
HAL Id: cea-02564008
https://cea.hal.science/cea-02564008

Submitted on 2 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Shape of shortest paths in random spatial networks
Alexander Kartun-Giles, Marc Barthelemy, Carl Dettmann

To cite this version:
Alexander Kartun-Giles, Marc Barthelemy, Carl Dettmann. Shape of shortest paths in random spa-
tial networks. Physical Review E , 2019, 100 (3), pp.2315. �10.1103/PhysRevE.100.032315�. �cea-
02564008�

https://cea.hal.science/cea-02564008
https://hal.archives-ouvertes.fr


The shape of shortest paths in random spatial networks

Alexander P. Kartun-Giles,1 Marc Barthelemy,2 and Carl P. Dettmann3

1Max Plank Institute for Mathematics in the Sciences, Inselstr. 22, Leipzig, Germany
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In the classic model of first passage percolation, for pairs of vertices separated by a Euclidean
distance L, geodesics exhibit deviations from their mean length L that are of order Lχ, while the
transversal fluctuations, known as wandering, grow as Lξ. We find that when weighting edges
directly with their Euclidean span in various spatial network models, we have two distinct classes
defined by different exponents ξ = 3/5 and χ = 1/5, or ξ = 7/10 and χ = 2/5, depending only
on coarse details of the specific connectivity laws used. Also, the travel time fluctuations are
Gaussian, rather than Tracy-Widom, which is rarely seen in first passage models. The first class
contains proximity graphs such as the hard and soft random geometric graph, and the k-nearest
neighbour random geometric graphs, where via Monte Carlo simulations we find ξ = 0.60 ± 0.01
and χ = 0.20 ± 0.01, showing a theoretical minimal wandering. The second class contains graphs
based on excluded regions such as β-skeletons and the Delaunay triangulation and are characterized
by the values ξ = 0.70 ± 0.01 and χ = 0.40 ± 0.01, with a nearly theoretically maximal wandering
exponent. We also show numerically that the KPZ relation χ = 2ξ − 1 is satisfied for all these
models. These results shed some light on the Euclidean first passage process, but also raise some
theoretical questions about the scaling laws and the derivation of the exponent values, and also
whether a model can be constructed with maximal wandering, or non-Gaussian travel fluctuations,
while embedded in space.

I. INTRODUCTION

Many complex systems assume the form of a spatial
network [1, 2]. Transport networks, neural networks,
communication and wireless sensor networks, power and
energy networks, and ecological interaction networks are
all important examples where the characteristics of a spa-
tial network structure are key to understanding the cor-
responding emergent dynamics.

Shortest paths form an important aspect of their study.
Consider for example the appearance of bottlenecks im-
peding traffic flow in a city [3, 4], the emergence of spa-
tial small worlds [5, 6], bounds on the diameter of spatial
preferential attachment graphs [7–9], the random con-
nection model [10–13], or in spatial networks generally
[14, 15], as well as geometric effects on betweenness cen-
trality measures in complex networks [11, 16], and navi-
gability [17].

First passage percolation (FPP) [18] attempts to cap-
ture these features with a probabilistic model. As with
percolation [19], the effect of spatial disorder is crucial.
Compare this to the elementary random graph [20]. In
FPP one usually considers a deterministic lattice such
as Zd with independent, identically distributed weights,
known as local passage times, on the edges. With a fluid
flowing outward from a point, the question is, what is the
minimum passage time over all possible routes between
this and another distant point, where routing is quicker
along lower weighted edges?

More than 50 years of intensive study of FPP has been
carried out [21]. This has lead to many results such as
the subadditive ergodic theorem, a key tool in probability
theory, but also a number of insights in crystal and in-
terface growth [22], the statistical physics of traffic jams

[19], and key ideas of universality and scale invariance in
the shape of shortest paths [23]. As an important inter-
section between probability and geometry, it is also part
of the mathematical aspects of a theory of gravity be-
yond general relativity, and perhaps in the foundations of
quantum mechanics, since it displays fundamental links
to complexity, emergent phenomena, and randomness in
physics [24, 25].

A particular case of FPP is the topic of this article,
known as Euclidean first passage percolation (EFPP).
This is a probabilistic model of fluid flow between points
of a d-dimensional Euclidean space, such as the surface of
a hypersphere. One studies optimal routes from a source
node to each possible destination node in a spatial net-
work built either randomly or deterministically on the
points. Introduced by Howard and Newman much later
in 1997 [26] and originally a weighted complete graph, we
adopt a different perspective by considering edge weights
given deterministically by the Euclidean distances be-
tween the spatial points themselves. This is in sharp
contrast with the usual FPP problem, where weights are
i.i.d. random variables.

Howard’s model is defined on the complete graph con-
structed on a point process. Long paths are discouraged
by taking powers of interpoint distances as edge weights.
The variant of EFPP we study is instead defined on a
Poisson point process in an unbounded region (by def-
inition, the number of points in a bounded region is a
Poisson random variable, see for example [27]), but with
links added between pairs of points according to given
rules [28, 29], rather than the totality of the weighted
complete graph. More precisely, the model we study in
this paper is defined as follows. We take a random spatial
network such as the random geometric graph constructed
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FIG. 1: Illustration of the problem on a small network. The
network is constructed over a set of points denoted by circles
here and the edges are denoted by lines. For a pair of nodes
(x, y) we look for the shortest path (shown here by a dotted
line) where the length of the path is given by the sum of all
edges length: d(x, y) = |x−a|+|a−b|+|b−c|+|c−d|+|d−y|.

over a simple Poisson point process on a flat torus, and
weight the edges with their Euclidean length (see Fig. 1).
We then study the random length and transversal de-
viation of the shortest paths between two nodes in the
network, denoted x and y, conditioned to lie at mutual
Euclidean separation |x − y|, as a function of the point
process density and other parameters of the model used
(here and in the following |x| denotes the usual norm in
euclidean space). The study of the scaling with |x − y|
of the length and the deviation allow to define the fluc-
tuation and wandering exponents (see precise definitions
below). We will consider a variety of networks such as the
random geometric graph with unit disk and Rayleigh fad-
ing connection functions, the k-nearest neighbour graph,
the Delaunay triangulation, the relative neighbourhood
graph, the Gabriel graph, and the complete graph with
(in this case only) the edge weights raised to the power
α > 1. We describe these models in more detail in Sec-
tion III.

To expand on two examples, the random geometric
graph (RGG) is a spatial network in which links are made
between all pair of points with mutual separation up to a
threshold. This has applications in e.g. wireless network
theory, complex engineering systems such as smart grid,
granular materials, neuroscience, spatial statistics, topo-
logical data analyis, and complex networks [10, 30–38].

This paper is structured as follows. We first recap
known results obtained for both the FPP and Euclidean
FPP in Section II. We also discuss previous literature for
the FPP in non-typical settings such as random graphs
and tessellations. The reader eager to view the results
can skip this section at first reading, apart from the defi-
nitions of IIA, however the remaining background is very
helpful for appreciating the later discussion. In the Sec-
tion III we introduce the various spatial networks studied
here, and in Section IV we present the numerical method
and our new results on the EFPP model on random
graphs. In particular, due to arguments based on scale
invariance, we expect the appearance of power laws and
universal exponents [23, Section 1]. We reveal the scaling
exponents of the geodesics for the complete graph and for
the network models studied here, and also show numeri-
cal results about the travel time and transversal deviation

distribution. In particular, we find distinct exponents
from the KPZ class (see for example [39] and references
therein) which has wandering and fluctuation exponents
ξ = 2/3 and χ = 1/3, respectively. Importantly, we
conjecture and numerically corroborate a Gaussian cen-
tral limit theorem for the travel time fluctuations, on the
scale t1/5 for the RGG and the other proximity graphs,
and t2/5 for the Delaunay triangulation and other ex-
cluded region graphs, which is also distinct from KPZ
where the Tracy-Widom distribution, and the scale t1/3,
is the famous outcome. Finally, in Section V we present
some analytic ideas which help explain the distinction be-
tween universality classes. We then conclude and discuss
some open questions in Section VI.

II. BACKGROUND: FPP AND EFPP

In EFPP, we first construct a Poisson point process in
Rd which forms the basis of an undirected graph. A fluid
or current then flows outward from a single source at a
constant speed with a travel time along an edge given
by a power α ≥ 1 of the Euclidean length of the edge
along which it travels [26]. See Fig. 2, where the model
is shown on six different random spatial network models.

Euclidean FPP on a large family of connected random
geometric graphs has been studied in detail by Hirsch,
Neuhäuser, Gloaguen and Schmidt in [32, 40, 41] and the
closely related works [32, 40–45], and references therein.
Developing FPP in this setting, Santalla et al [46] re-
cently studied the model on spatial networks, as we do
here. Instead of EFPP, they weight the edges of the De-
launay triangulation, and also the square lattice, with
i.i.d. variates, for example U[a, b] for a, b > 0, and pro-
ceed to numerically verify the existence of the KPZ class
for the geodesics, see e.g. [47], and the earlier work of
Pimentel [48] giving the asymptotic first passage times
for the Delaunay triangulation with i.i.d weights. More-
over, FPP on small-world networks and Erdős-Renyi ran-
dom graphs are studied by Bhamidi, van der Hofstad and
Hooghiemstra in [49], who discuss applications in diverse
fields such as magnetism [50], wireless ad hoc networks
[10, 12, 51], competition in ecological systems [52], and
molecular biology [53]. See also their work specifically on
random graphs [54]. Optimal paths in disordered com-
plex networks, where disorder is weighting the edges with
i.i.d. random variables, is studied by Braunstein et al. in
[55], and later by Chen et al. in [56]. We also point to
the recent analytic results of Bakhtin and Wu, who have
provided a good lower bound rate of growth of geodesic
wandering, which in fact we find to be met with equality
in the random geometric graph [57].

To highlight the difference between these results and
our own, we have edge weights which are not independent
random variables, but interpoint distances. As far as we
are aware, this has not been addressed directly in the
literature.
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A. First passage percolation

Given i.i.d weights, paths are sums of i.i.d. random
variables. The lengths of paths between pairs of points
can be considered to be a random perturbation of the
plane metric. In fact, these lengths, and the correspond-
ing transversal deviations of the geodesics, have been the
focus of in-depth research over the last 50 years [21].
They exist as minima over collections of correlated ran-
dom variables. The travel times are conjectured (in the
i.i.d.) case to converge to the Tracy-Widom distribu-
tion (TW), found throughout various models of statis-
tical physics, see e.g. [46, Section 1]. This links the
model to random matrix theory, where β-TW appears
as the limiting distribution of the largest eigenvalue of
a random matrix in the β-Hermite ensemble, where the
parameter β is 1,2 or 4 [58].

The original FPP model is defined as follows. We con-
sider vertices in the d-dimensional lattice Ld = (Zd, Ed)
where Ed is the set of edges. We then construct the
function τ : Ed → (0,∞) which gives a weight for each
edge and are usually assumed to be identically indepen-
dently distributed random variables. The passage time
from vertices x to y is the random variable given as the
minimum of the sum of the τ ’s over all possible paths P
on the lattice connecting these points,

T (x, y) = min
P

∑
P

τ(e) (1)

This minimum path is a geodesic, and it is almost surely
unique when the edge weights are continuous.

The average travel time is proportional to the distance

E (T (x, y)) ∼ |x− y| (2)

where here and in the following we denote the average of
a quantity by E (·), and where a ∼ b means a converges to
Cb with C a constant independent of x, y, as |x−y| → ∞.
More generally, if the ratio of the geodesic length and
the Euclidean distance is less than a finite number t (the
maximum value of this ratio is called the stretch), the
network is a t-spanner [59]. Many important networks
are t-spanners, including the Delaunay triangulation of a
Poisson point process, which has π/2 < t < 1.998 [60, 61].
The variance of the passage time over some distance |x−
y| is also important, and scales as

Var (T (x, y)) ∼ |x− y|2χ, (3)

The maximum deviation D(x, y) of the geodesic from the
straight line from x to y is characterised by the wandering
exponent ξ, i.e.

E(D(x, y)) ∼ |x− y|ξ (4)

for large |x− y|. Knowing ξ informs us about the geom-
etry of geodesics between two distant points. See Fig. 3
for an illustration of wandering on different networks.

The other exponent, χ, informs us about the variance
of their random length. Another way to see this exponent
is to consider a ball of radius R around any point. For
large R, the ball has an average radius proportional to R
and the fluctuations around this average grow as Rχ [46].
With χ < 1 the fluctuations die away R→∞, leading to
the shape theorem, see e.g. [21, Section 1].

1. Sublinear variance in FPP

According to Benjamini, Kalai and Schramm,
Var (T (x, y)) grows sub-linearly with |x−y| [62], a major
theoretical step in characterising their scaling behaviour.
With C some constant which depends only on the distri-
bution of edge weights and the dimension d, they prove
that

Var (T (x, y)) ≤ C|x− y|/ log |x− y|. (5)

The numerical evidence, in fact, shows this follows the
non-typical scaling law |x − y|2/3. Transversal fluctua-
tions also scale as |x − y|2/3 [21]. In this case, the fluc-
tuations of T are asymptotic to the TW distribution.
According to recent results of Santalla et al. [63], curved
spaces lead to similar fluctuations of a subtly different
kind: if we embed the graph on the surface of a cylinder,
the distribution changes from the largest eigenvalue of
the GUE, to GOE, ensembles of random matrix theory.

When we see a sum of random variables, it is natural to
conjecture a central limit theorem, where the fluctuations
of the sum, after rescaling, converge to the standard nor-
mal distribution in some limit, in this case as |x−y| → ∞.
Durrett writes in a review that “...novice readers would
expect a central limit theorem being proved,...however
physicists tell us that in two dimensions, the standard
deviation is of order |x− y|1/3”, see [62, Section 1]. This
suggests that one does not have a Gaussian central limit
theorem for the travel time fluctuations in the usual way.
This has been rigourously proven [64–66].

2. Scaling exponents

A well-known result in the 2d lattice case [67] is that
χ = 1/3, ξ = 2/3. Also, another belief is that χ =
0 for dimensions d large enough. Many physicists, see
for example [67–73], also conjecture that independently
from the dimension, one should have the so-called KPZ
relation between these exponents

χ = 2ξ − 1 (6)

This is connected with the KPZ universality class of ran-
dom geometry, apparent in many physical situations, in-
cluding traffic and data flows, and their respective mod-
els, including the corner growth model, ASEP, TASEP,
etc [19, 74, 75]. In particular, FPP is in direct correspon-
dence with important problems in statistical physics [39]
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FIG. 2: Spatial networks, each built on a different realisation of a simple, stationary Poisson point processes of expected
ρ = 1000 points in the unit square V = [−1/2, 1/2]2, but with different connection laws. The boundary points at time
t = 1/2 of the first passage process are shown in red, while their respective geodesics are shown in blue. (a) Hard RGG with
unit disk connectivity. (b) Soft RGG with Rayleigh fading connection function H(r) = exp(−βr2), (c) 7-NNG, (d) Relative
neighbourhood graph, which is the lune-based β-skeleton for β = 2, (e) Gabriel graph, which is the lune-based β-skeleton for
β = 1, and (f) the Delaunay triangulation.

such as the directed polymer in random media (DPRM)
and the KPZ equation, in which case the dynamical expo-
nent z corresponds to the wandering exponent ξ defined
for the FPP [46, 76].

3. Bounds on the exponents

The situation regarding exact results is more complex
[21, 47]. The majority of results are based on the model
on Zd. Kesten [77] proved that χ ≤ 1/2 in any dimension,
and for the wandering exponent ξ, Licea et al. [78] gave
some hints that possibly ξ ≥ 1/2 in any dimension and
ξ ≥ 3/5 for d = 2.

Concerning the KPZ relation, Wehr and Aizenman [79]
and Licea et al [78] proved the inequality

χ ≥ (1− dξ)/2 (7)

in d dimensions. Newman and Piza [80] gave some hints
that possibly χ ≥ 2ξ − 1. Finally, Chatterjee [47] proved
Eq. 6 for Zd with independent and identically distributed
random edge weights, with some restrictions on distribu-
tional properties of the weights. These were lifted by
independent work of Auffinger and Damron [21].

B. Euclidean first passage percolation

Euclidean first passage percolation [26] adopts a very
different perspective from FPP by considering a fluid
flowing along each of the links of the complete graph on
the points at some weighted speed given by a function,
usually a power, of the Euclidean length of the edge. We
ask, between two points of the process at large Euclidean
distance |x− y|, what is the minimum passage time over
all possible routes.
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FIG. 3: Example Euclidean geodesics (blue) running between two end nodes of a simple, stationary Poisson point process
(red). The maximal transversal deviation is shown (vertical black line). The Euclidean distance between the endpoints is the
horizontal black line. The PPP density is equal for each model. (a) Hard RGG, (b) Soft RGG with connectivity probability
H(r) = exp(−r2), (c) 7-NNG, (d) RNG, (e) GG, (f) DT.

More precisely, the original model of Howard and New-
man goes as follows. Given a domain V such as the Eu-
clidean plane, and dx Lesbegue measure on V, consider
a Poisson point process X ⊂ V of intensity ρdx, and the
function φ : R+ → R+ satisfying φ(0) = 0, φ(1) = 1, and
strict convexity. We denote by KX the complete graph
on X . We assign to edges e = {q, q′} connecting points
q and q′ the weights τ(e) = φ(|q − q′|), and a natural
choice is

φ(x) = xα, α > 1 (8)

The reason for α > 1 is that the shortest path is otherwise
the direct link, so this introduces non-trivial geodesics.

The first work on a Euclidean model of FPP concerned
the Poisson-Voronoi tessellation of the d-dimensional Eu-
clidean space by Vahidi-Asl and Wierman in 1992 [81].
This sort of generalisation is a long term goal of FPP
[21]. Much like the lattice model with i.i.d. weights, the
model is rotationally invariant. The corresponding shape
theorem, discussed in [21, Section 1], leads to a ball. The
existence of bigeodesics (two paths, concatenated, which
extend infinitely in two distinct directions from the ori-
gin, with the geodesic between the endpoints remaining
unchanged), the linear rate of the local growth dynam-
ics (the wetted region grows linearly with time), and the
transversal fluctuations of the random path or surface are
all summarised in [82].

1. Bounds on the exponents

Licea et al [78] showed that for the standard first-
passage percolation on Zd with d ≥ 2, the wandering
exponent satisfies ξ(d) ≥ 1/2 and specifically

ξ(2) ≥ 3/5 (9)

In Euclidean FPP, however, these bounds do not hold,
and we have [83, 84]

1

d+ 1
≤ ξ ≤ 3/4 (10)

and, for the wandering exponent,

χ ≥ 1− (d− 1)ξ

2
. (11)

Combining these different results then yields, for d = 2

1/8 ≤ χ (12)

1/3 ≤ ξ ≤ 3/4 (13)

Since the KPZ relation of Eq. 6 apparently holds in
our setting, the lower bound for χ implies then a better
bound for ξ, namely

ξ ≥ 3

3 + d
(14)

which in the two dimensional case leads to ξ ≥ 3/5, the
same result as in the standard FPP.
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Also, the ‘rotational invariance’ of the Poisson point
process implies the KPZ relation Eq. 6 is satisfied in each
spatial network we study. We numerically corroborate
this in Section IV. See for example [21, Section 4.3] for a
discussion of the generality of the relation, and the notion
of rotational invariance.

C. EFPP on a spatial network

This is the model that we are considering here. Instead
of taking as in the usual EFPP into account all possible
edges with an exponent α > 1 in Eq. 8, we allow only
some edges between the points and take the weight pro-
portional to their length (ie. α = 1 here). This leads to
a different model, but apparently universal properties of
the geodesics. We therefore move beyond the weighted
complete graph of Howard and Newman, and consider
a large class of spatial networks, including the random
geometric graph (RGG), the k-nearest neighbour graph
(NNG), the β-skeleton (BS), and the Delaunay triangu-
lation (DT). We introduce them in Section III.

III. RANDOM SPATIAL NETWORKS

We consider in this study spatial networks constructed
over a set of random points. We focus on the most
straightforward case, and consider a stationary Poisson
point process in the d-dimensional Euclidean space, tak-
ing d = 2. This constitutes a Poisson random number
of points, with expectation given by ρ per unit area, dis-
tributed uniformly at random. We do not discuss here
typical generalisations, such as to the Gibbs process, or
Papangelou intensities [30].

First, we will consider the complete graph as in the
usual EFPP, with edges weighted according to the de-
tails of Sec. II C. We will then consider the four distinct
excluded region graphs defined below. Note that some of
these networks actually obey inclusion relations, see for
example [15]. We have

RNG ⊂ GG ⊂ DT (15)

where RNG stands for the relative neighborhood graph,
GG for the Gabriel graph, and DT for the Delaunay tri-
angulation. This nested relation trivially implies the fol-
lowing inequality

ξRNG ≥ ξGG ≥ ξDT (16)

as adding links can only decrease the wandering expo-
nent. We are not aware of a similar relation for χ. We
will also consider three distinct proximity graphs such
as the hard and soft RGG, and the k-nearest neighbour
graph.

A. Proximity graphs

The main idea for constructing these graphs is that
two nodes have to be sufficiently near in order to be con-
nected.

1. Random geometric graph

The usual random geometric graph is defined in [29]
and was introduced by Gilbert [85] who assumes that
points are randomly located in the plane and have each
a communication range r. Two nodes are connected by
an edge if they are separated by a distance less than r.

We also have the following variant: the soft random
geometric graph [10, 86, 87]. This is a graph formed on
X ⊂ Rd by adding an edge between distinct pairs of X
with probability H(|x − y|) where H : R+ → [0, 1] is
called the connection function, and |x − y| is Euclidean
distance.

We focus on the case of Rayleigh fading where, with
γ > 0 a parameter and η > 0 the path loss exponent, the
connection function, with |x− y| > 0, is given by

H(|x− y|) = exp (−γ|x− y|η) (17)

and is otherwise zero. This choice is discussed in [33,
Section 2.3].

This graph is connected with high probability when
the mean degree is proportional to the logarithm of the
number of nodes in the graph. For the hard RGG, this
is given by ρπr2, and otherwise the integral of the con-
nectivity function over the region visible to a node in the
domain, scaled by ρ [87]. As such, the graph must have
a very large typical degree to connect.

2. k-Nearest Neighbour Graph

For this graph, we connect points to their k ∈ N nearest
neighbours. When k = 1, we obtain the nearest neigh-
bour graph (1-NNG), see e.g. [88, Section 3]. The model
is notably different from the RGG because local fluctua-
tions in the density of nodes do not lead to local fluctu-
ations in the degrees. The typical degree is much lower
than the RGG when connected [88], though still remains
disconnected on a random, countably infinite subset of
the d-dimensional Euclidean space, since isolated sub-
graph exist. For large enough k, the graph contains the
RGG as a subgraph. See Section V B for further discus-
sion.

B. Excluded region graphs

The main idea here for constructing these graphs is
that two nodes will be connected if some region between
them is empty of points. See Fig. 4 for a depiction of the
geometry of the lens regions for β−skeletons.
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FIG. 4: The geometry of the lune-based β-skeleton for (a)
β = 1/2, (b) β = 1, and (c) β = 2. For β < 1, nodes within
the intersection of two disks each of radius |x−y|/2β preclude
the edges between the disk centers, whereas for β > 1, we use
instead radii of β|x − y|/2. Thus, whenever two nodes are
nearer each other than any other surrounding points, they
connect, and otherwise do not.

1. Delaunay triangulation

The Delaunay triangulation of a set of points is the
dual graph of their Voronoi tessellation. One builds the
graph by trying to match disks to pairs of points, sitting
just on the perimeter, without capturing other points of
the process within their bulk. If and only if this can be
done, those points are joined by an edge. The triangu-
lar distance Delaunay graph can be similarly constructed
with a triangle, rather than a disk, but we expect uni-
versal exponents.

For each simplex within the convex hull of the triangu-
lation, the minimum angle is maximised, leading in gen-
eral to more realistic graphs. It is also a t-spanner [59],
such that with d = 2 we have the geodesic between two
points of the plane along edges of the triangulation to be
no more than t < 1.998 times the Euclidean separation
[61]. The DT is necessarily connected.

2. β-skeleton

The lune-based β-skeleton is a way of naturally cap-
turing the shape of points [89, Chapter 9]. see Fig. 4.

A lune is the intersection of two disks of equal radius,
and has a midline joining the centres of the disks and
two corners on its perpendicular bisector. For β ≤ 1, we
define the excluded region of each pair of points (x, y) to
be the lune of radius |x− y|/2β with corners at x and y.
For β ≥ 1 we use instead the lune of radius β|x − y|/2,
with x and y on the midline. For each value of beta
we construct an edge between each pair of points if and
only if its excluded region is empty. For β = 1, the
excluded region is a disk and the beta-skeleton is called
the Gabriel graph (GG), whilst for β = 2 we have the
relative neighbourhood graph (RNG).

For β ≤ 2, the graph is necessarily connected. Other-
wise, it is typically disconnected.

IV. NUMERICAL RESULTS

A. Numerical setup

Given the models in the previous section, we numer-
ically evaluate the scaling exponents χ and ξ, as well
as the distribution of the travel time fluctuations. We
now describe the numerical setup. With density of points
ρ > 0, and a small tolerance ε, we consider the rectangle
domain

V = [−w/2− ε/2, w/2 + ε/2]× [−h/2, h/2], (18)

and place a

n ∼ Pois (h (w + ε) ρ) (19)

points uniformly at random in V. Then, on these random
points, we build a spatial network by connecting pairs of
points according to the rules of either the NNG, RGG,
β-skeleton for β = 1, 2, the DT, or the weighted complete
graph of EFPP.

Two extra points are fixed near the boundary arcs at
(−w/2, 0) and (w/2, 0), and the Euclidean geodesic is
then identified using a variant of Djikstra’s algorithm,
implemented in Mathematica 11. The tolerance ε is
important for the Soft RGG, since this graph can dis-
play geodesics which reach backwards from their start-
ing point, or beyond their destination, before hopping
back. We set ε = w/10. This process is repeated for
N = 2000 graphs, each time taking only a single sam-
ple of the geodesic length over the span w between the
fixed points on the boundary. This act of taking only a
single path is done to avoid any small correlations be-
tween their statistics, since the exponents are vulnerable
to tiny errors given we need multiple significant figures
of precision to draw fair conclusions. It also allows us to
use smaller domains. The relatively small value for N is
sufficient to determine the exponents at the appropriate
computational speed for the larger graphs.

The approach in [46] involves rotating the point pro-
cess before each sample is taken, which is valid alternative
method, but we, instead, aim for maximium accuracy
given the exponents are not previously conjectured, and
therefore need to be determined with exceptional sensi-
tivity, rather than at speed. Note that the fits that we
are doing here are over the same typical range as in this
work [46].

We then increase w, in steps of 3 units of distance, and
repeat, until we have statistics of all w, up to the limit
of computational feasibility. This varies slightly between
models. The RGGs are more difficult to simulate due to
their known connectivity constraint where vertex degrees
must approach infinity, see e.g. [29, Chapter 1]. Thus we
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cannot simulate connected graphs to the same limits of
Euclidean span as with the other models.

We are then able to relate the mean and standard devi-
ation of the passage time, as well as the mean wandering,
to w, at various ρ, and for each model. For example, the
left hand plots in Fig. 5 show that the typical passage
time ET (x, y) ∼ w, i.e. grows linearly with w, for all
networks [10, 14, 15]. The standard error is shown, but
is here not clearly distinguishable from the symbols.

We ensure h is large enough to stop the geodesics hit-
ting the boundary, so we use a domain of height equal to
the mean deviation ED(w), plus six standard deviations.

The key computational difficulty here is the memory
requirement for large graphs, of which all N are stored
simultaneously, and mapped in parallel on a Linux cluster
over a function which measures the path statistic. This
parallel processing is used to speed up the computation
of the geodesics lengths and wandering.

B. Scaling exponents

The results are shown in Figs. 5. These plots, shown
in loglog, reveal a power law behaviour of T and D, and
the linear growth of typical travel time with Euclidean
span. We then compute the exponents to two significant
figures using a nonlinear model fit, based on the model
a|x−y|b, and then determining the parameters a, b using
the quasi-Newton method in Mathematica 11.

Our numerical results suggest that we can distinguish
two classes of spatial network models by the scaling expo-
nents of their Euclidean geodesics. The proximity graphs
(hard and soft RGG, and k-NNG) are in one class, with
exponents

χRGG,NNG = 0.20± 0.01 (20)

ξRGG,NNG = 0.60± 0.01 (21)

whereas the excluded region graphs (the β-skeletons and
Delaunay triangulation), and Howard’s EFPP model
with α > 1, are in another class with

χDT,β-skel,EFPP = 0.40± 0.01 (22)

ξDT,β-skel,EFPP = 0.70± 0.01 (23)

Clearly, the KPZ relation of Eq. 6 is satisfied up to
the numerical accuracy which we are able to achieve. We
corroborate that this is independent of the density of
points and connection range scaling, given the graphs
are connected. The exponents hold asymptotically i.e.
large inter-point distances. Thus we conjecture

Var (T (x, y)) ∼ |x− y|4/5, (24)

E (D (x, y)) ∼ |x− y|7/10 (25)

for the proximity graphs (the DT and the β-skeletons for
all β), and, for the RGGs and the k-NNG,

Var (T (x, y)) ∼ |x− y|2/5, (26)

E (D (x, y)) ∼ |x− y|3/5, (27)

TABLE I: Exponents ξ and χ, and passage time distribution
for the various networks considered.

Network ξ χ Distribution of T

Proximity graphs
Hard RGG 3/5 1/5 Normal (Conj.)

Soft RGG with Rayleigh fading 3/5 1/5 Normal (Conj.)
k-NNG 3/5 1/5 Normal

Excluded region graphs
DT 7/10 2/5 Normal
GG 7/10 2/5 Normal

β−skeletons 7/10 2/5 Normal
RNG 7/10 2/5 Normal

Euclidean FPP
With α = 3/2 7/10 2/5 Normal
With α = 5/2 7/10 2/5 Normal

We summarize these new results in Table I. It is surpris-
ing that these exponents are apparently rational num-
bers. In Bernoulli continuum percolation, for example,
the threshold connection range for percolation is not
known, but not thought to be rational, as it is with bond
percolation on the integer lattice [29, Chapter 10]. Exact
exponents are not necessarily expected in the continuum
setting of this problem, which suggests there is more to
be said about the classification of first passage process
via this method.

C. Travel time fluctuations

We see numerically that the travel time distribution is
a normal for most cases (see Fig. 6). We summarise these
results in the Table I and in Fig. 7 we show the skewness
and kurtosis for the travel time fluctuations, computed
for the different networks. For a Gaussian distribution,
the skewness is 0 and the kurtosis equal to 3, while the
Tracy-Widom distribution displays other values.

We provide some detail of the distribution of T for
each model from the proximity class in Fig. 6. This is
compared against four test distributions, the Gaussian
orthogonal, unitary and symplectic Tracy Widom distri-
butions, and also the standard normal distribution.

This makes the case of EFPP on spatial networks one
of only a few special cases where Gaussian fluctuations
in fact occur. Auffinger and Damron go into detail con-
cerning each of the remaining cases in [21, Section 3.7].
One example, reviewed extensively by Chaterjee and Dey
[47], is when geodesics are constrained to lie within thin
cylinders i.e. ignore paths which traverse too far, and
thus select the minima from a subdomain. This result
could shed some light on their questions, though in what
way it is not clear.

We also highlight that Tracy-Widom is thought to
occur in problems where matrices represent collections
of totally uncorrelated random variables [90]. In the
case of EFPP, we have the interpoint distances of a
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FIG. 5: The three statistics we observe, expected travel time (a) and (d), expected wandering (b) and (e), and standard
deviation of the travel time (c) and (f). The power law exponents are indicated in the legend. Error bars of one standard
deviation are shown for each point. The top plots show the results from the models in first universality class, while the lower
plots show the second class. The RGG and NNG are distinguished with different colours (green and blue), as are EFPP on the
complete graph, the DT, and the two beta skeletons (Gabriel graph, and relative neighbourhood graph). The point process
density ρ points per unit area is given for each model.

point process, which lead to spatially correlated inter-
point distances, so the adjacency matrix does not contain
i.i.d. values. This potentially leads to the loss of Tracy-
Widom. However, we also see some cases of N ×N large
complex correlated Wishart matrices leading to TW for
at least one of their eigenvalues, and with convergence at
the scale N2/3 [91].

D. Transversal fluctuations

The transversal deviation distribution results appear
beside our evaluation of the scaling exponents, in Fig. 8.
All the models produce geodesics with the same transver-
sal fluctuation distribution, despite distinct values of ξ.
The fluctuations are also distinct from the Brownian
bridge (a geometric brownian motion constrained to start
and finish at two fixed position vectors in the plane), run-
ning between the midpoints of the boundary arcs [19]. It
is a key open question to provide some information about
this distribution, as it is rarely studied in any FPP model,
as far as we are aware of the literature. A key work is
Kurt Johannson’s, where the wandering exponent is de-
rived analytically in a variant of oriented first passage
percolation. One might ask if a similar variant of EFPP
might be possible [64].

V. DISCUSSION

The main results of our investigation are the new ra-
tional exponents χ and ξ for the various spatial models,
and the discovery of the unusual Gaussian fluctuations of

the travel time. We found that for the different spatial
networks the KPZ relation holds and known bounds are
satisfied. Also, due to known relations and the the KPZ
law we have

3

3 + d
≤ ξ ≤ 3

4
(28)

It is surprising to find a large class of networks, in partic-
ular the Delaunay triangulation, that displays an expo-
nent ξ = 7/10 and points to the question of the existence
of another class of graphs which display the theoretically
maximal ξ = 3/4.

Both immediately present a number of open questions
and topics of further research which may shed light on the
first passage process on spatial networks. We list below
a number of questions that we think are important.

A. Gaussian travel time fluctuations

We are not able to conclude that all the models in the
proximity graph class χ = 3/5, ξ = 1/5 have Gaussian
fluctuations in the travel time. This is for a technical
reason. All the models we study are either connected
with probability one, such as the DT or β-skeleton with
β ≤ 2, or have a connection probability which goes to one
in some limit. We require connected graphs, or paths do
not span the boundary arcs, and the exponents are not
well defined.

Thus, the difficult models to simulate are the HRGG,
SRGG and k-NNG, since these are in fact disconnected
with probability one without infinite expected degrees i.e.
the dense limit of Penrose, see [29, Chapter 1], or with
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FIG. 6: Travel time distributions for the DT (a)-(c), RNG (d)-(f), and Gabriel (g)-(i) graphs, compared with the GUE and
GSE Tracy-Widom ensembles, and the Gaussian distribution. The point process density ρ points per unit area is given for
each model. The slight skew of the TW distribution is not present in the data.

the fixed degree of the k-NNG k = Θ(log n) and n→∞
in a domain with fixed density and infinite volume. Oth-
erwise we have isolated vertices, or isolated subgraphs,
respectively.

However, the k-NNG has typically shorter connection
range i.e. in terms of the longest edge, and shortest non-
edge, where the ‘length of a non-edge’ is the correspond-
ing interpoint distance between the disconnected vertices
[88, Section 3]. So the computations used to produce
these graphs and then evaluate their statistical proper-
ties are significantly less demanding. Thus, the HRGG is
computationally intractable in the necessary dense limit,
so we are unable to verify the fluctuations of either T
or D. However, we can see a skewness and kurtosis for
T (|x−y|) which are monotonically decreasing with |x−y|,
towards the hypothesised limiting Gaussian statistics, at
least for the limited Euclidean span we can achieve.

Given the k-NNG is in the same class, we are left to
conjecture Gaussian fluctuations hold throughout all the
spatial models described in Section III. It remains an

open question to identify any exceptional models where
this does not hold.

B. Percolation and connectivity

If we choose two points at a fixed Euclidean distance,
then simulate a Poisson point process in the rest of the
d-dimensional plane, construct the relevant graph, and
consider the probability that both points are in the giant
component, this is effectively a positive constant for rea-
sonable distances, assuming that we are above the per-
colation transition. At small distances, the two events
are positively correlated. Thus, one can condition on
this event, and therefore when simulating, discount re-
sults where the Euclidean geodesic does not exist. This
defines FPP on the giant component of a random graph.

It’s not clear from our experiments whether the rare
isolated nodes, or occasionally larger isolated clusters, ei-
ther in the RGGs or k-NNG, affect the exponents. One
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FIG. 7: Skewness (a) and kurtosis (b), for the travel time fluctuations, computed for each network model. For a Gaussian
distribution, the skewness is 0 and the kurtosis equal to 3, values that we indicate by dashed black lines. The point process
density ρ points per unit area is given for each model. The Tracy-Widom distribution has only marginally different moments
to the normal, also shown by dashed black lines, with labels added to distinguish each specific distribution (GOE, GUE or
GSE), as well as the Gaussian.

FIG. 8: Transversal fluctuations of the geodesics in all mod-
els (coloured points), and compared with the fluctuations of
a continuous Brownian bridge process between the same end-
points (red, dashed curve). The point process density ρ points
per unit area is given for each model.

similar model system would be the Lorentz gas: put disks
of constant radius in the plane, perhaps at very low den-
sity, and seek the shortest path between two points that
does not intersect the disks. The exponents χ and ξ for
this setting are not known [19, 92].

An alternative to giant component FPP would be to
condition on the two points being connected to each
other. This would be almost identical for the almost
connected regime, but weird below the percolation tran-
sition. In that case the event we condition on would have
a probability decaying exponentially with distance, and
the point process would end up being extremely special
for the path to even exist. For example, an extremely
low density RGG would be almost empty apart from a
path of points connecting the end points, with a mini-

mum number of hops.

C. Betweenness centrality

The extent to which nodes take part in shortest paths
throughout a network is known as betweenness centrality
[1, 4]. We ask to what extent knowledge of wandering
can lead to understanding the centrality of nodes. The
variant node shortest path betweenness centrality is high-
est for nodes in bottlenecks. Can this centrality index be
analytically understood in terms of the power law scaling
of D? Is the exponent directly relevant to its large scale
behaviour?

In order to illustrate more precisely this question, let G
be the graph formed on a point process X by joining pairs
of points with probability H(|x−y|). Consider σxy to be
the number of shortest paths in G which join vertices
x and y in G, and σxy(z) to be the number of shortest
paths which join x to y in G, but also run through z, then
with 6= indicating a sum over unordered pairs of vertices
not including z, define the betweenness centrality g(z) of
some vertex z in G to be

g(z) =
∑
i 6=j 6=k

σij(z)

σij
(29)

In the continuous limit for dense networks we can dis-
cuss the betweenness centrality and we recall some of the
results of [11]. More precisely, we define χxy(z) as the in-
dicator which gives unity whenever z intersects the short-
est path connecting the d-dimensional positions x, y ∈ V.
Then the normalised betweenness g(z) is given by

g(z) =
1∫

V2 χxy(0)dxdy

∫
V2

χxy(z)dxdy (30)
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Based on the assumption that there exists a single topo-
logical geodesic as ρ→∞, and that this limit also results
in an infinitesimal wandering of the path from a straight
line segment, an infinite number of points of the pro-
cess lying on this line segment intersect the topological
geodesic as ρ → ∞, assuming the graph remains con-
nected, and so χxy(z) can then written as a delta func-
tion of the transverse distance from z to the straight line
from x to y. The betweenness can then be computed
and we obtain [11] (normalised by its maximum value at
g(0))

g(ε) =
2

π

(
1− ε2

)
E (ε) (31)

where E (k) =
∫ π/2
0

dθ
(
1− k2 sin2 (θ)

)1/2
is the complete

elliptic integral of the second kind. We have also rescaled
such that ε is in units of R.

Take D(x, y) to be the maximum deviation from the
horizontal of the Euclidean geodesic. Numerical simula-
tions suggest that

ED(x, y) = C|x− y|ξ (32)

where the expectation is taken over all point sets X . The
‘thin cylinders’ are given by a Heaviside Theta function,
so assume that the characteristic function is no longer a
delta spike, but a wider cylinder

χxy(z) = θ (D(x, y)− z⊥) (33)

where z⊥ is the magnitude of the perpendicular deviation
of the position z from hull(x, y). We then have that

g(z) =
1∫

V2 θ (D − 0⊥) dxdy

∫
V2

θ (D − z⊥) dV (34)

(where 0 is the transverse vector computed for the ori-
gin). This quantity is certainly difficult to estimate, but
provides a starting point for computing finite density cor-
rections to the result of [11].

The boundary of the domain is crucial in varying the
centrality, which is something we ignore here. Without
an enclosing boundary, such as with networks embedded
into spheres or tori, the typical centrality at a position
in the domain is uniform, since no point is clearly distin-
guishible from any other. This is discussed in detail on
[11]. In fact, a significant amount of recent work on ran-
dom geometric networks has highlighted the importance
of the enclosing boundary [33, 86].

VI. CONCLUSIONS

We have shown numerically that there are two dis-
tinct universality classes in Euclidean first passage per-
colation on a large class of spatial networks. These two
classes correspond to the following two broad classes of
networks: firstly, based on joining vertices according to
critical proximity, such as in the RGG and the NNG, and
secondly, based on graphs which connect vertices based
on excluded regions, as in the lune-based β-skeletons,
or the DT. Heuristically, the most efficient way to con-
nect two points is via the nearest neighbour, which sug-
gests that ξ for proximity graphs should on the whole
be smaller than for exclusion-based graphs, which is in
agreement with our numerical observations.

The passage times show Gaussian fluctuations in all
models, which we are able to numerically verify. This is
a clear distinction between EFPP and FPP. After similar
results of Chaterjee and Dey [47], it remains an open
question why this happens, and also of course how to
rigorously prove it.

We also briefly discussed notions of the universality of
betweenness centrality in spatial networks, which is in-
fluenced by the wandering of shortest paths. A number
of open questions remain about the range of possible uni-
versal exponents which could exist on spatial networks,
whose characterisation would shed light on the interplay
between the statistical physics of random networks, and
their spatial counterparts, in way which could reveal deep
insights about universality and geometry more generally.
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[63] S. N. Santalla, J. Rodŕıguez-Laguna, A. Celi, and
R. Cuerno, “Topology and the kardar–parisi–zhang uni-
versality class,” Journal of Statistical Mechanics: Theory
and Experiment, vol. 2017, no. 2, p. 023201, feb 2017.

[64] K. Johansson, “Transversal fluctuations for increasing
subsequences on the plane,” Probability theory and
related fields, vol. 116, no. 4, pp. 445–456, 2000.

[65] J. Baik, P. Deift, and K. Johansson, “On the distribu-
tion of the length of the longest increasing subsequence
of random permutations,” Journal of the American
Mathematical Society, vol. 12, no. 4, pp. 1119–1178,
1999.

[66] J.-D. Deuschel and O. Zeitouni, “On increasing
subsequences of i.i.d. samples,” Comb. Probab. Comput.,
vol. 8, no. 3, pp. 247–263, May 1999.

[67] M. Kardar, G. Parisi, and Y.-C. Zhang, “Dynamic scaling
of growing interfaces,” Physical Review Letters, vol. 56,
no. 9, p. 889, 1986.

[68] D. A. Huse and C. L. Henley, “Pinning and roughening of
domain walls in ising systems due to random impurities,”
Physical review letters, vol. 54, no. 25, p. 2708, 1985.

[69] M. Kardar and Y.-C. Zhang, “Scaling of directed poly-
mers in random media,” Physical review letters, vol. 58,
no. 20, p. 2087, 1987.

[70] J. Krug, “Scaling relation for a growing interface,”
Physical Review A, vol. 36, no. 11, p. 5465, 1987.

[71] J. Krug and P. Meakin, “Microstructure and surface scal-
ing in ballistic deposition at oblique incidence,” Physical
Review A, vol. 40, no. 4, p. 2064, 1989.

[72] E. Medina, T. Hwa, M. Kardar, and Y.-C. Zhang, “Burg-
ers equation with correlated noise: Renormalization-
group analysis and applications to directed polymers and
interface growth,” Physical Review A, vol. 39, no. 6, p.
3053, 1989.

[73] J. Krug and H. Spohn, “in solids far from equilibrium:
Growth, morphology and defects,” 1991.

[74] P. Deift, “Universality for mathematical and physical sys-
tems,” Proc. ICM, Madrid, Spain, 2006.

[75] B. Derrida, “An exactly soluble non-equilibrium sys-
tem: the asymmetric simple exclusion process,” Physics
Reports, vol. 301, no. 1-3, pp. 65–83, 1998.

[76] P. Calabrese and P. Le Doussal, “Exact solution for the
kardar-parisi-zhang equation with flat initial conditions,”
Phys. Rev. Lett., vol. 106, p. 250603, Jun 2011.

[77] H. Kesten, “On the speed of convergence in first-passage
percolation,” The Annals of Applied Probability, pp.
296–338, 1993.

[78] C. Licea, C. M. Newman, and M. S. Piza, “Superdiffusiv-
ity in first-passage percolation,” Probability Theory and
Related Fields, vol. 106, no. 4, pp. 559–591, 1996.

[79] J. Wehr and M. Aizenman, “Fluctuations of extensive
functions of quenched random couplings,” Journal of
Statistical Physics, vol. 60, no. 3-4, pp. 287–306, 1990.

[80] C. M. Newman and M. S. Piza, “Divergence of shape fluc-
tuations in two dimensions,” The Annals of Probability,
pp. 977–1005, 1995.

[81] M. Q. Vahidi-Asl and J. C. Wierman, “A shape result
for first passage percolation on the voronoi tessellation



15

and delaunay triangulation,” in Random Graphs, Vol. 2,
1992, pp. 247–262.

[82] A. Auffinger and M. Damron, “A simplified proof of the
relation between scaling exponents in first-passage per-
colation,” Ann. Probab., vol. 42, no. 3, pp. 1197–1211,
05 2014.

[83] C. D. Howard, “Lower bounds for point-to-point wan-
dering exponents in euclidean first-passage percolation,”
Journal of applied probability, vol. 37, no. 4, pp. 1061–
1073, 2000.

[84] C. D. Howard and C. M. Newman, “Geodesics and span-
ning trees for euclidean first-passage percolation,” Annals
of Probability, pp. 577–623, 2001.

[85] E. N. Gilbert, “Random plane networks,” Journal of the
Society for Industrial and Applied Mathematics, vol. 9,
no. 4, pp. 533–543, 1961.

[86] J. Coon, C. P. Dettmann, and O. Georgiou, “Full
connectivity: Corners, edges and faces,” Journal of
Statistical Physics, vol. 147, no. 4, pp. 758–778, 2012.

[87] M. D. Penrose, “Connectivity of soft random geometric

graphs,” Ann. Appl. Probab., vol. 26, no. 2, pp.
986–1028, 04 2016.

[88] M. Walters, “Random Geometric Graphs,” in
Surveys in Combinatronics 2011, Robin Chapman,
Ed. Cambridge University Press, 2011.

[89] M. de Berg, M. van Kreveld, and M. Overmars,
Computational Geometry: Algorithms and Applications.
Springer, 2008.

[90] https://mathoverflow.net/questions/71306/when-
should-we-expect-tracy-widom

[91] W. Hachem, A. Hardy, and J. Najim, “Large Complex
Correlated Wishart Matrices: Fluctuations and Asymp-
totic Independence at the Edges.” Annals of Probability,
vol. 44, no. 3, pp. 2264–2348, May 2016.

[92] C. P. Dettmann, “New horizons in multidimensional
diffusion: The lorentz gas and the riemann hypothesis,”
Journal of Statistical Physics, vol. 146, no. 1, pp.
181–204, Jan 2012.


	I Introduction
	II Background: FPP and EFPP
	A First passage percolation
	1 Sublinear variance in FPP
	2 Scaling exponents
	3 Bounds on the exponents

	B Euclidean first passage percolation
	1 Bounds on the exponents

	C EFPP on a spatial network

	III Random spatial networks
	A Proximity graphs
	1 Random geometric graph
	2 k-Nearest Neighbour Graph

	B Excluded region graphs
	1 Delaunay triangulation
	2 -skeleton


	IV Numerical results
	A Numerical setup
	B Scaling exponents
	C Travel time fluctuations
	D Transversal fluctuations

	V Discussion
	A Gaussian travel time fluctuations
	B Percolation and connectivity
	C Betweenness centrality

	VI Conclusions
	 References

