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Abstract—This work aims to evaluate the energy
savings that can be achieved in Domestic Hot Wa-
ter (DHW) production using consumption forecasting
through statistical modeling. It uses our forecast algo-
rithm presented previously and aims at investigating
how it can improve energy efficiency depending on the
system configuration. Especially, the influence of the
DHW production type used is evaluated as well as
the water tank insulation. To that end, real consump-
tion measurements are used for model training. Then
simulations are carried on using TRNSYS software
to calculate the total energy consumption of DHW
production systems over one year. Simulations are also
based on real consumption measurements for realistic
results. To appraise the energy savings, we compared
simulations that consider either no forecast (reactive
control), perfect forecast (to estimate the control abil-
ity to consider forecast) and the forecast provided by
our algorithm. The measurements and simulations are
carried on 26 different but real dwellings to assess
results variability. Several system configurations are
also compared with varying thermal insulation indices
for a complete benchmark of the approach so that an
overall performance of system and anticipation could
be evaluated.

I. INTRODUCTION

A recent study [1] showed that global energy consump-
tion should be halved for European countries to meet 2050
ambitious objective of 75 to 90 % reduction of greenhouse
gases emissions. Energy saving is thus a major component
of the effort that should be carried on for our future, along
with the development of renewable energies.

Considering more precisely the residential sector, Space
Heating (SH) and Domestic Hot Water (DHW) produc-
tion represent a significant part of the total energy con-
sumption, depending on the country and the geographical
location. For example, heating, air conditioning and hot
water production represent up to 65 and 77 % of the total
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residential energy consumption in U.S. (source: EIA!) and
in France (source: CEREN?) respectively, with 17.7 and
10% devoted to water heating.

To tackle this challenge, the two promising approaches
currently in use are first the promotion of energy sobriety
and also the energy efficiency enhancement through multi-
ple ways as devices performance enhancement and demand
side management. Based on previously published forecast
algorithm (see [2]), the present study investigates the
benefits that can be drawn from machine learning methods
applied to energy consumption forecast to enhance the
DHW production efficiency. In particular it analyses the
adequacy between systems and provided forecast, with a
specific focus on determining in which context forecasting
can yield more energy savings and how much.

Forecasting domestic energy consumption using ma-
chine learning techniques has been extensively studied and
summarized in some reviews comparing the different data
based approaches [3]-[5]. Considering DHW forecast based
on real data, Aydinalp et al. [6], Eynard et al. [7] and
L. Gelazanskas and K. A. A. Gamage [8] have proposed
to use neural networks. Grey-box modeling approaches
have been investigated by Bacher et al. [9] and Nielsen
et al. [10] whereas non-homogenous Markov chains have
been proposed by Sandels et al. [11]. Yet these approaches
are time consuming and might not be appropriate for
embedding into individual water heating systems.

Other methods based on lighter algorithms such as
moving average have been proposed by Prud’Homme and
Gillet [12]. However this approach has been shown to
be less responsive to demand variation compared to our

HEA, International Energy Agency, 2014. http://www.iea.org/.
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algorithm [2]. Time series model such as ARMA has been
proposed by Popescu et al. [13] but they focus on a bloc
of 60 flats, which is more appropriate for district heating
systems. This paper presents a method that uses ARIMA
approach but focuses on individual dwellings which are
more fluctuating than groups of residences. Moreover no
assumption is done about the type of dwelling or charac-
teristics and number of dwellers that are considered.

Applications of the DHW forecast to optimize DHW
production have been presented in multiple studies [14]—
[16]. Although their results are encouraging, their models
either assume the same deterministic profile for consump-
tion and forecast (i.e. forecast are assumed perfect) or they
focus on Economic Model Predictive Control (EMPC)
(using the time dependent real price of electricity to save
money, rather than focusing on saving energy) or also focus
on district level rather than individual level.

Our approach consists in designing a lightweight al-
gorithm that could be implemented in individual water
heating devices to reduce the energy consumption. Fore-
casting DHW consumption allows heating only the re-
quired amount of water at the right time (just before water
tapping), avoiding significant energy waste that can be
observed in domestic water heater. It also enables a better
dimensioning, reducing device’s cost. The advantage of
using such algorithm is that it is cheap to implement once
developed compared with high efficiency materials, tank
and heat production systems which production cost tends
to increase along with the efficiency gain they provide.

Details and performance of the forecast algorithm have
been published [2]. The aim of this current paper is
rather focused on application and performance evaluation
in realistic conditions. Two objectives are covered:

e Defining a methodology to compare traditional (re-
active) heating systems with consumption forecast
controlled ones (anticipative systems),

o Evaluate the benefits that can be drawn using con-
sumption forecast and to which extent depending on
heating systems characteristics.

Forecasting DHW consumption is only a part of our
solution to the problematic of reducing energy consump-
tion. In this paper, we analyze to which extent the use
of consumption forecast can enable saving energy. In
particular, the influence of the type of DHW production
system used is evaluated as well as some main parameters
like the insulation of the water tank. To achieve this, we
use TRNSYS! simulation software to model the differ-
ent systems in combination with our forecast algorithm.
Simulations and forecast computations are based on real
measurements coming from several dwellings. Then the
difference of heating systems performance is evaluated
by comparing simulation results. Three different systems
configurations are tested, with a wide range of complexity

1See http://www.trnsys.com/
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and efficiency to evaluate precisely the benefits of this
approach depending on the used technology.

This report starts by the description of the methodology.
The heating systems are first explained. Then a brief de-
scription of the measurements used as input to our model
and to the simulator is provided. The next part details
TRNSYS simulations setups. A description of the building
stages of the forecast algorithm is then explained. Results
from the forecast algorithm and simulations are provided
in section III, along with a detailed analysis, explanations
and interpretations. A synthesis of the relevant conclusions
is provided at the end of the paper.

II. EXPERIMENTAL PROCEDURE

To evaluate the benefits that can be drawn from using
energy needs forecast in water heating systems, simula-
tions are ran considering different systems over one year
based on real consumption measurements from different
dwellings. Each experimental case is simulated with and
without forecast. This approach allows to determine the
benefits of forecasting depending on the type of system
considered while ensuring that the result does not depend
on the load profile used as simulation input.

A. Considered systems

Three different systems are considered for this study
spawning a large range of complexity:

o Configuration 1 consists of a 763 L stratified water
tank connected to an electric (resistive) heating sys-
tem (see figure 1).

o Configuration 2 uses the same water tank powered by
a Heat Pump (HP).

o Configuration 3 is identical to configuration 2 with
an additional Solar Thermal Collector (STC) as an
auxiliary power source (see figure 2).

Note that in figures 2 and 1, Ti refers to the component
of type i used in TRNSYS software.
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Figure 2: Heat production system with solar thermal
collector and heat pump

B. Description of real consumption measurement data sets

A total of 26 data sets are used to perform forecast
and simulation. These data are issued from 3 different
locations in France and Sweden and have been gathered
during CombiSol European project? and French SCHEFF3
project. These data sets will be denoted A, B and C respec-
tively and are presented in Table I. Each data set measures
the hot water needs in liters for a real domestic dwelling.
DHW consumption measurements have been performed
every 6 minutes. Missing values generally concern less than
5% of the data. Linear interpolation has been performed
if the time window of missing data is shorter than 3 hours
to complete the time series. Otherwise, the time window
is not considered for the analysis.

Table I: List of measured dwelling grouped by project

Name | Location | Number of | Period of
dwelling measurements
measured

A France 8 2010-2011

B Sweden 8 2007-2009

C France 10 2007-2009

C. Description of the simulation setup

All the three TRNSYS setups are derived from the
core simulation setup developed for MacSheep European
project provided by D. Chéze et al. [17]. This setup is the
most complete and energetically efficient one. The heating
system comprises a heat pump connected to a vertical
borehole heat exchanger as well as a STC. These devices
are connected to a stratified water tank through double
ports or heat exchangers from which is drawn hot water

2More informations available at:

https://ec.europa.eu/energy/intelligent /projects/en/projects/combisol

3ADEME (http://www.ademe.fr/) project SCHEFF : Solaire col-
lectif & haute efficacité

for domestic use. The total volume of the tank is 750 L.
Since a STC can provide a large part of the required DHW
in summer almost for free (only a pump to flow water
through the collector is required), limited energy savings
are expected in this configuration. However this kind of
system is not extensively used today. Thus, a second sys-
tem has been designed without STC. Except the STC, this
setup is perfectly equivalent to the first one. Since these
two systems are not representative of what can be found as
DHW heating systems, a third system has been simulated
which consists of the same water tank connected to an
electric water heater. Electric heater is simulated thanks
to type 6 unit of TRNSYS with a maximum heating rate of
8000kJ /h and a perfect efficiency. Although this efficiency
is not relevant, it does not call into question conclusions
since they will be based on relative savings considering the
same system parameters with and without forecast. There
are two different control strategies according to whether
or not forecast is taken into account, i.e. reactive and
anticipative. If the forecast is not taken into account, the
control strategy is a traditional one, in other words the
water is heated at the set point temperature (50°C in
this case, as recommended by the European and United
States institutions) all the time. This is achieved using a
thermostat with a hysteresis of £2°C. In the case where
we account for forecast, the available energy in the tank
at time t is compared to the forecast quantity of energy
that will be consumed during the next coming hour. If
sufficient energy is stored, the heating system remains
off or is switched on otherwise. A hysteresis controller is
also added in this case with a dead band of at least the
equivalent of 10 liters of hot water or 10 % of the required
energy for the next hour.

D. Description of the forecast algorithm

The detail of the algorithm can be found in [2]. However
we briefly describe it here for convenience. The procedure
is broken down in steps that are illustrated in figure 3
where Y (d) and F(d) are the measured and forecast daily
consumption respectively, y(¢) and f(¢) are the measured
and forecast intra-day consumption profiles respectively,
d is the day index and t is the time index within a day
(in hours), G is the pool of mean intra-day consumption
profiles, Ny.q and Ny, are the number of days used for
training and forecasting time series respectively.

1) ARIMA modeling of daily consumption: To forecast
DHW consumption the algorithm only needs the record of
the 3 last months of consumption (Y;Vd € [—Ngrq + 1 : 0]
in figure 3). The input for the self-learning process is
thus a discrete time series of consumption in liters. The
total consumption per day is modeled using an ARIMA
function [18]. A training window of Ny, = 84 days is used
to estimate the values of coefficients during the learning
stage. This is the step one in figure 3. Forecast is performed
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Figure 3: Algorithm scheme

over a one year period that follows the training window.
The formula is shown in equations 1 and 2:

X, = Z(pithi + Zezftfi +e o, (1)

VteZ X, =Y, , (2)

where Y; is the forecast, the parameters ; and 6; are
linear coefficients, €; is a white noise, i« € {1,2,7} and
d is the degree of differencing. This auto regressive part
is formed by a linear combination of the consumption of
the two previous days and the same day of the previous
week (denoted by i € {1,2,7}). The moving average part
is also based on the error made on these days. This form
of the model is fixed for all dwellings. This allows faster
computation for model training, which is a great asset
for embedding into the water tank. This form as been
chosen so that it fits best the 26 dwellings. However the
differentiation degree is calculated independently for each
dwelling in order to build the model on a stationary time
series. This is the second step in figure 3.

2) Intra day consumption modeling: After forecasting
the daily consumption, intra-day cumulative consumption
is forecast. The method consist in building a set of nor-
malized and representative daily load curves. Then the
cumulative consumption within each day is assumed to
conform to the most appropriate load curve picked from
curve set. For each day, the final forecast is obtained by
scaling the normalized curve with the ARIMA forecast.

A first set of curves is constructed based on the day of
the week. That is, every load curves of the same day of
the week measured during the training test are gathered.
The representative curve is then obtained by computing
the average of the curves. This is the third step in figure
3. As an example intra-day profiles for dwelling Al are
shown in figure 4.

Each average curve is then modeled using a sum of
sigmoid functions. It enables having smoother profiles and
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Figure 4: Intra-day DHW consumption profile of dwelling

A1 for each day of the week.

requires less memory for embedding. Combining ARIMA
forecast with the corresponding week day average cumula-
tive consumption yields a first continuous forecast for the
entire year. This is the fourth step in figure 3.

3) On line correction of the forecast every hour: In
order to have a better forecast accuracy, the profile is
corrected every hour, at time t, based on the observed
real consumption of the day. The correction consists first
in checking if a better load profile can be found considering
the load curve measured since the beginning of the day.

The most adequate load profile is found among an
extended set of curves, build using the previous set of
curves (average week day load profiles) and a set of average
curves of load profiles clusters. Clusters of profiles are built
using the Silhouette approach [19] that groups together
the curves which are the most similar to each other.
This method is applied on all the intra-day cumulative
consumptions. A flat curve is added to the extended
set of curves corresponding to the days with no DHW
consumption. This is a particular case that should be
accounted for since it is not unlikely (e.g. during vacation)
nor frequent but accounting for it properly can enable
large savings.

At each correction step, the best load profile is found
as the highest scalar product between the measured load
curve and each curve of the set. Scalar product has been
preferred to other metric since it yields better results when
building profile clusters. To get the forecast cumulative
consumption for the rest of the day, this curve is scaled
to match the current consumption (at time ¢) and the
cumulative consumption forecast by ARIMA at the end of
the day. As the time passes, ARIMA weights less on the
scaling of the curve. Indeed, when time reaches closer to
the end of the day, the actual consumption becomes more
relevant as the daily consumption forecast than ARIMA
forecast. This time dependent weight is implemented by
linearly weighting ARIMA forecast. The weight equals 1
and 0 at the beginning and the end of the day respectively.
This is the fifth step in figure 3.



E. Performance comparison protocol

To compare the performance yield by each experiment,
the energy savings after one year of consumption are cal-
culated. Energy savings are the difference of the electrical
energy consumed by the system accounting for forecast
(anticipative system) or not (reactive system, which is
considered as the baseline). Further results (figure 5,6a, 9
and 10) are shown in relative scale. These relative energy
savings are computed using the formula shown in 4, where
E is the energy saved, E, and E, are the energy consumed
by reactive an anticipative systems respectively.

(Er — Ea)
E,

In order to have a relevant comparison between experi-
ments, the discomfort due to missing hot water should be
taken into account. To do so, energetic penalties are added
to the total electrical energy consumption of the system
whenever hot water is missing, according to the standard
penalty function calculation given by the TEA [20]. The
penalty is calculated as the missing energy multiplied
by a yield factor of 1.5. The equation is recall here for
convenience:

E, = 100 (3)

Epen =15 Emiss (4)

where Fp,e, is the penalty energy and E,;ss is the total
energy that had not been delivered due to missing hot
water in the tank. This penalty function can be considered
has the extra energy that would be consumed by a hypo-
thetical auxiliary system to compensate for the missing
heat.

III. RESULTS AND DISCUSSIONS
A. Energy savings

Energy savings made using forecasts are shown in fig-
ure 5 and 6 using the perfect forecast and the ARIMA
forecast obtained with our algorithm respectively. Perfect
algorithm are used here to show the upper limit in terms
of energy savings, no matter how precise the forecast is.
It is not an absolute upper limit since it does not address
the issue of forecast and system control interfacing. For
each system configuration, all the 26 profiles have been
used to simulate savings. Overall savings are comprised
between -3.6 and 17.4% of the total energy consumed.
These figures show that the overall saving amount depends
on the system but also on the dwelling (and thus the
dwellers habits) since boxes spread is not negligible.

The results also suggest that a solar collector reduces
the effectiveness of the technique. Indeed, in summer, a
significant part of the energy is provided by the solar
collector almost for free (neglecting the energy for pump).
Considering systems without solar collector, heat is pro-
vided thanks to heat pump or resistive devices that are
less efficient. Figures 7 and 8 illustrate that on a particular
dwelling. The figure 7 shows that in summer, almost no
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energy comes from HP when STC is in operation. The
consequence on energy saving is shown in figure 8. No
extra savings are achieved during the summer if STC
is working while savings steadily increases in the other
case. Even though the efficiency of the resistive system
is lower than the others, the energy gains observed using
forecast are less important than the case of HP systems.
We could expect the gain to be greater (at least) since
the production system consumes more energy normally.
Figure 5 and 6 show that this intuition is neither verifyed
in relative scale nor in absolute. The explanation is that,
since the production behavior is very different, the thermal
inertia is different, thus, the way the system accounts for
forecasts might be less appropriate and yields less savings.

More precisely, in this case, the pipes inlet and outlet
positions of the heat production loop and the temperature
sensor position are responsible for the thermal inertia
discrepancy between systems. These positions are sum-
marized in table II and can be observed in figures 2 and
1. The consequence is that the configuration 1 has short
operating cycles that heat a smaller volume of water than
configuration 2-3 (the sensor being placed higher). Thus, if
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DHW is regularly tapped, the average exergy of the tank
is lower and so are the thermal dissipation compared to
configuration 2-3. This is why energy savings are lower in
configuration 1. However this does not hold anymore if
there are long periods of absence (greater than 10 days).
In this case, which occurs sparsely in our data, without
forecast, configuration 1 ends up by heating the whole tank
(since DHW is not tapped) and energy losses become as
high as in configuration 2. The energy yield being lower
in configuration 1, the anticipative system allows larger
savings since it enables shutting down the boiler when no
DHW is tapped during the day.

The main result to retain is that the characteristics of
the boiler can have an impact on how much savings the
anticipative system can yield. The algorithm can be tuned
to be more efficiently adapted to the boiler. For example
forecast horizon can be extended or shrunk to adapt to
the effective inertia of the boiler and the amplitude of
consumption peaks.

The effect of thermal insulation of the tank has been
studied as well. The reference system has a thermal loss

sensor | inlet | outlet
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Configuration 2-3 | 0.65 1 0.49
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Figure 9: Relative energy savings using perfect forecast
depending on insulation, considering only configuration 1
(system with resistive heating device). Insulation varies
from nominal value (0%) down to 50 % less efficiency
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coefficient of 1.08, 10.12 and 2.41 kJ/(h.K) at the top, side
and bottom of the tank respectively. More information can
be found in [21]. Figure 9 and 10 show results obtained
with the 26 dwellings simulated with differents thermal
insulations. As a results, a poorer insulation allow more
savings using the forecast. Indeed, if the tank is well
insulated, hot water can be stored longer without suffering
from extra dissipation. Thus forecasting the consumption
becomes less relevant in terms of energy gain.

Figures 9 and 10 show that relative savings using con-
sumption forecast are increased by 52 % of the baseline



value when the insulation is halved. In other words, the
relative energy savings increase by 1.65. The effects of
the insulation coeflicient are slightly exacerbated using
ARIMA (up to 61% increase of the baseline value of
relative energy saving when the insulation is halved) but
the difference might not be significant (relative energy
savings increases up to 1.21). So an anticipative strategy
is much more adapted with higher energy loss.

B. Performance of the algorithm and energetic efficiency

1) Relation between model accuracy and energy savings:
All previous results showed that energy savings depend
strongly on the system. It does also depend on the pre-
diction accuracy since using exact forecast yields better
results than using ARIMA in figure 9 and 10. To gain a
better insight into the relations between forecast error and
energy savings, the energy savings discrepancies observed
using ARIMA and perfect forecast are plotted in figure 11.
Energy gain using perfect forecast is significantly better
than using ARIMA forecast. Thus a better accuracy of
the model can still improve the energy savings up to 3.8 %
in average.

The model Mean Error (ME) is computed over each sim-
ulated year and plotted against energy savings in figure 12,
for each simulated configuration of system and dwelling,
using ARIMA and perfect forecast. Errors are computed
on the cumulative consumption forecast for the next hour
using formulas 5,

n

ME= 1S (F-Y) | (5)

t=1

where Y; and F; denote observations and forecasts respec-
tively with ¢ covering the simulated year. Figure 12 shows
that the ME is homogeneously spread around 0 and that
a high negative or positive ME value does not imply lower
savings. However we have seen that the difference between
savings using perfect forecast and ARIMA is significantly
positive. The conclusion is thus threefold:

o Lower forecast accuracy reduces energy savings.

e The system type affects the yield as much as the
forecast accuracy.

o ME indicator is not well suited to assess the forecast
accuracy that drives energy savings.

Considering the interface between forecasts and the
control system, the implemented strategy consists in eval-
uating at each time step the available energy stored in the
tank and comparing it with the cumulative consumption
forecast over an horizon of H hours. The stored energy
is adjusted whenever some is missing by turning the
production system on. Available energy is computed using
4 sensors spread along the top half section of the tank. If
the stored water is below T;,,in, then its energy is not taken
into account, since this water would not be hot enough if
drawn. In our case H = 1 hour and T,,in = 48°C). How-
ever, depending on the thermal inertia of the system, these
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parameters could be modified and improve or degrade the
energy gain obtained using forecast.

2) Effect of concept drift on model accuracy and energy
savings: A statistical model trained on a particular data
set is suited to forecast consumption of the dwelling
from which the training set has been measured. How-
ever nothing ensure that this model would be fitted for
another dwelling since it is occupied by other dwellers
with different habits. Moreover within the same dwelling,
dwellers can change with time, compromising the fitness
of the model. This problem is referred as concept drift.
To investigate the extend of the error caused by concept
drift, models trained on specific dwellings have been used
to forecast other dwellings consumptions. Figure 13 shows
the forecasts obtained for dwelling D6 using the models
calibrated using DHW consumption of dwelling D6 and
D9. The model trained with dwelling D6 is representative
of the different models trained with the 26 dwellings
(ARIMA coefficients are the closest to coefficients means).
Error observed using model calibrated on D6 to forecast
dwelling D9 consumptions is representative of the errors
observed using the same model to forecast all the other
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Figure 13: Dwelling D6 DHW consumption measured
(red lines) and forecast (blue lines) using model
calibrated on D6 (a) and D9 (c). Histogram of model
error (Y (d) — F(d)) with model calibrated on D6 (b) and
D9 (d).

dwellings. The figure shows that concept drift can add a
serious bias in the forecast. In this case, the forecast is
systematically underestimated. Even though we have seen
that large ME and MAE does not necessarily lead to lower
energy savings, the problem of concept drift should be kept
in mind and dealt with.

C. Discussions and guidelines

Improving the energy efficiency of an individual DHW
production system using forecast is a challenging task for
many reasons. The first challenge not in the scope of this
study is to use efficiently a statistical model for DHW
forecast through the control. For exemple, we consider a
single dwelling rather than a full district or a town (i.e.
for the case of urban heating network) which is easier
to forecast thanks to the aggregation of consumptions.
Moreover DHW consumption fluctuate over time and is
hard to predict since it does not necessarily depend on
external factor like external temperature [2] compared
to space heating production. This has been studied and
published in previous papers [2] and [22].

However, we focus here on considerations about model
embedding into production systems. The study shed some
light about the difficulties of saving energy within an-
ticipative systems (i.e. that uses forecast). First of all,
anticipative systems yields to greater savings using tank
with poorer insulation than our study case. Second, there
is no direct relationship between initial efficiency of the

system and the energy gain that one can expect using
forecast. In particular, using STC brings energy to the
tank during summer almost for free, thus restricting the
economies made using forecast compared with systems
without STC. However the energy gains are even more
restricted considering a simple resistive system to produce
DHW, which efficiency is lower than HP systems with
and without STC. This has been attributed to the com-
patibility between forecasts and the system, through the
control strategy and the system’s characteristics itself. For
example, the position of the pipes inlet and outlet and the
thermal sensor have been pointed out as being responsible
for shorter heating cycles in the system configuration 1
leading to lower exergy stored and thus less dissipation
for most of the dwellings. Thus the production system
characteristics have a large impact on the energy savings.

Finally the energy gain also strongly depends on the
dwelling considered and dwellers habits. Thus no pledge
about the saving amount can be held without knowing
the DHW production system and the dwellers habits, with
the strategy we used to interface forecasts and the control
system.

IV. CONCLUSION AND PERSPECTIVES

This paper aims at investigating whether forecasting
DHW consumption can lead to significant energy savings
in individual scale DHW production system. It focuses
on evaluating the compatibility between the consumption
forecast model and the DHW production system. To
achieve this, a large set of simulations has been carried on
26 real and different dwellings, considering 3 different sys-
tems for each, one whose tank insulation parameter ranges
over three levels. Energy savings have been evaluated be-
tween -3.6 and 12.8 % depending on the experimental case.
This has been shown using a time series based algorithm
to forecast consumption and TRNSYS tool to simulate
the system and the DHW demand. Real consumptions
have been used as input to the simulator and to train the
forecasting model, in order to have statistical estimation
of the energy savings.

The main conclusions of this study are the following:

o The percentage of energy saved depends on:

— the dwellers and their habits,

— the characteristics of the DHW production sys-
tem (like yield and tank insulation),

— the forecast accuracy.

e ME and MAE are not well suited to estimate the
energy efficiency gain of the anticipative system com-
pared with the reactive one.

o Concept drift can induce a large bias in the forecast
and should be properly addressed.

As a perspective, an adaptive forecast model that deal
with concept drift and optimizes the interface with the
control strategy will be considered to challenge the context
changing.
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