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Summary

• Context

• State of the art of gold nanoparticle photoactivation therapy

• Physics and Monte-Carlo simulation

• First results of simulation with Penelope code

• Conclusion and prospect
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• Current limitations of radiotherapy: 
 The tolerance of healthy tissues 
 The inability of irradiation techniques to treat diffused cancers (ex: 

Glioblastomas).

• Concept of heavy element enhanced radiotherapy :
 Irradiation with a low energy X-ray beam (50 - 150 keV) in the presence of high 

Z elements. 
 Enhancement of the dose effect in the tumor loaded with high Z element and 

creation of complex damages at the cellular level.

• Goals:
 Understand physical phenomena connected to these enhancement effects using 

Monte Carlo simulation and experimental measurements (provided by ESRF).
 Focus here on gold nanoparticles (GNP). 
 Use of different physical parameters as emitted electrons spectra and Dose 

Enhancement Factor (DEF).

Context
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• Study of Hainfeld et al. (Phys. Med. Biol (2004)) : 

State of the art : GNP photoactivation therapy

 Very good survival response, up to 
enhancement of 4, by treating 
cancerous mice combining injection of 
GNP of 1.9nm and irradiation with a 
RX tube at 250kVp.

• Hainfeld (Phys. Med. Biol (2010)): 
 New in vivo results using the same 

technique but with synchrotron beam 
at 68 and 157 keV.

• Radiosensitization experiments with GNP (E. Brun et al. 2009):
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• Cho et al. (Phys. Med. Biol. (2005)):

State of the art : Monte Carlo simulation with GNP

 Attempt to reproduce 
Hainfeld’s results.

 Model representing a 
tumor embedded with 
a gold-water mixture. 

 Obtained a DEF of 2.1 
into the tumor.  

 Need a model which 
takes into account the 
distribution of GNP and 
microdosimetry.

7 mg Au/g tumour + 2mg Au/g tissue

7 mg Au/g tumour + no Au/g tissue
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• Zhang et al. (Biomed Microdevices (2009)):
 Comparison of calculated macroscopic dose with two different model:

 Homogeneous gold-water mixture (Cho’s 2005 method).
 Structure with gold nanoparticles.  

 The homogeneous gold-water model overestimates the dose until 16% in the 
target volume.  Confirm the need of modelling the nanostructures.

State of the art : Monte Carlo simulation with GNP
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• Previous macroscopic studies show the importance of: 
 Modelling geometries and calculating doses at a micro and nano level.
 Finding parameters more relevant than physical dose to describe the phenomena.

• Monte Carlo codes called “track structure” can be used to simulate very 
precisely electron and photon transport. Main codes:

• Some are used to describe interaction of particles with DNA  :

State of the art : Monte Carlo - track structure code

 Penelope: adapted for clinical radiation dosimetry and          
transport description of low energy X-Ray and electrons.

 EGS: adapted for clinical radiation dosimetry.
 MCNPx: not precise to model relaxation cascades (in development).
 G4: developed for high energy physics, now extended to all radiation 

physics (project : G4DNA).

 Ftacnikova et al. (Radiation Protection Dosimetry (2000))
 Terrissol et al. (Int. J. Radiat. Biol. (2008))
 Nikjoo et al. (Radiation Protection Dosimetry (2006))
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• Monte Carlo method :

• Photon interaction :

Physics and Monte Carlo simulation

 Allow to follow the particles transport 
in matter according to random 
processes determined with interaction 
probabilities.

• Atomic relaxation :
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• Electron range in water, ESTAR (NIST databases):

 Range of 10 keV electron  2.5 µm in water, nucleus scale.
 Range of 50 keV electron  40 µm in water, cellular scale.
 Range of 100 keV electron  140 µm in water, few cells.

Physics and Monte Carlo simulation

 2.5 µm

 40 µm

50 keV

 140 µm
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Penelope code

• Gold nanoparticle geometry, spectrum study:
 sphere of 100 nm diameter, full of water or gold. 
 Detectors are virtual tools which quantify the spectrum of outgoing particles.

Z

Y

Circular photon source (R=50nm)

100 nm

GNP

Electron 
detector

Photon 

detector
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Outgoing photon spectrum for 85 keV monoenergetic beam

 Fluorescence relaxation well described in Penelope.
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Electron spectrum for 85 keV monoenergetic beam
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 Relaxation cascade and X-ray interaction with shell and sub-shell 
well described in Penelope.

Mean energy  16 keV
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Electron spectrum for 68 keV monoenergetic beam
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 Modification of the spectra before and after the K-edge: influence 
on the mean energy and range of electrons created from the GNP.

Mean energy  35 keV
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Study of total electrons emitted and the yield of low energy electrons 
(< 10 keV) produced in GNP as a function of beam energy
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 Strong enhancement of the yield of low energy electron (range of 
few µm) after the K-edge due to the photoelectric absorption.

Yield=

Total nb of e-

Nb of low E e-

Low E e-

Total
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Mean energy of electrons emitted from the GNP as a function of 
incident beam energy

 Mean energy of electrons emitted from the GNP increases with the 
incident beam energy and falls down after the K-edge.

 Optimization of beam energy as a function of the GNP targeting.
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Study of total electrons emitted and the yield of low energy electrons 
(<10keV) produced in GNP as a function of GNP radius
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 Total number of electrons relative to the mass of gold seems to 
decrease as a 1/x² tendency with the GNP radius.

 Yield of electrons lower than 10 keV decreases linearly with the 
GNP radius. 
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Study of microdosimetry around the GNP

• Dose study :
 Geometry: spherical GNP of 100 nm diameter in a water sphere of 1 µm. 
 Study of the deposited dose due to the GNP in the water sphere.
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Dose profile on the Z axis for a 85keV monochromatic beam

 Deposited dose due to the GNP is dominated by the low energy 
electrons produced.

 Quasi-isotropic diffusion of dose around the GNP at a µm scale.
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DEF calculated as a function of beam energy with a 100 nm GNP

Dose Enhancement Factor = -------------------------------------------------
Mean dose in the water sphere with GNP

Mean dose in the water sphere without GNP
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Mean dose calculated as a function of GNP radius for a 85 keV 
monochromatic beam

 Deposited dose in the 1 µm water sphere due to the GNP increases with 
the radius as a exponential tendency.

 The increase of electron production for small GNP does not influence 
the dose at a µm scale.
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• Conclusion : 
 Photoactivation radiotherapy with GNP induces complex dose effects at a cellular 

level and requires more precise study of the local effect of GNP. 

 This study aims understanding physical phenomena correlated to these local 
effects. 

 The characterization of GNP in terms of particles created and local physical dose 
deposited are described according to the beam energy and the radius of spherical 
GNP.

• Prospect :
 Study these local characteristics in a more realistic geometry.

 Experimental measurements planed to study the dependency with beam energy. 

 Study different geometries of GNP.

 The challenge is to find a relevant parameter to see correlation between physical 
data and biological results.

Conclusion and prospect


