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Although the average population density of a city is an extremely simple indicator, it is often used
as a determinant factor for describing various aspects of urban phenomena. On the other hand, a
plethora of different measures that aim at characterizing the urban form have been introduced in
the literature, often with the risk of redundancy. Here, we argue that two measures are enough
to capture a wealth of different forms of the population density. First, fluctuations of the local
density can be very important and we should distinguish almost homogeneous cities from highly
heterogeneous ones. This is easily characterized by an indicator such as the Gini coefficient G, or
equivalently by the relative standard deviation or the entropy. The second important dimension is
the spatial organization of the heterogeneities in population density. We propose a dispersion index
η that characterizes the degree of localization of highly populated areas. As far as population density
is concerned, we argue that these two dimensions are enough to characterize the spatial organization
of cities. We discuss this approach using a dataset of about 4, 500 cities belonging to the 10 largest
urban areas in France, for which we have high resolution data, at the level of a square grid of
200 × 200 meters. Representing cities in the plane (G, η) allows us to construct families of cities.
We find that, on average, compactness increases with heterogeneity. More precisely, we find four
large categories of cities (with population larger than 10, 000 inhabitants): (i) first, homogeneous
and dispersed cities where the density fluctuations are small, (ii) very heterogeneous cities with a
compact organization of large densities areas. The last two groups comprise heterogeneous cities
with (iii) a monocentric organization or (iv) a more delocalized, polycentric structure. We believe
that integrating these two parameters in econometric analysis could improve our understanding of
the impact of urban form on various socio-economical aspects.

Keywords: population density, spatial distribution, urban morphology

INTRODUCTION

Understanding what are the factors that affects the
sustainability, the resilience or other crucial aspects of
cities is a major goal in scientific approaches to urban-
ism [1, 2]. In order to make decisions for improving
cities, urban planners and policy makers rely on few in-
dicators that are determinant for many socio-economical
processes (see for example [3] for a discussion about ur-
ban form and productivity, [4] about urban form and
CO2 emissions). Obviously in the potential list of ma-
jor determinants, we find the infrastructure, the spatial
organization of activities and buildings, and in particu-
lar, the distribution of the local population density. At a
very coarse-grained level, it has been argued some time
ago that the gasoline consumption in different cities, is
a simple decreasing function of average urban density
[5]. Even if this result has been challenged in recent
studies[6, 7], it triggered a large amount of discussions
about the need to advocate for cities to be more com-
pact and to stop urban sprawling [8, 9]. This example
illustrates the importance of being able to characterize
the urban form, and the possible implication for socio-
economical processes.

Characterizing urban form is a difficult task. Very gen-
erally, reducing the information contained in a spatial dis-

tribution to s few numbers is a complex problem without
a clear solution. In the literature we can find a wealth
of studies proposing various indices, built with the aim
of quantifying the compactness or spreadness of popula-
tion density [8] or to characterize the monocentricity or
polycentricity of the urban form [10]. While the first styl-
ized theoretical studie in Spatial Economics were predict-
ing monocentric structure for activities in cities [11–13],
modern cities often quite do not fit in this picture. It has
been reported that the impact of housing prices and con-
gestion has been driving cities towards a transition be-
tween monocentric and polycentric structures [7, 10]. For
instance, the monocentricity of cities has been quanti-
fied by measuring population-density gradients from the
center of the urban areas [14, 15]. Typically, accord-
ing to these measures, the monocentric description fits
quite well the population distribution in several urban
areas, though different functions have been proposed to
describe how population density decreases, when moving
away from the center [15]. In [14], these measures are
used to discuss different reasons why the monocentricty
picture often fails. In these studies however, typically
urban (or metropolitan) areas are considered and not in-
dividual municipalites.

The problem of ‘urban sprawl’ is somehow similar to
the monocentric polycentric urban form, and many at-
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tempts to quantify the compactedness or spreadness of
cities have been proposed. In particular, Tsai [16] devel-
oped a set of variables to distinguish compactness from
‘sprawl’, and identified four dimensions that have a spe-
cial importance for characterizing cities: (i) the total
population, (ii) the average population density, (iii) the
heterogeneities in population density, and (iv) the spa-
tial structure of these heterogeneities. In this study, the
Moran coefficient (a measure of spatial correlation [17]) is
used in order to characterize the spatial structure of pop-
ulation distribution. However, such an indicator can be
quite problematic: as also pointed out in Tsai [16], a low
Moran value might imply either a high level of sprawl, or
a discontinuous development. Very different urban form
might then have similar values for this indicator. This
is due to the definition of the Moran, which is a local
quantity that depends essentially on how many highly
populated areas are neighbours of low populated areas.
indeed, many studies using the Moran coefficient discuss
very local aspects of cities, such as noise exposures of
building [18], or the smog production of cities [19], which
depends on the micro-structure of cities (more precisely,
how building and roads are distributed). Similarly, in a
recent study [21], the decay of the correlation functions
for the density of buildings with distance, is used to quan-
tify the impact of urban form on temperature in cities. In
the same spirit of the Moran coefficient, similar measures
were proposed in order to quantify the spread in space
of some activities. In [20] for example, the so-called M-
functions are introduced in order to measure the spatial
concentration of firms in a city.

Another aspect of [16], is that all these various pa-
rameters are a priori not independent and a crucial goal
would be to reduce their number and to eliminate redun-
dancies. In particular, it is important not to specialize to
specific organizations and to be able to characterize very
generally cities and to determine if they display a similar
organization. Also, it is crucial to be able to character-
ize quantitatively these features and to compare differ-
ent cities with each other, eventually opening the possi-
bility of a typology of cities. Another series of studies
focused on obtaining a minimal set of measures by mea-
suring the statistical significance of the correlations be-
tween various indicators [22–25]. These papers consider
indicators that characterize the urban form or the urban
morphology, either by looking at the local distribution
of population density or land use. However, these stud-
ies typically consider a large number of such indicators
together with socio-economic indicators and leading to
a clustering that is difficult to interpret. In particular,
in [23] starting from a large number of indicators mixing
urban form and socio-economical ingredients, six main
variables are extracted. Using these variables, a classifi-
cation of cities is proposed and leads in eight groups of
cities that is however not based on the urban form only.

In this paper, we will proceed in another way and we

will specialize to the case of population density. Although
our arguments could be extended to other measures, we
concentrate on the problem of characterizing the spatial
distribution of a single density, without aiming at under-
standing the interplay of population density with other
socio-economic indicators. We do so by focusing on a
dataset of a large number of french cities (about 4, 500
cities, of which 465 cities have more than 10, 000 inhabi-
tants) for which we have high-resolution data on the local
population density. The density is obtained by covering
the surface of the municipalities with a square grid of
cells of size 200 × 200m2. The same grid is covering all
the cities which enable us to measure various quantities
without having to rely on artificial divisions in districts
or patches that could introduce biases in the results.

We focus on the local population density defined as
the density computed for a grid element, and we argue
that the simplest characterization of this quantity has
two main dimensions. The first one that was considered
in many studies [16, 23], is the heterogeneity of the den-
sity distibution in a city and can be simply characterized
by the corresponding Gini coefficient G. However this in-
dex is not able to characterize the other dimension that
is the spatial organization of the city. We will focus on
the spatial distribution of high density areas. Using a
non-parametric method [26] we identify the large den-
sity regions, the population ‘hotspots’, and characterize
their spatial distribution with the use of a sprawling in-
dex η computed as the normalized average distance be-
tween hotspots, and which tells us how dispersed in the
city these hotspots are. Using these two dimensions, we
are then able to cluster together similar cities and at an
intermediate level, we construct four different types of
cities.

THE DATASET

In order to illustrate our theoretical discussion on a
practical example we consider the local population den-
sity in cities in France. More precisely, the dataset con-
sidered is the population density covering a surface of
about 58, 000 km2, corresponding to the largest 10 urban
areas in France. The surface is covered with a square grid
of 200× 200m2, and the population density is estimated
for each grid cell. This dataset has been obtained by
combining two different publicly available datasets: the
INSEE dataset provides population for all French munic-
ipalities [27], and living space data. We have combined
these two datasets, by dividing the total population of
each municipality on all the grid cells covering the sur-
face of the municipality, proportionally to the living space
area inside each cell. In this way we obtain an estimate
of the number of inhabitants Pi who reside in each grid
cell i. Each grid cell i belongs to one and only one mu-
nicipality, and when a grid cell is on the border of two
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or more municipalities, it is assigned to the municipal-
ity with the largest surface share. We refer to the set
of values {i ∈ α} as the set of grid cells covering the
municipality α. We use latin indices such as i, j for grid
cells and greek indices such as α, β for municipalities (for
example we will denote by Pα the population of city α).
Here we will use equivalently the population or the pop-
ulation density in cells, since all grids cells have the same
area equal to 200 × 200 = 40, 000m2. We denote the
population density in a grid cell by ρi = Pi/Ai, where Ai
is the area of grid cell.

The resolution in this dataset is enough to have a suf-
ficiently clear picture of the population distribution for
both the largest and the smallest municipalities. In Fig. 1
we see some examples, by showing the population density
spatial distribution at the scale of the individual munic-
ipality, for the three largest french cities: Paris, Lyon
and Marseille, and in Fig. 2 we display the distribution
for the whole Paris urban area. We observe in general a
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FIG. 1: Population distribution the three largest
french cities. We represent here the local population den-
sity, obtained at the level of a square grid made of cells of
size 200×200 meters. In the case of Paris we have 2, 651 grid
cells, for Lyon 1, 199 cells, and for Marseille 6, 533 cells (all
the numbers here are for 2013). The color of each grid cell
refers to the estimated number of inhabitants per cell.

monocentric pattern at the urban area scale, and a large
variety of population distributions inside city boundaries.
For example, in the case of Paris (France), the very cen-
ter is mostly composed of offices and touristic places,
leading to a low population density. In contrast, high
density areas in Paris compose a ring-type area far from
the geometrical center of the city. This is different from
other cities such as Lyon or Marseille, where we observe
a decreasing density with the distance to the barycenter.

While the INSEE dataset contains the population of
all french municipalities for the years 1968, 1975, 1982,
1990, 1999 and for all the years from 2006 to 2013, the

living space data is available for 2008 and 2016 only. In
this paper we then consider the population density at
the grid cell level in 2008, and for 2013 we combined the
INSEE population data for 2013 and the living space data
for 2016. In the Table I, we present a summary of the
dataset and in Figs. 1, 2 some example of maps obtained
from it.

FIG. 2: Population density in the whole Paris urban
area. The population density is obtained by covering cities
with a square grid of 200 × 200m2. Here, we display the
example of the Paris urban area in 2013, covered by 592, 714
grid cells. The color of each grid cell refers to the estimated
number of inhabitants per cell.

FLUCTUATIONS OF THE LOCAL DENSITY

The Gini coefficient

The first group of measures that we consider is de-
signed to quantify how heterogenous the population den-
sity is inside the municipality boundaries, without taking
into account the spatial nature of the data. These mea-
sures will depend on the set of population values of the
grid cells only, and not on the spatial position of each
cell. Amongst these measure, we consider the Gini index
(or Gini coefficient) Gα for the municipality α, defined
as [28]

Gα =

∑
i,j∈α |Pi − Pj |
2nα

∑
i∈α Pi

, (1)

where the sums run on all the nα grid cells covering the
surface of the municipality α. The Gini coefficient is
extensively used in Economics, and was originally intro-
duced to quantify the levels of inequality in income and
wealth distributions, but can be used for characterizing
the level of heterogeneity of any quantity. In the city
case, the Gini coefficient is designed to be zero for a uni-
form city in which the population is the same in all grid
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TABLE I: Summary of the dataset. The largest 10 urban areas in France are covered by a square grid of cells of size
200 × 200m2. For each urban area we list the total population for the years 2008 and 2013, the total number of grid cells
covering the surface, and the number of municipalities existing in the urban area.

Urban area Total Pop. (2008) Total Pop. (2013) # of cells # of municipalities

Paris 12.6 M 13.0 M 592,714 2,320

Lyon 2.12 M 2.24 M 152,658 519

Marseille 1.75 M 1.77 M 82,338 107

Toulouse 1.20 M 1.29 M 137,131 453

Lille 1.21 M 1.23 M 25,210 132

Bordeaux 1.10 M 1.17 M 143,719 255

Nice 1.02 M 1.02 M 85,385 142

Nantes 0.85 M 0.91 M 85,582 114

Strasbourg 0.76 M 0.77 M 56,414 267

Rennes 0.65 M 0.70 M 95,797 190

cells. On the contrary, the Gini is maximum for an ex-
tremely concentrated city, in which the total population
resides in a single grid cell. In this case, the Gini, takes
the value

G max
α =

nα − 1

nα
, (2)

which is very close to 1 for large nα. However, the Gini
of municipalities covered by a very small number can be
artificially small, even if the population is evenly dis-
tributed among the grid cells. For this reason, we will
use the normalized G norm

α defined as

G norm
α =

Gα
G max
α

. (3)

Such normalized Gini is always defined between 0 and 1,
and can be used to compare the Gini for different munic-
ipalities with very diverse numbers of cells.

In Fig. 3 we compute the Gini coefficient for all munic-
ipalities in our dataset in 2013. In the top left figure we
notice that there is an abundance of municipalities with
large values of Gini. Such an abundance can be explained
by the heavy presence in the dataset of remote munici-
palities, that typically have a low average population and
are far from the center of the urban area (see the bottom
panels of Fig. 3). If we focus on the municipalities with
population larger than 10, 000 inhabitants, we observe a
more uniform distribution of the Gini.

We also have considered the time variation of the nor-
malized Gini coefficient (see Fig. 4). In the time period
considered, between 2008 and 2013, the normalized Gini
has been reducing for about 80% of the municipalities.
This trend is in line with the relation between the Gini
and the average population, showed in Fig. 3. As urban-
ization increases, the average population increases, which
results in a reduction of the Gini coefficient for most
of the municipalities. Such variations in the normalized
Gini coefficient are however typically small, the average
normalized Gini relative variation is about −0.77%, and

they are of the order of few percent for all municipalities.

Alternative measures: Standard deviation and
entropy

Alternative measures of statistical dispersion can be
found in the literature and the most common ones are the
standard deviation and the entropy (in a urban context,
see for example [16] and references therein). These mea-
sures can be defined for every municipality in the dataset,
and similarly to the Gini coefficient, they depend on the
population distribution {Pi}, but not on their spatial dis-
tribution. In particular, the relative standard deviation
is defined as

σ rel
α =

(
P 2

α − P
2

α

)1/2
/Pα, (4)

where
(
P 2

α − P
2

α

)1/2
and Pα are respectively the stan-

dard deviation and the average of the distribution of
Pα = {Pi, ∀i ∈ α}. The entropy of the distribution
is defined as [29]

Sα = − 1

log nα

∑
i∈α

pi log(pi) (5)

where pi is the normalized population distribution pi =
Pi/(nαPα).

However, all these measures are equivalent to the Gini
coefficient. In Fig. 5 we plot for all the municipalities in
our dataset in 2013, the Gini and different measures of
statistical dispersions. The monotonic behaviour shows
that there is a bijection between the Gini and these mea-
sures, demonstrating that they convey the same informa-
tion about the population distribution in the city. Using
the Gini or these measures for characterizing the hetero-
geneity of the population would then lead to the same
results.
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FIG. 3: The normalized Gini coefficient in 2013. The histogram shows the values of the normalized Gini coefficient for all
municipalities considered in this study (4, 499 municipalites). We notice that there is an abundance of municipalities with large
values of Gini. However, if we focus on the 465 municipalities with population larger then 10, 000 inhabitants, the distribution
of the Gini is more uniform. In the bottom figures, we plot the normalized Gini coefficient for the municipalities in the Paris
urban area versus their average population P in 2013 (left) and their distance from Paris (right). We see that the majority of
municipalities with a large Gini have both low average population and are far from Paris.
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FIG. 4: The relative difference between the normalized
Gini in 2013 and in 2008. The histogram represent the
values of the normalized Gini relative variation (Gα(2013) −
Gα(2008))/Gα(2008) for all municipalities in the Paris urban
area. We notice that for most of the municipalities (3, 592
out of 4, 499, corresponding to 80% of the municipalities) the
Gini variation has been negative. The average value of this
decrease is about −0.77 %

THE SPATIAL ORGANIZATION OF LARGE
DENSITY LOCATIONS

Gini is not enough

As mentioned in the previous section, quantifying het-
erogeneities through measures of statistical dispersions
such as the Gini coefficient, provides interesting measures
that however are not affected by how the grid cells are
distributed in space. In Fig. 6 we show this explicitly in
the case of the city of Paris: Spatial reshuffling of the
population values among the different grid cells covering
the same surface, do not affect the Gini.

At this point, once we have quantified the population
heterogeneity, we have to characterize how it is organized
in space. In the case of low heterogeneity, most grid cells
have roughly the same population and the spatial organi-
zation is largely irrelevant. Space becomes relevant when
we have large population fluctuations, with the appear-
ance of empty cells and very densely populated areas,
that we will also denote in the following ‘hotspots’. How
population is spatially arranged in the city is then largely
determined by the locations of these hotspots, hence in
the following we will focus on these objects.
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FIG. 5: The Gini coefficient and other measures of
statistical dispersion. We plot here the normalized Gini
coefficient versus the relative standard deviation (left) and
the entropy (right), for the 465 municipalities in our dataset
with population larger then 10, 000 inhabitants (in 2013). We
excluded small cities, that are typically covered by a smaller
number of grids in order to reduce the noise in the plots. The
monotonic behaviour shows that cities with large Gini have
also large relative standard deviation and low entropy, mean-
ing that different measures of dispersions contain essentially
the same information.
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FIG. 6: The population distribution in Paris in 2013
and different distributions with exactly the same
Gini. The different population distributions are constructed
by just reshuffling the values of the population, obtained from
the real population density distribution (top left). We can
then construct an ideal monocentric city, an ideal polycentric
city (with two centers) or a completely random city. Even
though the spatial distribution in the four maps are very dif-
ferent, the Gini coefficient (and other measure of statistical
dispersion), is the same for all maps G ' 0.49, since it does
not depend on the spatial distribution of population.

The hotspots

As discussed above, we argue that the spatial arrange-
ment is almost entirely characterized by the locations of
high density areas, the hotspots. These hotspots are de-
fined as the grid cells with a population above a certain
threshold P ∗ and we illustrate this idea in Fig. 7. We
vary the value of the threshold in the case of Paris, and
display only the grid cells with population above it. This
sequence allows us to locate the most important popula-
tion hotspots in the french capital.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 0.2

 0.4

 0.6

 0.8

 1

FIG. 7: The population distribution in Paris in 2013
(top left) and the maps obtained considering different
population thresholds. (top right) The grid cells with more
than 1 inhabitant per cell are highlighted in black, (bottom
left) the grid cells with population larger than the average
population (of Paris) per cell are selected, (bottom right) the
grid cells with population larger then the LouBar population
value (see the main text and [26]).

The choice of the threshold defining the hotspots is
therefore critical and we will use here a non-parametric
method for choosing this threshold, introduced previ-
ously in [26]. In principle, different threshold are pos-
sible, such as for instance the average population P ,
which is the most naive choice, and the LouBar popu-
lation value PLB that we are going to use here. These
threshold can be found using the Lorenz curve, shown
for the population distribution of Paris in Fig. 8. In the
caption of Fig. 8 we give a brief description of how to
select the non-parametric value PLB.

Once we have determined the hotspots located where
the grid cells have a population larger than a threshold
P ∗, we can compute the average distance between all of
them and compare this distance to some measure of the
size of the city. This leads us to define the spreading
index at level P ∗ defined as

ηα(P ∗) =

1
nα(P∗)

∑
i,j d(i, j)Θ(Pi − P ∗)Θ(Pj − P ∗)

1
nα

∑
i,j d(i, j)

,

(6)
where nα(P ∗) is the number of municipalities with pop-
ulation larger then P ∗ and d(i, j) is the distance between
the grid cell i and the grid cell j. The sums both in
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FIG. 8: The Lorenz curve for the population in Paris
in 2013. For any distribution, the Lorenz curve can be con-
structed in the following way. For a set of values of size
n, we order the sequence of values Pi with i = 1 · · ·n in
non-decreasing order. We plot the value of the incomplete

sums Li ≡
(∑i

j=1 Pi
)
/
(∑n

j=1 Pi
)

versus Fi ≡ i/n. Interest-

ingly, the average of the Pi can be obtained by the projection
FP on the x-axis of the tangent of slope 1 and by inverting
F (P ) = FP . The PLB value is found from the intersection of
the x−axis with the tangent of the Lorenz curve at Fi = 1
(red line). For Paris, the average population P is around 847
inhabitants while the value PLB is around 1, 462 inhabitants.
The number of cells with population larger than the average
are 1, 254 over 2, 651, while the number of cells with popula-
tion larger then the Loubar value are 649.

the numerator and the denominator are performed over
all the grid cells covering the surface of municipality α.
While the denominator is the average distance between
all the grid cells, irrespective of their population and gives
a measure of the city size, the numerator is the average
distance between all the grid cells for which the popula-
tion is above a certain threshold, Pi(j) > P ∗. If the large
populated areas (the hotspots), are spread all around the
surface of the municipality, this ratio will be large (close
to 1). On the contrary, if the hotspots are close to each
other, as in the case of a monocentric city, this ratio will
be small.

In Fig. 9, we show the variation of the spreading index
when we vary the threshold P ∗. We plot this curve for
four french cities (left), and also for the reshuffled densi-
ties of Paris shown in Fig. 6. In particular, we observe
that monocentricity is characterized by a monotonic de-
crease of η(P ∗) with P ∗ (for example Lyon, Marseille,
Bordeaux and the monocentric reshuffling of Paris ). In
contrast for non-monocentric cities, the behavior is more
complex with the appearance of plateaux. We notice
that for the value of the threshold P ∗ = P the spreading
index for Paris is approximately equal to the spreading
index for Lyon. This seems in contrast with the observed
differences between the two cities.

In the following we will essentially consider the thresh-
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The vertical lines above 1 corresponds to the LouBar values.
We plot these curves for (left) four french cities and (right) the
reshuffling of Paris population density distributions showed in
Fig. 6. The decreasing behaviour of η(P ∗) as a function of
the threshold P ∗ is a signature of monocentricity. It is visible
in most of large cities, except for Paris.

old values PLB and P for computing the spreading index.
In Fig. 10 we show the maps of the four french cities
presented above, and their hotspots maps for these two
values of the threshold P ∗. In the case P ∗ = P , approxi-
mately half of the grid cells are considered hotspots, and
the differences between population spatial distributions
are not visible. On the contrary, with the LouBar value
the characteristics of the difference cities become visible,
in particular we observe in the case of Paris that large
populated areas display a ring-type pattern around the
geometrical center of the city, while others cities show
clearly a monocentric distribution. It seems therefore
more sensible to use the more restrictive threshold PLB

and for example we see in Fig 9 that if we use η(PLB) to
measures compactness/spraedness of cities, Paris is more
spread than Lyon, which is more spread than Bordeaux,
and more spread than Marseille, confirming the visual
impression given by Fig. 10.
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FIG. 10: Maps and hotspots for different thresholds for four major cities in France. We show here the maps of
Paris, Lyon, Marseille and Bordeaux and the hotspots maps, using the average value (1st column) and the LouBar value (2nd
column) as a population threshold for identifying hotspots. We observe that the more restrictive value PLB allows to identify
more clearly differences between cities.

THE TWO DIMENSIONS OF THE POPULATION
DENSITY

The average behavior

After having defined η(PLB), an index that character-
izes the degree of compactness of highly populated areas,
we can combine its information with the one contained
in the Gini coefficient. In Fig. 11 (left) we plot the two
quantities for the municipalities in our dataset. As dis-
cussed before, if we plot all cities we notice an abundance
of municipalities with large value of Gini. These munici-
palities are typically small, with low average population
density and located far from the center of the municipal-
ities. A more interesting analysis can be conducted by
focusing on cities that are large enough with population
larger than 10, 000 inhabitants. In Fig. 11(right), we ob-
serve for these large cities that on average the spreading
index decreases with the Gini coefficient: cities with large
(small) values of the Gini are city where the spreading

index is rather small (large). This implies that typically
a city with large population heterogeneity will be more
compact. The two quantities do however contain a differ-
ent information, as we can see from the scatter plot: we
observe homogeneous and heterogeneous cities in which
the population distribution is either localized or delocal-
ized.

Clustering: four types of cities

We will use here a hierarchical clustering method [30]
applied to cities and using their location in the (G, η)
plane. Hierarchical clustering proceeds by aggregating
a set of data, starting from an initial configuration, in
which each point is considered as belonging to a different
cluster, and the number of cluster is the same as the
number of points. The algorithm builds the hierarchy by
progressively merging clusters step by step, by putting
together clusters which are the closest. In our case, the
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FIG. 11: The spreading index η(PLB) versus the nor-
malized Gini coefficient. We show here all the municipal-
ities of our dataset in 2013 on the plane (Gα, ηα). In the left
figure we show all the municipalities, while on the right we
show only the municipalities with more than 10, 000 inhab-
itants. When small municipalities are excluded, a negative
correlation between spreading index and Gini coefficient is
revealed, with large fluctuations around this average trend.

standard euclidean metric distance in the space (G, η) is
used to compute distances:

d(α, β) =
[
(Gα −Gβ)2 + (ηα − ηβ)2

]1/2
(7)

When the distance between two clusters needs to be
computed, different choices can be made. We use here
a complete-linkage clustering [31], which define the dis-
tance between two clusters as the maximum distance be-
tween all the possible distance that can be considered be-
tween all the points in the first cluster and all the points
in the second cluster. Complete-linkage clustering is pre-
ferrable because penalizes the merging of large clusters,
and it tends to obtain clusters of approximately equal
sizes [31]. On the contrary, others methods, such as the
single-linkage clustering or the average-linkage clustering,
often ends up with a very unequal cluster size distribu-
tion, with most of the points of the dataset belonging to
a single cluster.

In Fig. 12 we see the result of the clustering algorithm,
and we show here four clusters obtained at an interme-
diate level of the dendrogram. Due to the negative cor-
relation between G and η, the clustering divides cities
along the direction in which lies the scatter cloud. We
observe a first family of homogeneous cities (in blue), in

which population density heterogeneities are negligible.
We also observe (In green) cities in which the population
distribution is very heterogeneous, and typically they are
also very compact (small values of η). In the intermedi-
ate phase, we have the two clusters of cities (in black
and red) which are neither too much homogeneous and
spread, nor too heterogeneous and compact. We see that
at this level the city of Paris belong to the first cluster
(homogeneous and spread), the city of Marseille to the
second cluster (very heterogeneous and compact) and the
cities of Lyon and Bordeaux are in the intermediate clus-
ters.

  

FIG. 12: Clustering cities using the spreading index
η(PLB) and the Gini index We plot here all municipalities
with more than 10, 000 inhabitants, and we apply a hierar-
chical clustering algorithm. At an intermediate level of the
dendrogram shown here, we identify four clusters: (i) in blue,
homogeneous and dispersed cities where the density fluctua-
tions are small, (ii) in green, very heterogeneous cities with
a compact organization of large densities areas. The last two
groups comprise heterogeneous cities with (iii) a monocentric
organization (in black) or (iv) a more delocalized, polycentric
structure (in red).

Furthermore, we see what the clustering algorithm di-
vides the intermediate region in two clusters within the
same range of G, nd approximately along the line de-
scribing the linear relation between G and η. The cluster
in red represents cities that are more spread than the
average (for this level of heterogeneities) and the black
cluster contains cities that are more compact than one
would guess on average from their heterogeneity level.
Lyon and Bordeaux both belong to the latter cluster,
due to their monocentrical structure, see Fig. 9.

In Fig. 13 we show representative cities of each indi-
vidual cluster, which are all in the Paris urban area. As
a representative of the first (blue) cluster, we show in the
top left corner of the figure the 11th district (arrondisse-
ment) of Paris. The population density is very high in
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all grid cells, resulting in a quite homogeneous distribu-
tion. The high populated areas are spread all over the
surface of the municipality, resulting in a high value for
the spreading index. The city of Paris, is another rep-
resentative of this cluster. A representative element of
the second (green) cluster, is shown in the bottom right
of Fig. 13 and is the municipality of Fontainebleau. The
majority of the surface of the municipality is covered by
a forest, and the populated area is extremely concen-
trated in a small part of the municipality. As a result,
the population distribution is extremely heterogeneous
and localized in a small region. The city of Marseille is
another representative of this cluster. For the two inter-
mediate cluster, we have in the top right of Fig. 13 the
city of Saint-Denis, a representative of the red cluster. In
Saint-Denis, the population distribution is quite hetero-
geneous, but is particularly delocalized, having the pop-
ulation hotspots spread around the surface of the munic-
ipality. We can notice how this two features, the hetero-
geneity and the spreadness, result in a population spatial
distribution that deviates significantly from monocentric-
ity. On the contrary, the small municipality of Houilles,
in the bottom left corner of Fig. 13 is a representative of
the black cluster. Here, the population distribution has a
medium Gini coefficient and the population hotspots are
clearly localized in the center of the city. Cities in this
black cluster, which are more compact than one would
expect from their heterogeneity level are typically mono-
centric. The cities of Lyon and Bordeaux are two other
representatives of this black cluster.

DISCUSSION

We provided evidences that the minimal characteriza-
tion of the distribution of local population densities in
cities can be described along two dimensions: the het-
erogeneity of the distribution and the spatial location
of highly populated areas. First, fluctuations of the lo-
cal density can be very important and we should distin-
guish almost homogeneous cities from highly heteroge-
neous ones. This is easily characterized by an indicator
such as the Gini coefficient G, or equivalently by the dis-
persion or the entropy. The second important dimension
is the spatial organization of the population. This is es-
sentially relevant for high heterogenous density distribu-
tion, and we propose a dispersion index η that character-
izes the degree of localization of highly populated areas,
the hotspots. We used a non-parametric, distribution
dependent method to identify the population hotspots.
As far as population density is concerned, we argue that
these two dimensions are enough to characterize the orga-
nization of a city and allows to represent different types
of cities. We discuss the relevance of this approach on
approximately 4, 500 municipalities belonging the the 10
largest urban areas in France, for which we have high
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FIG. 13: Representative cities for each of the four clus-
ters. We show here four cities, all belonging to the urban area
of Paris, and which represent the characteristics of the four
clusters. (top left) The 11th arrondisment of Paris, a repre-
sentative of the blue cluster, of cities homogeneous and spread
(or delocalized). (top right) The city of Saint-Denis, a rep-
resentative of cities heterogeneous and spread (red cluster),
and which are typically polycentric. (bottom left) The city
of Houilles, a representative of the black cluster which con-
tains heterogeneous and compact cities, typically monocentric
cities. (bottom right) The city of Fontainebleau, a represen-
tative of the green cluster which contains very heterogenous
and compact cities (typically monocentric cities too).

resolution data. Representing these cities in the plane
(G, η) allows us to construct families of cities. Focusing
on cities with population larger than 10, 000 inhabitants,
we find that the more heterogeneous cities are and the
more compact they appear. Secondly, we find that we can
classify cities in four large categories: (i) first, homoge-
neous and dispersed cities where the density fluctuations
are small, (ii) very heterogeneous cities with a compact
organization of large densities areas. The last two groups
comprise heterogeneous cities with (iii) a monocentric or-
ganization or (iv) a more delocalized, polycentric struc-
ture. We believe that integrating these two parameters
in econometric analysis could improve our understanding
of the impact of urban form on various socio-economical
aspects.
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