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Towards a classification of planar maps

Alexandre Diet and Marc Barthelemyf]
Institut de Physique Théorique, CEA, CNRS-URA 2306, F-91191, Gif-sur-Ywvette, France

Planar graphs and their spatial embedding — planar maps — are used in many different fields
due to their ubiquity in the real world (leaf veins in biology, street patterns in urban studies, etc.)
and are also fundamental objects in mathematics and combinatorics. These graphs have been well
described in the literature, but we do not have so far a clear way to cluster them in different
families. A typology of planar maps would be very useful and would allow to monitor their changes,
to compare them with each other, or to correlate their structure with other properties. Using an
algorithm which merges recursively the smallest areas in the graph with the largest ones, we plot
the Gini coefficient of areas of cells and obtain a profile associated to each network. We test the
relevance of these ‘Gini profiles’ on simulated networks and on real street networks of Barcelona
(Spain), New York City (USA), Tokyo (Japan), and discuss their main properties. We also apply
this method to the case of Paris (France) at different dates which allows us to follow the structural
changes of this system. Finally, we discuss the important ingredient of spatial heterogeneity of
real-world planar graphs and test some ideas on Manhattan and Tokyo. Our results show that the
Gini profile encodes various informations about the structure of the corresponding planar map and

represents a good candidate for constructing relevant classes of these objects.

PACS numbers: 89.75.Fb, 89.75.-k, 05.10.Gg and 89.65.Hc

INTRODUCTION

A graph is planar if it can be drawn on the plane in
such a way that no edges cross each other. Such graphs
appear in many fields: mathematics and combinatorics
[1l 2], theoretical physics [3], biology [4] or urban stud-
ies [5]. In real-world applications, graphs exists under
the form of an embedding in the 2d physical world and
these objects are usually called planar maps (we note here
that the embedding is not necessarily planar even if the
graph is itself planar [6]). A particularly important appli-
cation concerns transportation networks such as streets
and roads. In this case, nodes are intersections and the
links are the segments of roads between nodes. Most of
these networks can be considered as planar as they must
intersect at a crossroad. Obviously we have bridges and
tunnels but there is usually some interchange allowing to
connect these roads on a relatively small scale so that the
planarity defect is localized in space (a complete study
of planarity for 50 cities worldwide can be found in [7]).

There are many attempts to characterize urban net-
works and planar graphs [8HI0] (see also [6] and refer-
ences therein), and to classify them [4l [I0, [IT], but it is
fair to say that we still do not have a simple and robust
method to achieve this goal. A classification of graphs
could be useful in many fields. For cities, the street net-
work is a simplified description of their structure and
shape. It is therefore important to be able to character-
ize in a simple way this network, allowing for a compar-
ison between cities, or to correlate the urban form with
other quantities such as urban form, energy use, heat is-
land effect [12], etc. In addtion, the existence of different
classes could point to simple mechanisms governing the
evolution of cities. More generally, a good characteri-

zation should wash out all irrelevant details but should
keep important structural determinants. The balance be-
tween these two antagonistic requirements is the key for
a successful characterization of planar maps that can be
used for a typology, and this paper discusses a candidate
for such a tool.

In this paper, we will first (briefly) review the various
attempts to classify planar graphs. In particular, we will
detail the algorithm proposed simultaneously by Katifori
and Magnasco [II] and Mileyko et al. [4] for charac-
terizing leaf veination patterns. lesf veins have various
diameters and this algorithm was naturally developped
for weighted networks. Here, we adapt this algorithm
to the general case of non-weighted network and propose
an indicator - the Gini profile - that describes the orga-
nization of faces (blocks in the case of street networks).
Although our arguments are valid for all planar maps, we
focus on the problem of characterizing street networks.
We will apply our method to graphs generated in silico,
and we will discuss the application of this method to real-
world cities such as Barcelona, Tokyo, New York city and
Paris (for which we have the map for different dates). We
end this paper by a discussion about perspectives for this
method.

THE MERGING ALGORITHM

In combinatorics, Bouttier, Di Francesco, and Guitter
[2] discussed an exact mapping between a rooted pla-
nar map and a tree but this method seems difficult to
use for constructing classes of graphs as the tree depends
strongly on the root chosen. In [I0] a method for cluster-
ing planar maps was proposed and relied on the statistics
of the shape and area size of cells. However, this method



‘deconstructs’ in some way the network and we loose spa-
tial correlations between blocks. We would like to keep
track of these correlations and to find a simple way for
characterizing the spatial organization of the cells that
is at the heart of the structure of planar maps. In order
to make a first step towards this difficult task, we elab-
orate here on a method proposed previously [4] [11] for
weighted planar graphs. This method constructs an ap-
proximate mapping between a weighted planar map and
a binary tree, and although it is not a bijection, it pro-
vides a simple and flexible framework. In these studies,
the weight corresponds to the diameter of veins in leaves.
In the planar map, we thus have edges (veins here) that
connect at nodes and form a set of faces that we will also
call cells, or in the context of cities, blocks. The main
steps in this algorithm are the following (see also Fig.

top):

1. Associate to each edge i its diameter ¢; (if there is a
couple 7, j such that §; = J;, one can infinitesimally
perturb §; or §; so that we can rank all the edges
in a strict order).

2. Find the smallest diameter §,, and its associated
edge m (also called the ‘weakest edge’).

3. Merge the two cells separated by the edge m. The
new cell has an area equal to the sum of the merged
cells, and keeps the same neighbors.

4. Go back to (2) until there are no more edges/until
there exist only one cell.

This algorithm allows to construct a binary tree where
initial cells are the leaves (or terminal nodes) of this tree
and the other nodes correspond to the fusion of differ-
ent cells: two nodes are connected in this tree if the
corresponding cells merge in the algorithm (see Fig.
bottom). This algorithm thus maps a planar graph to
a binary tree which can then be characterized with var-
ious measures (it is indeed in general easier on a tree).
In [I1], the main tool used to characterize such trees is
the asymmetry [I3], a metric relative to their topological
structure.

However, in order to run the algorithm and build a
binary tree for any planar map, the algorithm needs to
be modified. Indeed, in a non-weighted planar map, we
need a way to characterize the ‘weakness’ of an edge for
merging recursively the faces of the network. In order to
setup this merging process we essentially need to choose
the cells that will be merged together. Many choices are
possible: we can choose the smallest edge or with the
smallest betweenness centrality, etc. but after various
tests we decided to choose the area of cells as the main
indicator. Once the smallest cell is found we merge it to
one of its neighbor and here also many choices are pos-
sible. 'We found that the most effective algorithm (for
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FIG. 1: Top: Visual representation of the merging algorithm
[4, [IT]. The width of a line represents its diameter. Bottom:
Resulting binarty tree that represents the merging process.
The color of terminal nodes shows the corresponding cell.

characterizing the networks) is to choose the neighbor
with the largest area size. These choices can be moti-
vated by the fact that in urban networks, we observe
a hierarchical structure of blocks and the process here
thus acts as a coarse-graining that eliminates the small
scale details. With these choices, the merging procedure,
which will be called ‘decimation’ here is described by the
following algorithm:

1. Associate to each cell 7 its area a; (if there are two
cells ¢, such that a; = a;, one can infinitesimally
perturb a; or a;).

2. Find the smallest area a,, and its associate cell m.

3. Merge the cell m with its neighbor of largest area
size. The new cell has an area equal to the sum of
the merged cells and keeps the same neighbors.

4. Go back to (2) until there is only one cell left.

This algorithm will produce a sequence of cells whose
sum is constant and equal to the total area size of the
map. We now need a measure that can monitor the evolu-
tion of the graph during this process and that will reveal
specific features of the planar map. In the next section
we will discuss this and propose a characterization, the
‘Gini profile’.



CHARACTERIZING THE DECIMATION
PROCESS

In order to devise and to test a characterization of
the decimation process we will first study three types
of graphs (all constructed on a set of points), that can
be similar but with intrinsic differences. These three
types of graphs are: (i) the Poisson-Voronoi (PV), (ii)
the Gabriel graph (GG) and (iii) the relative neighbor-
hood graph (RN). The PV comes from the application of
the Voronoi diagram [I4] algorithm to a set of N points
randomly chosen in the [0, 1] x [0, 1] square. The GG and
RNG (see for example [0l [T5]) are subsets of the Delaunay
graphs, and are also computed from N points randomly
selected in the [0, 1] x [0, 1] square. Specific realization of
these graphs are shown in Fig. 2

Decimation tree

In [11], various tools are used in order to characterize
the decimation tree. These trees display particular struc-
tures (for example, what Katifori and Magnasco called
‘multiplicative’ and ‘additive’ trees), but for large graphs
this characterization is difficult to use.

For example, one can see that for about 1,000 initial
cells (see Fig. [2)), it is difficult to extract useful informa-
tion from the decimation trees and to distinguish differ-
ent types of graph. Furthermore, the asymmetry method
used in [IT] did not work as well on the graphs presented
above. Indeed, the decimations for quite similar graphs
(Gabriel, Relative Neighborhood, Random Voronoi) pro-
duce very similar results for the asymmetries making it
difficult to distinguish these networks.

Mean and variance of the areas distribution

A simple idea is to consider the first two moments of
the area size of cells during the decimation process. We
will use the following notation:

e N the initial number of cells in the graph
e ¢ the step of the decimation, which will be called

‘time’. This quantities ¢ runs from 0 to N —1, since
there can only be N — 1 fusions for N initial cells.

o T =

1 is the normalized time, which will be

useful to compare graphs with different V.

e (a,...,ay) the area sizes of the initial cells.

N
e A =>" a; the total area size constant in time.
i=1

At time t, there are only N — t cells left, and the area
of the merged cells is the sum of the component cells.
Thus, one sees that the mean area a(t) at time t is given
by

1 A

E(t)ziN_t i ai:iN—t (1)

which shows that the average size is independent of any
type of graph or decimation, and therefore cannot be used
to characterize a graph. The next quantity is for example
the variance Alal(t) of the area size and we studied this
quantity numerically. Typical results for these different
graphs are shown in Fig. A power law fit of these
curves suggest a behavior of the form Ala](t) ~ (1 —
T)7% ~ (N —t)~* with a & 2 (these curves all display an
average slope of o = 2 towards the end of the decimation
and because of the change of axis, long times are on the
left and short times are on the right). Here also, the
variance seems to be independent from many details of
the graph and can therefore not to be of any use for
characterizing it.

The Gini profile

The Gini coefficient [I6] [I7] first used in economics
is a measure of inequality for a set of quantities. If x;
represents the variable we want to study (the income or
the wealth of the person ¢, or the area size of a cell i),
the Gini coefficient for a set of n variables is then defined
as follows [I§]

>3 fos =]
G = i=1j=1 (2)

n
Y
i=1

When all quantities are equal, the inequality is minimal
and G = 0, and in the other extreme case when only one
of the quantity is non-zero, then G = 1 — 1/n (which
goes to G = 1 for large n). More generally, the larger the
Gini and the larger the inequality among the variables z;.
During each step t of the decimation process we have a
set of areas and we can compute the corresponding Gini
coefficient (denoted by G(t) or G(7)). The algorithm for
constructing this ‘Gini profile’ is then the following one:

1. Associate to each cell i its area a; (if there is a
couple %, j such that a; = a;, one can infinitesimally
perturb a; or a;).

2. Find the smallest area size a,,, and its associate cell
m.

3. Merge the cell m with its neighbor of largest area
size. The new cell has an area equal to the sum of
the merged cells, and keeps the same neighbors.
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Random Voronoi Graph

FIG. 2: Decimation trees for different graphs. The Gabriel graph contains 924 initial cells, the Relative Neighborhood one 1070

initial cells and the Random Voronoi one 1000 initial cells.
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FIG. 3: Plot of In(Ala](t)) vs. In(N —t) for the Random
Voronoi Graph (in green), the Relative Neighborhood Graph
(in red) and the Gabriel Graph (in blue).

4. Compute the Gini coefficient G(t) for all cells ex-
isting at this time t.

5. Go back to (2) until there is only one cell left.

6. Plot the Gini profile, i.e. the (¢, G(t)):cjo,n—-1]

graph.

We can then construct a Gini profile for each planar

map and we show in Fig. (4] the results for the synthetic
graphs considered here. This figure shows that the deci-
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FIG. 4: Gini profiles versus the normalized time for the Pois-
son Voronoi graph (in green), the Relative Neighborhood
Graph (in red) and the Gabriel Graph (in blue).

mation process produces different responses for these syn-
thetic graphs and seems therefore to be a good candidate
for characterizing these networks. From these graphs, we
can infer that the typical shape of this Gini profile is as
shown in Fig. |5l We represent the corresponding graphs
at different stages of the decimation process in the case
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FIG. 5: Typical profile of the Gini profile. The local minimum
m is obtained for 7 = 7,,, and the maximum for 7 = 7as. The
Gini gap is defined as AG = Gy — G

of the Poisson-Voronoi graph in Fig. [6]

This typical shape displays first a decrease to a local
minimum (at time 7 = 7,,,) followed by an increase to a
local maximum at 7 = 7,7, and eventually a decrease to
the minimum G = 0 at 7 = 1. We can understand this
typical behavior:

e The first step (the decrease) is due to the small cells
merging with their larger neighbors. When a small
cell merges with a large one, the inequality of the
area size repartition drops; a comparison would be
to merge the bank accounts of two individual, one
very rich, and the other with small income.

e The second step (the increase) is due to the fact
that after some time, if all cells are roughly of the
same size, merging two cells can only increase in-
equality, leading to an increase of the Gini coeffi-
cient.

e The third step (the final decrease) is actually a mix
of two things. The number of cells is decreasing
and at a small scale we observe oscillations until
t = N — 1 (such oscillations can be seen in Fig. .
Moreover, the Gini coefficient for t = N — 1 is nec-
essarily equal to 0, by definition, and this leads on
average to a decreasing function.

APPLICATION TO REAL-WORLD STREET
NETWORKS

We now test the Gini profile on real-world street net-
works for different cities and understand what informa-
tion it conveys about the graph. The road networks

TM 10

FIG. 6: Visualization of the graph for three different times of
the decimation process applied to the Poisson-Voronoi graph.
The red dotted lines represent the deleted edges. Top: graph
when the Gini is minimal (7 = 7,,). Middle: intermediate
graph between the minimal Gini and the maximal Gini (7 <
7 < 7m). Bottom: graph when the Gini is maximal (7 = 7).

of cities are obtained from the open database Open-
StreetMap [19]. We will start with Barcelona (Spain),
New York City (USA), Tokyo (Japan) as these large cities
combine various neighborhoods with different structures.
In a last part we will consider the time evolution of the
street network of Paris and see how we can detect struc-



tural changes during the evolution of this system.

Barcelona, Spain: a first test

The first city on which the algorithm is tested is
Barcelona, Spain. An interesting feature of this city is
the presence of many boroughs of different shapes (figure
@ which gives the opportunity to understand the Gini
profile on a practical case.

We first test the algorithm on the whole city. The
resulting Gini profile is shown in Fig. bottom7 left)
and corresponds indeed to the typical behavior described
above, in particular with the presence of a gap AG (of
order 0.1 here). However this Gini profile alone does not
give any information about the components of the city.
Indeed, as shown in the Fig. [f(bottom, right), the Gini
profile displays important variations depending on the
borough considered. This last plot shows then that ap-
plying the decimation algorithm on a whole city (or more
generally to an area that is too large) smoothes out some
details that can be important. It also shows that the
Gini profile is able to detect variations between different
neighborhoods. Finally, this result also suggest that the
Gini gap AG is connected to the homogeneity or regu-
larity of the network. For a more homogeneous network,
the Gini gap is larger as can be seen for the yellow section
of Barcelona and compared to the more random borough
in blue or purple (see Fig. [7)).

New York, United States: comparing regular and
irregular networks

In order to test if there is indeed a link between the
Gini gap and the regularity of the street pattern, we now
consider another example, the city of New York (USA).
This city comprises five boroughs that were developped
at different time and have different structures (see for
example [20] and reference therein). We will focus on
two boroughs, Manhattan and Staten Island (see Fig. .
In particular, Manhattan is very regular and comprises
essentially rectangular cells [I0], and is subdivided in al-
most regular patterns with the exception of Central Park
in the center of the island. In contrast, Staten Island
comprises many green areas and is composed of multi-
ple small neighborhoods at different locations. We com-
puted the Gini profile for these two boroughs and the
result is shown in Fig. [0 In this figure, we observe that
AGManhattan ~ () 9 and AGStaten Island ~ () 05 which con-
firms the link between regularity of the pattern and mag-
nitude of the Gini gap. We note that this result is also
observable in the Fig. [d Gini curves: the gap for the ran-
dom Voronoi graph (which is statistically homogeneous)
is larger than the ones obtained for Gabriel or the Rela-
tive Neighborhood graphs.

Tokyo (Japan): the meaning of the Gini profile’s
minimum

We now consider another large city, Tokyo (Japan) and
represent a portion of it in Fig. All the different
boroughs in the city center are very similar (macroscopi-
cally) and we test here if the Gini profile can give a more
precise characterization. We thus separate the center in
three different sectors as shown in Fig. and compute
the Gini profile for them. We show these profiles in the
Fig. We observe that the green and blue Gini profiles
are very similar, while the pink one (that corresponds to
the east sector) is very different, both in terms of the
Gini gap but also in terms of the location of both the
local minimum (7 = 7,,) and the maximum (7 = )
of the profile. A first understanding can be grasped by
considering the cumulative distribution of the area size
of cells, as shown in Fig. [[2] We note that the green
and blue sectors have similar cumulative functions, while
the pink sector displays a broader distribution: there are
more cells of very small area in the two first sections that
in the pink one. The larger number of small areas will
then lead to a larger 7, that we indeed observe for the
east sector. This is also connected to the initial value
of the Gini coefficient that is less important for the pink
sector. This shows that there is a larger equality for the
block size in the east sector, at odds with the visual im-
pression of Fig. [10), probably due to the fact that the
pink sector contains apparently more larger blocks.

PARIS (FRANCE) : A TIME EVOLVING
NETWORK

The city of Paris has been the theather of many
changes and the structural evolution of its street net-
work is well documented thanks to the existence of many
historical maps (see [21] and references therein). Thanks
to modern GIS techniques and the digitalization of these
historical documents, we are in the position of studying
quantitatively the temporal evolution of the street net-
work on almost 300 years [22].

One of the most important transformations in Paris
was Haussmann’s renovation of Paris [23], which took
place between 1853 and 1870 under the direction of
Napoleon IIT (we also note that some changes in parts
of the city of Barcelona discussed above was actually in-
spired by Haussmann’s work). Haussmann’s works had
a huge impact on the city of Paris, and maybe surpris-
ingly, none of the standard indicators are able to reveal
important changes. It is only by studying the spatial
distribution of the betweenness centrality [2I] that we
can observe quantitatively how Haussmann modified in
depth the structure of the street network by changing the
way we navigate in this system [21]. This case is thus a
natural playground for testing the relevance of the Gini



10 A

0.8 4

0.6 1

0.4 4

Gini coefficient

0.2 4

0.0 4

Y 032 Da 06 Y 10
MNormalized time

10 A

Gini coefficient

0.0 4

Y 032 Da 06 Y 10
MNormalized time

FIG. 7: (Top) Streets of Barcelona, Spain. Three areas will be studied, referred as blue sector (north), yellow sector (middle)
and purple sector (south). (Bottom, left) Gini coefficient over normalized time for the streets of Barcelona. (Bottom. right)
Gini coefficient over normalized time for the streets of Barcelona. Each curve represents a different sector of Barcelona, the

black curve being for the whole city.

profile. We have the network for central Paris [22] for
4 different dates (1790, 1836, 1849, 1888) among them 3
before Haussmann’s works and one posterior to them (we
note that although Paris gained ground over time and ex-
tended its borders, we only use the algorithm on a central
part of Paris corresponding to the year 1790 and which
allows us to monitor the changes experienced during this
period). The corresponding Gini profiles are shown in
Fig. We observe that there are essentially two main
changes highlighted by these Gini profiles. The first one

is from year 1790 to 1836 (1836 and 1849 being very sim-
ilar). This corresponds to the period after the French
revolution during which a redistribution of central nodes
were observed in this period [2I]. This is in agreement
with the historical fact that after the french revolution
many religious and aristocratic domains and properties
were sold and divided in order to create new houses and
new roads, improving congestion inside Paris. By com-
paring directly the 1790 and 1836 curves we observe var-
ious effects: first the initial Gini coefficient (G(t = 0)) is



FIG. 8: Streets of New York, United States. Two areas will
be studied: Manhattan (pink) and Staten Island (green).
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FIG. 9: Gini curves for Manhattan (in pink) and Staten Island
(in green).

smaller, indicating a homogeneization of the size of cells.
Second, a local minimum appears, in line with the fact
that inequality of cell sizes is smaller in 1836. The last
curve of Fig. for the year 1888 (thus after Haussmann’s
works) clearly differs from the curves for 1836 or 1849.
In particular the initial Gini coefficient is smaller, and
maybe more important we observe the appearance of a
Gini gap (around 7 = 0.6). This shows that regularity
was introduced by Haussmann in the street network of
Paris and that these works led to more regularity in the
pattern of blocks.

Although probably more work is needed here, these

FIG. 10: Streets of central Tokyo (Japan). We will focus on
three different neighborhoods that are represented by different
colors: the northwest sector (in green), the southwest sector
(in blue) and the east sector (in pink).
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FIG. 11: Tokyo: Gini profiles for the east sector (in pink),
the northwest sector (in green) and the southwest sector (in
blue).

results suggest that the Gini profile is indeed a good
candidate for characterizing at a coarse-grained level the
structure of a planar map.

DISCUSSION

A good coarse-grained characterization should smooth
out irrelevant details but should keep important struc-
tural determinants. The balance between these two an-
tagonistic requirements is the key for a successful charac-
terization of planar maps that can be used for construct-
ing a typology. We proposed here a simple algorithm
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FIG. 12: Cumulative distributions of the cell’s area size for the
three sectors of Tokyo considered here (the unit of area size
is irrelevant here as we are interested in differences between
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FIG. 13: Modified Gini curves for the east sector (in pink)
and the northwest sector (in green). The blue sector is not
plotted, but is similar to the green one, as before.

that maps an embedded planar graph to a curve, the
Gini profile. We showed here that certain features of the
Gini profile can be related to the planar map: the po-
sition of the local minimum is related to the abundance
of small cells, and the Gini gap is related to the statis-
tical homogeneity of the graphs. Also, we showed that
various neighborhoods of the same city actually display
different Gini profiles, highlighting the sensitivity of this
measure. This is confirmed by the study on central Paris
where most standard indicators do not display any inter-
esting variations, while the Gini profile can display dra-
matic variations (before and after Haussmann for exam-
ple). The Gini profile therefore probably contains some
information about spatial correlations, a feature that was
absent in the classification proposed in [I0]. We believe
that this approach could be a first step towards a simple
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FIG. 14: (Top) Gini profiles for the central part of Paris,
France for the years 1790 (blue), 1836 (green), 1849 (orange)
and 1888 (red). (Bottom) The second plot only shows the
1888 Gini curve.

characterization and classification of planar maps, but
further tests and studies are certainly needed.
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