmetry to the

poloidal distribution of highly charged impurities was also outlined in PIC simulations

with the XGCa code [37]. The amplitude of this effect decreases at low collisionality,

and becomes subdominant as soon as a sufficiently large external source of poloidal

asymmetry is considered, for example, when the ion Mach number exceeds few percents.

This ”natural” case appears as the most critical in the comparison with NEO. The

vertical asymmetry of the electrostatic potential that plays such an important role is

indeed computed as a secondary order term (where it is consistent with theory) and is not

used for the computation of the impurity flux. The friction force between the impurity

and the main ions plays a large role in the poloidal distribution, and transfers the vertical
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asymmetry of the electrostatic potential in a combination of vertical and horizontal

asymmetries of the impurity, a transfer that is not described in the conventional ordering

of neoclassical theory. Note that a turbulence driven asymmetry of the electrostatic

potential adds to the collision drive. It also generates an asymmetry of the impurity

distribution that is not purely vertical, an horizontal component being driven by the

ballooning of the turbulent Reynolds stress [46, 47, 48].

The model described in this paper, being able to describe transient situations

where the impurity is still evolving towards steady state, can be of interest for

integrated simulation purposes, where the time scale of collisional transport competes

with turbulent one, as well as with the dynamics of radiation losses and equilibrium

evolution. Its formulation allows a fast computation (by 6 orders of magnitude compared

with NEO) although the geometrical simplifications (circular plasmas) and collisional

range of application limits its accuracy in its present form.
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Appendix A. Derivation

The derivation of the model follows closely the one without toroidal rotation described

in [29]. We consider an axisymmetric equilibrium with a magnetic field expressed as

B = F∇ϕ+∇ϕ×∇ψ and J−1 = ∇ψ ·∇θ×∇ϕ. The steady state momentum equation

of a species ’a’ of fluid velocity Va writes:

−manaΩ
2

2
∇R2 = −∇pa + naea (E + Va ×B) + Ra (A.1)

where Ra is the friction force, and the inertial term on the LHS has been simplified by

considering a pure rigid toroidal rotation of angular frequency Ω. We neglect in this

analysis the neoclassical viscous tensor, which means that the impurity is assumed to

be in the Pfirsh-Schlüter regime. The scalar product of equation (A.1) with R2∇ϕ gives

the radial particle flux:

Γa · ∇ψ = − naE ·R2∇ϕ− Ra

ea
·R2∇ϕ (A.2)
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and using the relation :

R2∇ϕ =
F

B2
B− B×∇ψ

B2
(A.3)

we obtain:

Γa · ∇ψ = − na
F

B2

(
E ·B +

Ra ·B
eana

)
+

Ra

ea
· B×∇ψ

B2
+ naE ·

B×∇ψ
B2

(A.4)

where we have, using E ≡ −∇φ (we neglect ∂tψ):

E · B×∇ψ
B2

= − F

JB2
∂θφ (A.5)

The projection parallel to B of equation (A.1) gives, using J ≡ 1/B · ∇θ:

E ·B +
Ra ·B
eana

=
1

J

(
∂θpa
eana

− maΩ
2

2ea
∂θR

2

)
(A.6)

which, injected into equation (A.4) gives:

Γa · ∇ψ = − F

eaJB2

(
∂θpa + eana∂θφ−

manaΩ
2

2
∂θR

2

)
+

Ra

ea
· B×∇ψ

B2
(A.7)

The first term is the neoclassical flux and the second one is the classical flux.

Appendix A.1. Neoclassical flux

From equation (A.6) we get:

Ra‖ =
naTa
JB

[
∂θpa
naTa

+
ea
Ta
∂θφ−

maΩ
2

2Ta
∂θR

2

]
(A.8)

so that equation (A.7) becomes:

Γneoa · ∇ψ = − F

eaB
Ra‖ (A.9)

The parallel friction can be expressed as:

Ra‖ = − namaνa

(
Va‖ − Vi‖ + Ca

0

2q‖i
5pi

)
(A.10)

Ca
0 =

3

2

1

1 + Ta
Ti

mi

ma

(A.11)

The assumption of stationarity ∇ · (naVa) = 0 gives

1

J
∂ψ (JnaVa · ∇ψ) +

1

J
∂θ (JnaVa · ∇θ) +

1

J
∂ϕ (JnaVa · ∇ϕ) = 0 (A.12)

We assume that the first term is negligible. This is justified whenever the radial

component of the velocity is small compared with its poloidal component. In the

axisymmetric case (∂ϕ = 0) we then have :

Va · ∇θ
B · ∇θ

=
Ka(ψ)

na
(A.13)

where Ka(ψ) is an unknown function.
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From equation (A.1), the fluid velocity can be expressed as:

Va =
Va‖
B

B +
Ta
ea
Aa

B×∇ψ
B2

+
Ta
ea
Aθa

B×∇θ
B2

(A.14)

where

Aa = ∂ψ ln pa + (ea/Ta)∂ψφ−maΩ
2/(2Ta)∂ψR

2 (A.15)

Aθa = ∂θ ln pa + (ea/Ta)∂θφ−maΩ
2/(2Ta)∂θR

2 (A.16)

From the expression of Va we obtain

Va · ∇θ
B · ∇θ

=
Va‖
B

+
F

B2

Ta
ea
Aa (A.17)

This gives using equation (A.13):

Va‖ =
Ka(ψ)

na
B − Ta

ea
Aa
F

B
(A.18)

Similarly for the main ion parallel heat flux, using ∇ · qi = 0 and q⊥,i = 5
2
piV

∗
Ti

with V∗Ti = (B×∇Ti) /(eiB2), we can write:

qi‖ = Li(ψ)B − 5

2

pi
ei

F

B
∂ψTi (A.19)

Using the notation u2‖i = 2qi‖B/(5pi) we can write

u2‖i =
2Li(ψ)

5 〈ni〉Ti
B2

N
− F ∂ψTi

ei

=
〈
u2‖i
〉 B2/N

〈B2/N〉
+

(
B2/N

〈B2/N〉
− 1

)
F
∂ψTi
ei

(A.20)

with N = ni/ 〈ni〉, and we define :

u(ψ) =
Ki(ψ)

〈ni〉
− Ca

0

〈B2/N〉

(
F
∂ψTi
ei

+
〈
u2‖i
〉)

(A.21)

This gives

Ra‖

namaνa
=
F

B

(
Ta
ea
Aa −

Ti
ei
Ai + Ca

0

∂ψTi
ei

)
− Ka

na
B + u(ψ)

B

N
(A.22)

At equilibrium, since the surface average cancels the operator (B · ∇), we have

(assuming isothermal flux surfaces):

Ta
〈
B∇‖ lnna

〉
+ ea

〈
B∇‖φ

〉
− maΩ

2

2

〈
B∇‖R2

〉
= 0 (A.23)

so that
〈
BRa‖/na

〉
= 0, and using equation (A.10) we obtain:

Ka

〈
B2

na

〉
−Ki

〈
B2

ni

〉
+ Ca

0

〈
u2‖i
〉
− F Ta

ea
〈Aa〉+ F

Ti
ei
〈Ai〉 = 0 (A.24)

This gives, using equations (A.21) and (A.24) to eliminate Ki and Ka:

Ra‖

namaνa
=
F

B

Ta
ea

[
Gψ
(

1− b2/n

〈b2/n〉

)
+ Uψ

〈
b2

N

〉(
b2/N

〈b2/N〉
− b2/n

〈b2/n〉

)
+
maΩ

2

2Ta

(
1− mi

ma

ea
ei

)(
b2/n

〈b2/n〉
〈
∂ψR

2
〉
− ∂ψR2

)]
(A.25)
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with

Gψ ≡ ∂ψ ln pa −
Ti
Ta

ea
ei
∂ψ ln pi + Ca

0

Ti
Ta

ea
ei
∂ψ lnTi (A.26)

Uψ ≡ u(ψ)
〈B2〉
F

ea
Ta

(A.27)

The surface average neoclassical flux can then be derived from equation (A.9):

〈Γneoa · ∇ψ〉 = maνa 〈na〉
F 2Ta
e2
a 〈B2〉

[(
1

〈b2/n〉
−
〈 n
b2

〉)
Gψ +

(
〈b2/N〉
〈b2/n〉

−
〈 n
N

〉)
Uψ

+
maΩ

2

2Ta

(
1− mi

ma

ea
ei

)(〈
n∂ψR

2

b2

〉
− 〈∂ψR

2〉
〈b2/n〉

)]
(A.28)

Appendix A.2. Classical flux

The classical flux can be calculated from:

Ra⊥ = −namaνa
(
Va⊥ −Vi⊥ + C0

aVTi

)
(A.29)

This gives, using equation (A.14) in the simplified case where ∇ψ · ∇θ ≈ 0:〈
Γcla · ∇ψ

〉
= − maνa 〈na〉F 2Ta

e2
a 〈B2〉

[(
〈B2〉
F 2

〈
nR2

〉
−
〈 n
b2

〉)
Gψ

−maΩ
2

2Ta

(
1− mi

ma

ea
ei

)(
〈B2〉
F 2

〈
nR2∂ψR

2
〉
−
〈
n∂ψR

2

b2

〉)]
(A.30)

Appendix A.3. Poloidal asymmetry

The poloidal asymmetry can be obtained from equation (A.8) assuming isothermal flux

surfaces:

∂θ lnna +
ea
Ta
∂θφ−

maΩ
2

2Ta
∂θR

2 = JB
Ra‖

naTa
(A.31)

where

JB
Ra‖

naTa
= Aψ

{(
1− b2/n

〈b2/n〉

)
Gψ +

(
b2

N
−
〈
b2

N

〉
b2/n

〈b2/n〉

)
Uψ

+
maΩ

2

2Ta

(
1− mi

ma

ea
ei

)(
b2/n

〈b2/n〉
〈
∂ψR

2
〉
− ∂ψR2

)}
(A.32)

with Aψ = JF maνa/ea.

Appendix B. Large aspect ratio

In the large aspect ratio limit we have:

∂ψr = q/(rB0) (B.1)
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The cos and sine components required for determining the poloidal asymmetry (equation

A.32) are:

b2/n = 1− (2ε+ δ) cos θ −∆ sin θ (B.2)

n/b2 = 1 + (2ε+ δ) cos θ + ∆ sin θ (B.3)

∂rR
2 = r + 2R0 cos θ (B.4)

with ε = r/R0. For the determination of the fluxes (equations A.28 and A.30), we use

R2 ≈ F 2

B2

[
1 +

(
ε

q

)2
]

(B.5)

with F ≈ R0B0 to obtain〈
nR2

〉
=
R2

0B
2
0

〈B2〉

〈 n
b2

〉[
1 +

(
ε

q

)2
]

(B.6)

〈
nR2∂rR

2
〉

=
R2

0B
2
0

〈B2〉

〈
n∂rR

2

b2

〉[
1 +

(
ε

q

)2
]

(B.7)

We have also, following [27]:〈
b2/n

〉
= 1 + εδ +

δ2 + ∆2

2
(B.8)〈

n/b2
〉

= 1 + εδ + 2ε2 (B.9)

This gives〈 n
b2
∂rR

2
〉
− 〈∂rR

2〉
〈b2/n〉

≈ 2εR0

(
1 +

δ

2ε

)
(B.10)

〈∂rR2〉
〈b2/n〉

b2

n
− ∂rR2 ≈ −R0 (2 cos θ + ε∆ sin θ) (B.11)
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