
HAL Id: cea-02564024
https://cea.hal.science/cea-02564024

Submitted on 16 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modeling cities
Marc Barthelemy

To cite this version:
Marc Barthelemy. Modeling cities. Comptes Rendus. Physique, 2019, 20 (4), pp.293-307.
�10.1016/j.crhy.2019.05.005�. �cea-02564024�

https://cea.hal.science/cea-02564024
https://hal.archives-ouvertes.fr


Modeling cities

Marc Barthelemy∗

Institut de Physique Théorique, CEA, CNRS-URA 2306, F-91191, Gif-sur-Yvette, France and
CAMS (CNRS/EHESS) 190-198, avenue de France, 75244 Paris Cedex 13, France

Cities are systems with a large number of constituents and agents interacting with each other and
can be considered as emblematic of complex systems. Modeling these systems is a real challenge
and triggered the interest of many disciplines such as quantitative geography, spatial economics,
geomatics and urbanism, and more recently physics. (Statistical) Physics plays a major role by
bringing tools and concepts able to bridge theory and empirical results, and we will illustrate this
on some fundamental aspects of cities: the growth of their surface area and their population, their
spatial organization, and the spatial distribution of activities. We will present state-of-the-art results
and models but also open problems for which we still have a partial understanding and where physics
approaches could be particularly helpful. We will end this short review with a discussion about the
possibility of constructing a science of cities.

I. INTRODUCTION

Modeling cities and getting reliable quantitative pre-
dictions about their behavior have become major chal-
lenges for our modern world. Concentration of humans
in a relatively small spatial area is essentially the result
of economical considerations but spatial localization also
leads to an increase of housing costs, traffic congestion,
urban sprawl, pollution and other environmental prob-
lems. Organizing the city, building new infrastructures
and new transportation means rely then a lot on our un-
derstanding of their effects on the collective behavior and
their potential impact on the city, its functioning and its
economical activity. This is particularly important at
a time when we expect the number of megacities (with
population larger than 10 millions) to be around 30 in
2050 [1] (see also [2] for a more thorough discussion),
and emergent countries see their cities exploding in size:
it is estimated that by 2050 the world population will
add 2.5 billion people to urban areas, with 90% of this
increase that will take place in Africa and Asia [1].

From a theoretical point of view, cities comprise all the
difficulties inherent to complex systems: a large variety
of agents interacting with each other, a large variety of
temporal and spatial scales, and a large number of pro-
cesses that modify the spatial structure and organization
of these systems. The always growing availability of ur-
ban data will hopefully help us to construct robust mod-
els and thereby to improve our knowledge of the main
mechanisms at play during the evolution of urban sys-
tems. This fundamental level is necessary in order to con-
struct robust computational models for describing more
realistic or specific situations. Indeed, simulating the be-
havior of a urban system by ‘simply’ adding together all
the possible processes and gathering as much information
as possible, is neither a guarantee of its robustness, nor
of the correctness of its predictions.

∗Electronic address: marc.barthelemy@ipht.fr

Economics and regional science were the first disci-
plines to tackle this problem of modeling cities. Most
of the urban economics is built on the model proposed in
the 60s by Alonso, Muth and Mills (see for example the
textbook [3] and references therein). This model relies
on different assumptions. The first important one is that
all individuals behave in the same way and maximize the
same utility function subject to the same budget con-
straint. The second assumption is the monocentric city
structure organized around a unique central business dis-
trict (CBD). The information about transport infrastruc-
ture is here absent and space is considered as homoge-
neous and isotropic. All individuals are assumed to work
at this CBD and the transportation cost depends on the
distance from home to it (here we can see the impact of
the first model proposed by Von Thunen [4] with a unique
market in an isolated state, where space is homogeneous
and isotropic, and transportation cost depend only on the
euclidean distance to the central market). Later, Fujita
and Ogawa [5] considered a general model where both in-
dividuals and firms are finding their optimal location in
the city. In particular they introduced an agglomeration
effect that describes the benefit for companies to be close
to each other. These approaches constitute the basis of
urban economics and we refer the interested reader to the
books [3, 6].

Agent-based models and large simulations also played
an important role for understanding cities and were pri-
marily developped by geographers in the 50-60s. The pri-
mary goal was to forecast the effects of planning policities
and several formalisms were used [7, 8]. The complex-
ity of these simulations, the large number of parameters
and processes however make it difficult to test thoroughly
these models. In addition to these numerical simula-
tions, it thus seems important to develop parsimonious
models that help identifying the main mechanisms and
to construct robust models. In this respect physics and
more precisely statistical physics with its ability to con-
nect microscopic behaviors to the emergence of collective
and non-trivial behavior seems to be a particularly well-
suited tool. In fact, statistical physics came into play
later and connections with cities appeared first in the
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context of fractals and percolation. The fractal dimen-
sion of city boundaries was measured [9, 10] with a value
between 1.2 and 1.4. The diffusion limited aggregation
(DLA) model [11] was then naturally invoked to describe
the growth of such a fractal structure. Later, statistical
physicists [12] proposed an alternative percolation model
where the presence of correlations between new units is
able to predict results in agreement with the dynamics
of cities. This correlated percolation model [13] is a very
simplified model for cities, but nevertheless suggested the
possible relevance of simple statistical physics approaches
for systems as complex as cities. The importance of per-
colation in cities was reinforced in the study [14] where
the authors proposed a percolation-like algorithm to de-
fine cities without ambiguities, as the giant percolation
cluster of the built-up area. Another important ques-
tion where statistical physics contributed a lot is the so-
cial structure of cities. First discussed by Schelling [15],
agents are described by Ising like spins with tolerance
level for other kinds and was later naturally rediscussed
and improved by physicists [16–20].

In this paper we won’t address all aspects of cities but
we will focus on few of the most recent approaches that
combine concepts and ingredients from economics and
geography with tools and ideas from statistical physics.
We will first discuss in sections II and III the – still rela-
tively open – problem of the population and area growth
of cities and their quantitative characterization. In par-
ticular, we will discuss a candidate model in direct con-
nection with important problems in statistical physics for
explaining the Zipf law that governs the statistics of ur-
ban populations. In section IV we will consider cities at a
intra-urban level and discuss their spatial structure and
the distribution of activities. Finally, in sections V and
VI, we will discuss the issue about mixing together data
for different cities and the possibility of constructing a
‘science of cities’ [21].

II. URBAN SPRAWL

A first and natural question about cities concerns their
spatial extent and how it evolves in time. There are
several definitions of cities but we will assume here a
‘functional’ definition where the city is not limited to its
central core but includes peripheral areas that exchange
enough commuters with it (for example MSA in the US
or EU-OECD functional urban areas in Europe, see for
example [22]). Another possibility is to consider the per-
colating cluster of built-up areas as in the ‘City clustering
algorithm’ (CCA) discussed in [14].

Cities and their built-up area are usually growing with
time and the impact of urban sprawl on the environment
has largely been debated and is highly politicized. There
is however a relatively fair consensus about its negative
impact on the environment (see for example [23] and ref-
erences therein) with the reduction of green areas, the
increase of car traffic, the intensification of social segrega-

tion, and also the loss of physical activity and an increase
of obesity [24]. Despite the importance of the subject, the
only studies available at this time are mostly purely sta-
tistical (such as multivariate analysis for example) and
we don’t have a clear and simple quantitative model in
agreement with data that could help us in identifying
the critical factors of urban sprawl. We won’t discuss all
studies about this important problem and we will start
with a simple empirical discussion, followed by scaling
arguments. We will then see how a statistical model can
be constructed for this problem.

A. Empirical discussion

Visual inspection of the evolution of built-up areas
of cities shows the existence of spreading phenomena,
and ‘hotspots’ which suggests that nonlinear mechanisms
are present (see Fig. 1). Despite these qualitative dis-

FIG. 1: Evolution of the built-up area of London from 1800
to 1978 (the color-code indicates the age from blue to grey).
We observe here the growth of a surface but the corresponding
equation is not known yet. Data from [25] and figure courtesy
of E. Strano.

cussions, the quantitative description of this problem is
completely open and we could expect that the physics
of growing surface could help. In particular, finding an
equation governing the spatio-temporal evolution of the
local density would be a real breakthrough in our under-
standing of cities.

In order to go beyond visual and qualitative explo-
rations, we plot the built-up area of various cities ver-
sus time and show the results in Fig. 2. We observe a
large variety of behaviors that is difficult to understand
without a theoretical guide, calling for the need of more
empirical analysis and the construction of a theoretical
framework. In particular, the range of variation does not
allow here to characterize precisely the time behavior,
even if we can see that in all case the area grows faster
than t (and is consistent in most cases with a t2 behavior)
implying at least a superdiffusive behavior.

Due to exogenous factors, time is probably not the
most relevant variable and it seems quite natural to study
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FIG. 2: Evolution of the built area of various cities. These
curves demonstrate an evolution faster than t (typically as t2

for most cities). Data from [25].

the evolution of the cities surface area versus the popu-
lation living in it, a long standing problem in the field
([12]). Here also, we don’t have a clear picture yet. For
cities in various countries, we can fit the data with a
linear function of the form

A = aP (1)

where a is the inverse of the average density and repre-
sents the typical area per inhabitant. This corresponds to
the intuitive expectation that cities evolve in such a way
that their average population density ρ = P/A remains
constant. The quantity a is the average surface occupied
by each individual (the assumption of a constant density
is equivalent to a constant average surface per capita).
We can probably expect this behavior to hold for rel-
atively small cities where there is an constant increase
of the built-up area when the population is increasing.
However, this regime is certainly limited as a city cannot
extend indefinitely and we expect a later behavior char-
acterized by a slower increase of the area. In some other
cases, we can fit the data by a nonlinear function of the
form

A = aP τ (2)

where τ is an exponent usually slightly smaller than 1.
In the linear case the density is contant ρ = P/A =
1/a and in the nonlinear case the density increases with
population ρ ∼ P 1−τ : larger cities are also denser.

Empirically, we do observe that cities around the world
display very different behaviors as shown in Fig. 3. When
we mix together different countries of the world by tak-
ing urban areas with population larger than 1million
(Fig. 3(left)), the nonlinear fit predicts an exponent
slighly less than one (τ ≈ 0.95, r2 = 0.66) and with
this dataset it seems not possible to conclude between
a constant density or a slightly increasing function of
population (with exponent of order 0.05). At a smaller
scale, in the case of the US for example (Fig. 3(right)),
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FIG. 3: Area versus population for different regions in the
world. (Left) Area of the 494 world cities with population
larger than 1 million inhabitant. Both the linear and nonlin-
ear fit are acceptable and very close to each other (data from
various sources compiled by Wikipedia). (Right) US Urban
areas with population over 50, 000 (data from the 2010 Cen-
sus population). Here also both linear and nonlinear fits are
acceptable and a more thorough statistical analysis is needed
(such as in [26] for example).

the nonlinear behavior is also undistinguishable from the
linear one. The linear fit predicts an average area of or-
der 660m2 which is large, while the nonlinear fit gives an
exponent β ≈ 0.87. The linear fit predicts thus a con-
stant density of order 1, 500hab/km2, which is correct for
many cities, but we actually see deviations for large cities
with density much larger for proper cities (and not for ur-
ban areas that mixes heterogeneous zones). For example
for NYC, we have a density of order 10, 000hab/km2 or
6, 600hab/km2 for San Francisco. This behavior is how-
ever completely different for a country such as Japan for
example (Fig. 4) where both linear and nonlinear fits are
not good. The noise in this case cannot allow to conclude
and the data suggests that the area is not a function of
population only.
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Nonlinear fit: β=0.13 (r2=0.40)

FIG. 4: Area versus population for urban areas in Japan (data
from the UN, Demographic Yearbook 2012).

After this little tour of empirical results, the absence
of a clear stylized fact leaves us in the dark, and theoret-
ical models, even very simplified ones, could shed some
light on this problem. In order to illustrate how models
could help us to understand the data, we will discuss here



4

two different approaches to this problem: scaling and a
statistical model based on dispersal ideas.

B. Scaling approach

Bettencourt [27] proposed a phenomenological ap-
proach accounting for the value of the exponents gov-
erning the evolution of various quantities versus the pop-
ulation. In this approach the quantity of interest Y can
be any ‘urban socioeconomic output’ such as income, etc.
Empirically we observe in general [28, 29] a power law

Y ∼ P β (3)

where β is an exponent that can be different from 1. It
was measured in [29] for various quantities and we can
distinguish 3 groups according to its value. For social-
related quantities (such as the number of patents, num-
ber of serious crimes, etc.), we observe β > 1 possibly
rooted in the fact that interactions in cities grow very
fast with population, typically as P 2. In contrast, we
also observe values β < 1, which indicates an economy of
scale (road surface, length of electric cables, etc.), and the
last category with exponent β = 1 comprises essentially
quantities that do not depend on the size of the city (wa-
ter consumption or other human-dependent quantities for
example).

In order to estimate these exponents (and to obtain
as a by-product the behavior of area with population),
Bettencourt assumes that the economic output per capita
Y/P is proportional to the average number of interactions
Y/P ∼ g〈k〉. The quantity g is assumed to be constant
and the average number of interactions is assumed to be
〈k〉 ∼ ρσ where σ is the ‘cross-section’ of individuals and
ρ = P/A the average population density. This implies
that

Y/P = G
P

A
(4)

where G is a constant. In addition, Bettencourt assumes
that Y/P is of the order of the cost of transport which
is also proportional to the average distance ` travelled
in the city. The average distance ` depends on the frac-
tal dimension H of the transportation network and Bet-
tencourt writes ` ∼ AH/d (where usually d = 2 is the
dimension of the embedding space). We then have

Y/P ∼ P

A
∼ AH/d (5)

⇒ A ∼ P
d

H+d (6)

Usually d = 2, and in the simplest case of a linear trans-
portation network H = 1, we obtain β = 2/3. This
simple approach thus confirms a sublinear behavior with
population but is at this point not able to explain the
large fluctuations and the variety of behavior observed
in real world cities.

C. A dispersal model

We are left with the question of constructing a sim-
ple model that is able to explain some of the features
observed for the growth of the surface area of cities. A
natural approach is to adapt dispersal models used in
theoretical ecology. These models were developped to de-
scribe the proliferation of animal colonies [30, 31] and also
as simplified models for cancerous tumor growth [32, 33].
The main feature of dispersal models is the concomitant
existence of two growth mechanisms. The first process is
the growth of the main (‘primary’) colony, which occurs
typically via a reaction-diffusion process (for example as
described by a FKK-like equation [34, 35]) and leads to
a constant growth with a velocity c that depends on the
details of the system. In the case of urban systems, this
process would correspond to new buildings constructed
at the fringe of the city and which are in turn triggering
the construction of new buildings. The second ingredi-
ent is random dispersal from the primary colony, which
represents the emergence of secondary settlements. In
the urban sprawl case, this second process corresponds
to the creation of small towns in the periphery of large
cities. In real-world systems, dispersion is not isotropic
and is governed mainly by transportation systems (blood
vessels in the case of metastatic tumors, winds and rivers
in ecological examples), but in this first approach we will
neglect these effects. We assume that these secondary
colonies grow also at the velocity c and eventually will
coalesce with the primary colony. This image of a grow-
ing city, that eventually coalesces with neighboring small
towns is consistent with our knowledge of urban growth
(see for example the case of West London in [36]).

We will follow here the approach introduced by
Kawasaki and Shigesada in [30, 35] in order to study
this simplified model. We will consider that the primary
colony grows at radial velocity c and emits a secondary
colony at a rate λ and at a fixed distance ` from its bor-
der (long-range dispersal). Besides, we assume that each
secondary colony also grows with the same radial speed
c and does not emit tertiary colonies. The dependence of
the emission rate on the colony size is taken into account
by the functional form

λ(r) = λ0r
θ , (7)

r being the radius of the primary colony and θ ≥ 0. When
θ = 0 the growth rate is independent from the primary
colony size, for θ = 1 it is proportional to its perimeter
and for θ = 2 to its area. For cities, we can imagine
that at least the perimeter or the surface are the relevant
variables for triggering new towns in its surrounding and
that θ ≥ 1 is therefore probably the most relevant for
urban systems.

We consider two variants of this process [37] - in a first
version (model M0) we assume that the primary colony
remains circular after the coalescence with a secondary
colony. In contrast, we can consider a modified version
of the process (model M1) where after the coalescence



5

with a secondary colony, the shape of the primary colony
does not remain circular. This important difference is
illustrated in the Fig. 5.

FIG. 5: Example of coalescence in models M0 and M1. In M0,
the primary colony (in red) remains circular and the area of
the secondary colony is evenly distributed on the rim; in M1,
the shapes are simply ‘concatenated’. Figure taken from [37].

If we denote by r(t) the radius of the primary colony
at time t and by x(t) the radius of the colony absorbed
at time t, we can show [37] that the equations governing
the evolution of these quantities are [35, 37]dr

dt = c+
λ0r(t− x(t)c )

θ

2πr(t)

(
1− ẋ(t)

c

)
πx(t)2 ,

` = r(t)− r
(
t− x(t)

c

)
+ x(t) .

(8)

These nonlinear differential equations capture the physics
of the coalescence and allows us to extract the large time
behavior of the main quantities of interest in this prob-
lem. In particular, assuming scaling laws at large times,
r(t) ∼ atβ and x(t) ∼ dt−α, we obtain

β =
3

4− θ
, α = β − 1 . (9)

Note that for θ → 4, we have β → ∞, the radius grows
faster than a power law and explodes exponentially. For
θ = 1, we obtain α = 0, β = 1 which means that we have
x(t) = x∗ independent of t and a linear behavior of r(t).
In this case the effective radial velocity c′ of the primary
colony is given by

c′ = c+
λ0
2
x∗2 (10)

and the value of x∗ can be obtained by solving Eq. (8)
that can be written as

λ0
2c
x∗3 + 2x∗ − ` = 0 . (11)

This result, for the specific case of θ = 1, was first ob-
tained by Shigesada and Kawasaki [30]. More generally,
we can test our prediction for θ > 1 on numerical simula-
tions, and in Fig. 6, we plot the values of the exponents
β obtained by power law fits and compare it with the
theoretical prediction Eq. (9). We observe a good agree-
ment with some deviations for higher values of θ which

FIG. 6: Plot of the exponent β as a function of θ, obtained
from a power law fit on r(t) versus t. The theoretical predic-
tion Eq. (9) is shown in red. See [37] for details.

are probably due to finite size effect. Even if this model
is very simple and is more ‘metaphorical’ than realistic
[38], it suggests that the simple mechanism of dispersal
implies that the growth of the citie’s area (for θ ≥ 1)
is scaling at least as t2 in agreement with the empirical
observations discussed above.

This simple Shigesada-Kawasaki coalescing model is
based on the circular approximation and if we drop this
assumption, analytical calculations seem out of reach.
We can however investigate this problem numerically [37]
and assume that the area A and the perimeter L obey to
a power law scaling of the form

A(t) ∼ tµ L(t) ∼ tν . (12)

In the case of a constant emission rate λ(r) = λ0, nu-
merical results seem to show that µ ≈ 2 and ν ≈ 1.
The dominant behavior are then A(t) ∼ πc2t2 and
L(t) ∼ 2πct. This shows that for θ = 0 and for large
values of t, the circular approximation is valid: the city
grows isotropically and absorbs neighboring towns. We
can also consider the case where the emission rate λ be-
haves as

λ(t) = λ0L(t) , (13)

where L(t) is the total perimeter of the primary colony at
time t. This case corresponds to θ = 1 in the model M0.
The simulations results for the area A(t) and the perime-
ter L(t) of the primary colony suggest that we still have
µ ≈ 2 and ν ≈ 1 as in the M0 model. We can go further
and investigate the prefactors of A(t) and L(t). We re-
call that for the M0 model with θ = 1, the radius of the
primary colony increases with an effective radial velocity
c′ 6= c. We can then study the quantities A(t)/πc′2t2 − 1
and L(t)/2πc′t−1; if the prefactor is the same of the M0

model we should find (as we did for θ = 0) that these
quantities tend to zero for large values of t. In fact we
observe that these two quantities tend to a constant that
depends on `. These results show that the circular ap-
proximation is not appropriate in the case described by
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Eq. 13 (see Fig. 7). When the emission rate is propor-

FIG. 7: Example of shapes obtained for the model M1. (Left)
Constant emission rate and ` = 10. (Right) Emission rate
proportional to the perimeter (Eq. 13), and ` = 2. Figures
taken from [37].

tional to the perimeter, the circular approximation thus
breaks down and the roughness of the primary colony can
not be discarded, thus modifying the scaling exponents.
For cities, we expect that the rate of creation of new
towns depends on the economical activity of the city and
is at least proportional to its perimeter. These results
show then that – independently from the anisotropy of
transport networks – cities will in general not grow in an
anisotropic way due to the coalescence with neighboring
towns.

This model is of course very simplified and we are still
far from a quantitative description of cities and their sur-
face area, but we believe that this type of approach could
serve as a basis for more elaborate ones and eventually
to construct the equation governing the evolution of the
area of cities.

III. MODELING THE POPULATION
DYNAMICS

The population of cities varies over several order of
magnitudes: from small towns with hundreds of inhab-
itants to megacities with more than 10 million inhabi-
tants. This large disparity of sizes has been noticed for
some time already and Zipf uncovered in the 40s the ‘uni-
versal’ behavior of the form (see [39])

P (R) ∼ R−ν (14)

where P (R) is the population of the city at rank R (cities
are sorted in decreasing order according to their popu-
lation). Interestingly enough, this result is robust and
valid for different periods in time: even if there is a non-
trivial microdynamics with the rank of cities changing all
the time, Zipf’s law remains stable [40]. The exponent
ν is usually close to 1 for most countries which implies
that the population distribution is close to ρ(P ) ∼ 1/P 2

(in general the population size distribution is a power
law with exponent κ = 1 + 1/ν). More recent empiri-
cal evidences seem however to show that there are non-
negligible fluctuations of this exponent (see [41] for an
extensive study over 73 countries). The Zipf law has

a number of interesting consequences: the ratio of the
largest to second-largest city is given by P1/P2 = 21/ν ;
for ν < 1 the largest city will have a population scaling
as Pmax ∼ N1/ν ; and the total population of a country
scales as W ∼ N1/ν where N is the number of cities.

Zipf’s law for cities triggered a huge number of stud-
ies in economics and also in physics and we discuss here
some of the most important approaches together with an
interesting connection with a classical model of statis-
tical physics. First, Gibrat proposed in 1931 a simple
rule stating that the growth rate of a firm is indepen-
dent from its size [42], and applied to the growth of city
populations, gives the following equation

Pi(t+ 1) = ηi(t)Pi(t) (15)

where Pi(t) is the population of city i at time t (usu-
ally the year). This equation basically describes the ran-
domness of births and deaths by introducing an effective
random growth rate ηi(t) which is assumed to be inde-
pendent from a city to another and without any time
correlations. This simple equation with multiplicative
noise naturally leads to a lognormal population distribu-
tion in contrast with empirical results, implying that the
growth of urban areas is not consistent with Gibrat’s law.
Several other approaches were then proposed in order to
understand Zipf’s law [43, 44]. In particular, Gabaix [44]
proposed an alternative approach that is so far consid-
ered as the best explanation for Zipf’s law. It is based
on the Gibrat model with the constraint that small cities
cannot shrink to zero. In other words, the process consid-
ered by Gabaix is a random walk with a lower reflecting
barrier which can, in some conditions, produce a power
law distribution of populations. In addition to the reflect-
ing barrier, a necessary condition is a drift towards the
barrier and it is the combination of these two ingredients
that can give rise to a power law [45]. The ‘regulariza-
tion’ of the Gibrat model proposed by Gabaix relies on
the assumption of a minimum size of cities and predicts
the value ν = 1, but cities can actually disappear and
this model is not completely satisfying. Ideally, we would
like an approach based on reasonable mechanisms, link-
ing micromotives with the large-scale behavior described
by Zipf’s law. An interesting step towards such a descrip-
tion was proposed by Bouchaud and Mézard [46] (in the
context of the wealth distribution) who discussed the dif-
fusion equation with noise. This model has implications
far beyond cities such as finance, directed polymers and
the KPZ equation, etc. (see [46] and references therein).
The diffusion equation with noise for the population Pi(t)
of city i reads in the continuous time limit as

dPi
dt

= (ηi(t)− 1)Pi(t) +
∑
j

JijPj(t)− JjiPi(t) (16)

where the first term represents the ‘internal’ growth as
given by Gibrat’s law and where the two last terms repre-
sent migrations between cities. We note that in contrast
with some other models, the ingredients needed here are
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reasonable and correspond to a process that does occur in
the real world. The random variables ηi(t) are assumed
to be identically independent Gaussian variables with the
same mean and a variance given by 2σ2. The flow (per
unit time) from city i to j is denoted by Jji and for a
general form of these couplings we are unable to solve
this equation. In the mean-field limit where all cities
are exchanging individuals with each other (Jij = J/N
where N is the number of cities), Bouchaud and Mézard
could show that the stationary distribution of the nor-
malized population wi = Pi/P (where P is the average
population) is

ρ(w) ∼ w−(1+κ)e−(κ−1)/w (17)

where the exponent is

κ = 1 +
J

σ2
(18)

When the migration term J is nonzero, this regulariza-
tion changes the lognormal distribution to a power law
for large w and the exponent is between 1 and 2 (for
J/σ2 < 1). The exponent κ in this approach is not uni-
versal and depends on the details of the system providing
a possible explanation for the diversity of values observed
empirically [41]. This diffusion model suggests an inter-
esting connection between a central model in statistical
physics and the old problem of the urban population dis-
tribution. It also shows that Zipf’s law finds its origin
in the interplay between internal random growth and ex-
changes between different cities. An important conse-
quence of this result is that increasing inter-urban mo-
bility should actually increase κ and therefore reduces the
heterogeneity of the city size distribution. Other empiri-
cal tests are needed at this point, and from a theoretical
point of view the mean-field assumption is not obvious.
We expect that in general the couplings Jij are not con-
stant and depend on the distance between cities, which
could dramatically alter the results.

IV. SPATIAL ORGANIZATION OF CITIES

In this section, we will focus in the intra-urban scale.
In particular, we will discuss approaches for understand-
ing the spatial organization of a city. It is a problem of
crucial importance as the location of residences and of the
economic activity govern commuting flows and mobility
patterns, a vital ingredient for assessing the efficiency of
infrastructures and for planning. It is thus important to
understand how households and companies choose a cer-
tain location and what are the main driving factors. We
will first discuss here the main model used in urban eco-
nomics and upon which many variants are constructed.
We will then discuss another approach proposed by Krug-
man and which is a good example of a non-equilibrium
approach to the city structure. Finally we will discuss a
more recent model proposed in a statistical physics spirit.

A. The Alonso-Muth-Mills model of urban
economics

The Alonso-Muth-Mills (AMM) model is a pillar of
urban economics and constitute the basis on which most
economic models are constructed. In this respect we be-
lieve that it is important to know this model and we
describe its main lines here. The first ingredient in this
model is a utility function U that describes the prefer-
ences of individuals (or households – they are usually
considered to be the same in this simple approach) that
are considered to be all equivalent. This function U is
usually assumed to depend on the land consumption s
(which corresponds to the surface area of apartments)
and on the composite commodity z (which corresponds
to the money left when rent and transportation costs are
substracted from the income)

U = U(z, s) (19)

This utility has to satisfy the general constraints

∂U

∂s
> 0 ,

∂U

∂z
> 0 (20)

which means that households in general prefer larger
apartment and smaller costs. The budget constraint is
given by

Y = z + T (x) +R(x)s (21)

where Y is the income of an household, T (x) the trans-
portation cost to work when living at location x and R(x)
the renting cost per unit area at x. In this simplest ver-
sion of the AMM model all households are renting their
apartments and all landlords are living out of the city.
The problem is then to optimize the utility subject to
this budget constraint

max
z,s

U(z, s) subject to Y = z + T (x) +R(x)s (22)

This is a classical problem which can be solved with La-
grange multipliers, but we will here discuss a faster way
to obtain general results. We introduce the constraint
with z = Y − sR − T and we maximize U(Y − R(x)s −
T (x), s) with respect to s

∂U

∂s
= 0 = ∂1U(−R(x)) + ∂2U (23)

where ∂iU denotes the derivative of U with respect to the
ith variable. From this equation, we obtain the renting
cost under the form

R(x) =
∂2U

∂1U
(24)

An additional requirement is that the maximum utility
U∗ should be independent from x. If it is not, then in-
dividuals could choose another better location and we
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wouldn’t be at equilibrium. We thus have to write

dU∗

dx
= 0 = ∂1U

(
−sdR

dx
−Rds

dx
− T ′(x)

)
+ ∂2U

∂s

∂x
(25)

where the functions s(x) and R(x) are computed at equi-
librium. Combining Eqs. (24) and (25) which are valid
for all x, we then obtain the central result for the AMM
model (see for example [47])

dR

dx
= −T

′(x)

s(x)
(26)

This relation Eq. (26) allows us to discuss the location
of individuals in the city. For example, for discussing the
impact of income, we assume that transportation cost
are linear in x and then T ′(x) = t and that we have two
income categories, rich and poor characterized by their
(fixed) land consumption sR and sP , and transportation
costs tR and tP . The category of individuals that lives
in a given area of the city is then the one that is willing
to pay more for the rent at this location. The condition
for the poor living in teh center can be shown to be

tP
sP

>
tR
sR

(27)

In the opposite case, rich individuals will live in the cen-
ter as they are willing to pay more than the poor for
this location (see [48] for a detailed discussion about this
point in the context of the AMM model).

We refer the interesting reader to the large litterature
on the subject and in particular to the books [3] and
[6], and we will just make a few remarks about this ap-
proach. First, it assumes that cities are in equilibrium
and their structure optimizes some objective function.
Given the large variety of temporal (and spatial) scales,
of processes and interactions, this assumption seems dif-
ficult to accept for cities. Even if we accept it, we are left
with the difficult problem that some features of the city
(such as the population profile for example) will actually
depend on the precise form of the utility function. This
poses the problem of the choice of the utility function
and how to test it empirically. Also for this model, or for
the more involved Fujita-Ogawa model (see [5] and next
sections), the theoretical predictions are usually not thor-
oughly tested against data. This is often true for classical
studies of urban economics: theories and assumptions are
not tested against data and serve as conceptual guides to
understand some phenomena but usually with no clear
guarantee of their validity.

B. Krugman’s model: The Edge-City model

A non-equilibrium model for the spatial structure of
cities and in particular how the economic activity clus-
ters in specific regions was proposed by Krugman [49].
This approach is a good example of a minimal model

that could probably be built upon and amenable to pre-
dictions that can be tested. The most important aspect
here is the presence of interactions between firms. These
interactions can lead to a polycentric organization of the
city in which businesses are concentrated in spatially sep-
arated clusters. We follow the discussion proposed by [49]
and consider that the city is one-dimensional and the den-
sity of businesses is described by the function ρ(x) whose
integral is assumed to be constant. We assume that all
locations are initially equivalent (which means in partic-
ular that there is relatively uniform transport infrastruc-
ture network) and the attractiveness of a location will
depend on the spatial distribution of businesses. In or-
der to describe this mathematically, Krugman introduces
a quantity Π(x) ‘a market potential’ which describes the
level of attractivity of location x and is given by

Π(x) =

∫
K(x− z)ρ(z)dz (28)

where the kernel is chosen as K(x) = A(x) − B(x) with
functions A and B that are both decreasing with the dis-
tance. These functions represent the positive and neg-
ative spillovers and how they vary with distance. Busi-
nesses will have an incentive to come to certain location
depending on the level of attractiveness Π and the sim-
plest assumption is to compare Π(x) to the average spa-
tial level Π =

∫
Π(x)ρ(x)dx and to write

dρ(x)

dt
= γ

[
Π(x)−Π

]
(29)

The density will then increase at locations where Π(x) >
Π and decrease otherwise. This equation describes in
a simple way the evolution of the business density with
time and provide an explanation for the self-organized
nature of cities. Note that since Π(x) depends on ρ, the
quantity Π =

∫
Π(x)ρ(x)dx is nonlinear in ρ. Numer-

ical simulations indicate that this nonlinear system in-
deed leads to various situations with multiple centers at
different locations, depending on the initial conditions.
Essentially, if positive spillovers are larger we will ob-
serve bigger clusters of businesses. We also see that this
concentration has a reinforcement effect: regions with a
large market potential will be more attractive and will
therefore grow.

At a more quantitative level, we denote by λ the size
of spatial fluctuations and by r1, r2 the range of positive
and negative spillovers, respectively. For large frequen-
cies, λ� r1, r2 there is basically a compensation effect of
positive and negative spillover and we do not expect the
growth rate to be large. Also, for very low frequency fluc-
tuations such as for example around a maximum of ρ(x)
which decays slowly around x, and for strong enough
negative spillover, the growth rate at x will be nega-
tive. Both low and high frequencies have thus negligible
growth rate and it is natural to expect a frequency with
a maximal growth rate, well-tuned to the spatial decay of
positive and negative spillovers, leading to a specific spa-
tial pattern in this city. In order to get a quick analytical
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insight, we can linearize the equation for ρ(x) around the
flat city ρ(x) = ρ0 + δρ(x) and find

dδρ

dt
' γ

∫
K(x− z)δρ(z)dz +O(δρ2) (30)

where we choose the normalization
∫
ρ(x) = 1. Using the

Fourier transform

δρ(k) =

∫
eikxδρ(x)dx (31)

we obtain by integrating the linear differential equation

δρ(k) ∼ eγK̂(k) (32)

where K̂(k) is the Fourier transform of the kernel K(x).
This expression shows that the Fourier mode k∗ for which
K̂(k) is maximum will develop faster and will lead to the
appearance of a spatial pattern characterized by k∗. We
can obtain explicit expressions with the choice K(x) =
Ae−|x|/r1 −Be−|x|/r2 which leads to

dδρ(k, t)

dt
= 2γ

[
Ar1

1 + (r1k)2
− Br2

1 + (r2k)2

]
δρ(k, t) (33)

We thus have for each mode a growth rate proportional
to

Λ(k) =
Ar1

1 + (r1k)2
− Br2

1 + (r2k)2
(34)

which satisfies Λ(0) = A− B which is negative for large
enough B and Λ(k) → 0 for k large. We thus expect in
general a maximum Λ∗ for a value k∗ that can be easily
computed. This value k∗ depends here on r1, r2, A and B
and is thus finite and independent from the city size. For
a one dimensional city of size L, the number of business
clsuters is then given by

H ∼ Lk∗ (35)

This simple model thus predicts a linear increase of the
number of activity centers (or ‘hostspots’) with city size,
but doesn’t explain in particular how this quantity scales
with population. Indeed, new datasources such as cell
phone networks, employment data, smart card transac-
tions and taxi GPS trajectories provide a lot of informa-
tion about cities and their structure. In particular, it
has been shown [50, 51] that the number H of activity
centers (or ‘hotspots’) is scaling with population as

H ∼ Pσ (36)

where the exponent σ is found to be around 0.5 − 0.6.
The number of these hotspots thus scales sublinearly with
the population size, a result that will serve as a guide
for constructing a theoretical model. We thus see that
Krugman’s model is not able to explain this behavior.
Although it is interesting to see how simple nonlinear
effects give rise to a nontrivial spatial pattern, this model
doesn’t produce at this stage predictions that are directly
testable on empirical data.

C. A variant of Fujita-Ogawa

The Krugman model discussed above is unable to ex-
plain the empirical behavior Eq. (36). We will show here
how a simplified variant of the Fujita-Ogawa model [5]
can actually help us to understand this empirical result.
We start from the standard economical assumption that
an invidivual will choose a residence located at x and to
work at location y such that the quantity

Z(x, y) = W (y)− CR(x)− T (x, y) (37)

is maximum. The quantity W (y) is the typical wage
earned at location y, CR(x) is the rent cost at x, and
T (x, y) is the transportation cost to go from x to y and is
usually taken to be proportional to the time τ(x, y) spent
to cover this distance. In their original paper, Fujita and
Ogawa [5] couldn’t find the general solution, but tested
the stability of some specific urban forms. For example,
by neglecting congestion and writing τ(x, y) = d(x, y)/v
(where d(x, y) is the euclidean distance between x and y
and v is the free flow average velocity), they could show
that if the transportation cost for the typical interac-
tion distance between companies becomes too large, the
monocentric organization with a central business district
surrounded by residential areas is unstable. However,
this formalism does not allow to predict the resulting
urban structure, and we have to simplify it in order to
reach testable predictions. First, we assume that each
agent has a residence located at random. Second, a quan-
tity as complex as the wage results from a large number
of interactions and factors, and it is tempting – in the
spirit of random Hamiltonians for heavy ions [52] – to
replace this complex quantity by a random number φ(y):
W (y) = sφ(y) where s sets the salary scale (and with a
certain distribution of φ which is irrelevant at this point).
Last but not least, we assume that most of the displace-
ments are made by car and we include congestion effect
which implies that the time τ(x, y) depends on the traf-
fic Q(x, y) as described by the simple Bureau of Public
Roads function (see for example [53])

τ(x, y) =
d(x, y)

v

[
1 +

(
Q(x, y)

C

)µ]
(38)

where C is the road system capacity, and µ an exponent,
usually between 2 and 5. These ingredients put together
allow for a simple mean-field analysis showing that the
monocentric organization is unstable for a value of the
population larger than a threshold P ∗ (which depends
on the details of the city) and that the number H of
distinct activity centers is given by

H ∼
(
P

P ∗

) µ
µ+1

(39)

(see Fig. 8). This simplified model thus predicts a sublin-
ear behavior for the number of activity centers with an
exponent given by σ = µ/(µ+ 1) (for µ ≈ 2, we then re-
cover the empirical value σ ≈ 0.6, and for µ = 0 we have
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H ∼ O(1) in the absence of congestion). We observe that
whatever the value of µ, the behavior is sublinear, and
congestion appears as a critical factor that shapes the
structure of the city and favors the appearance of new
activity centers.

H

P
P*

Monocentric Polycentric
1

FIG. 8: Number of activity centers versus the population for
the model discussed in the text: we observe a monocentric-
polycentric transition for a value P ∗ that depends on the city.

Finally, we note that knowing both the residence and
workplace locations allows to discuss multiple aspects of
the commuting to work [54]. In particular, we can esti-
mate the total commuting time and the quantity of CO2

emitted by cars (see also [55]).

V. AVERAGING OVER MANY CITIES ?

Various studies of cities such as scaling [29] use data
from different cities at different times and plot some
quantity versus population. For many quantities (de-
noted Y here), we observe a power law of the form
Y ∼ P β where P is the population of the city [29]. As
we already discussed above, we can distinguish different
behavior according to the value of β, in particular if it
is larger than one or not. Once we have measured this
scaling form, we could in principle use it for predicting
the behavior of an individual city when its population
changes. In order to illustrate the possible problems of
such an approach we consider the particular case of de-
lays due to traffic congestion and analyze a dataset for
101 US cities in the time range 1982-2014 [56]. This is a
particularly interesting dataset as it is both transversal –
it contains many cities – and longitudinal – for each city
we have the temporal evolution of the delay.

The scaling form obtained by agglomerating all the
available data for different cities and for different years
displays a nonlinear behavior, seemingly in agreement
with general empirical results about scaling [29]. More
precisely, we can first compute the scaling exponent by
mixing together all cities but for a given year. We can
also compute this exponent for each year and we observe
an exponent whose value varies in the range [1.2, 1.4] for

FIG. 9: (Top) Plot of the annual delay δτ versus the number
of drivers P for all cities in 2014. The straight line is a power
law fit in this loglog representation and gives an exponent
value β ≈ 1.23 (and R2 = 0.93). (Bottom) Scaling exponent
β(t) for the delay computed for each year separately, from
1982 to 2014. All these values are consistent with a superlin-
ear behavior found in [57]. Figure taken from [56].

years from 1982 to 2014 (see Fig. 9). Finally, we can
consider all cities and for all years and we then obain a
delay in traffic jams scaling as

δτ ∼ P β (40)

with β ≈ 1.36 consistent with a superlinear behavior.
However, if we don’t average over the different cities,

we observe the behaviors shown by different colors in
the Fig. 10. The different cities display then a variety
of behaviors ranging from pure power laws with expo-
nents larger than one, or two power laws, etc. (see [56]
for details). The scaling obtained by averaging over all
cities appears then completely unrelated to the dynam-
ics of individual cities when their population grow. There
seems to be no simple scaling at the individual city level
but a variety of behaviors. In the language of statisti-
cal physics, the delay is not a state function determined
by the population only, and displays some sort of aging
effect where it depends not on the population only but
also on time, and probably on the whole history of the
city. This idea of path-dependency is natural for many
complex systems, and in particular in statistical physics
(such as spin-glasses [58] for example). The delay is not
a simple function of population as it is usually assumed
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FIG. 10: Annual delay per capita δτ/P versus P for all the
101 cities and for all years (1982 – 2014). The points are
colored according to the city they describe (one color per city).
As we discuss in the text there is no obvious relation between
the global power-law scaling and the individual behavior of
cities. Figure taken from [56].

for the scaling approach for cities, and if we reflect upon
this idea, it doesnt make sense in general to compare two
cities having the same population but at very different
dates: both central Paris and Phoenix (AZ) had a popu-
lation of about 1 million inhabitants, the former in 1840
and the latter in 1990. It is very likely that the dynam-
ics for many quantities from 1840 in Paris will be very
different from the one starting in 1990 in Phoenix, imply-
ing that the usual scaling form does not apply in general.
This discussion on congestion induced delays highlights
the risk of agglomerating data for different cities and to
consider that cities are scaled-up versions of each other:
there are strong constraints for being allowed to do that
such as path-independence, which is apparently not satis-
fied in the case of congestion and which should be checked
in each case. Beyond scaling, these results also pose the
challenging problem of using transversal data (ie. for dif-
ferent cities) in order to get some information about the

temporal series for individual cities. This is a fundamen-
tal problem that needs to be clarified when looking for
generic properties of cities.

VI. PERSPECTIVES

Many aspects and studies about cities were not ad-
dressed in this paper: the evolution of infrastructure net-
works [59, 60], the coupling between networks [61], multi-
modality [62, 63], heat islands and urban forms [64], etc.
An important point here was to show through various ex-
amples how a combination of empirical results, econom-
ical ingredients, and statistical physics tools can lead to
parsimonious models with predictions in agreement with
observations. In particular, describing individual actions
by stochastic processes and replacing complex quantities
resulting from the interactions of several agents by ran-
dom variables, seem to be a good way to construct models
for understanding the evolution of cities and in agreement
with empirical observations.

We however still have to think about the best approach
for understanding complex systems such as cities. Is it
possible to construct a generic model of cities that can
predict general trends and behaviors ? In this perspec-
tive, a particular city would then just be described by
this generic model subject to local spatial and histori-
cal constraints. In other words, this assumption means
that all cities belong to the same species but each indi-
vidual city evolved on a different substrate. As we saw
in this short review, this possibility and the existence of
generic behaviors is not empirically clear. We do observe
generic properties such as the Zipf law and mixing to-
gether different cities doesn’t seem to pose a problem in
this case, in contrast with the exemple of congestion in-
duced delays. There is however the risk that this debate
becomes quickly outdated as machine learning displays
impressive results in practical applications. At least, we
could always hope that parsimonious models have the
advantage to provide a simple language for making sense
of the vast amount of data and to identify critical factors
for the evolution of these systems.
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