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Background
 The era of Big data 

 Many IoT equipment are built in our daily life and gathers various 
data

 Smart meters
 Automatically gathers power consumption data in every fixed time interval
 The conventional power meters are changed into smart meters[1]

 The secondary use of the Big data is gaining attention
 Power consumption data

 Demand response service[2]
 Gives out message to power users 

to save energy and cut the peak of the 
power consumption



Objective
 Issues in the secondary use of Big data

 Privacy issue
 Private information is invaded
 Power consumption data

 Violates one’s lifestyle[3]

 Anonymization gaining attention for this issue

 Energy issues for computing the data
 Many services are invented due to the growth of the data

 More service will enlarge the energy of the server[4]

 Transprecision computing is gaining attention for solving the issue
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A demand for a new method, which preserves the 
privacy and lowers power consumption



Related works(1/2)
 k-anonymity

 One privacy standard for anonymization
 At least k number of tuples observed inside a q-block.

 Identifier
 An attribute, which can 

detect a person individually
 Deleted 

 Quasi-identifier
 An attribute, which can 

detect a person by combining it 
with other attributes

 Anonymized 
 Sensitive attribute

 An attribute necessary for 
the analysist

 Preserved
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Name Gender Age Disease

Mike Male 25 Aids

Matthew Male 28 Cancer

Andy Male 29 Cancer

Name Gender Age Disease

Mike Male 2* Aids

Matthew Male 2* Cancer

Andy Male 2* Cancer

𝑘=3

Identifier Quasi-identifier Sensitive



Related works(2/2)
 Transprecision computing

 One method of approximate computing
 Precision variable computation

 Enables to compute in the chosen precision

 Open transprecision computing project (Oprecomp)
 A project in the EU, which focus on the transprecision

 CEA, IBM Zurich

 By lowering the precision of the computing, the energy 
consumption of the computation will  be reduced

 8~20% electricity reduction

 Applications are simulated 
by using transprecision

 k-nn, Mandelbrot-set
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Connection
 Issues in the research fields

 Anonymization
 No consideration of energy in the computation

 Transprecision computing
 No consideration about privacy

 Connection
 Transprecision computing

 Accepts the computation error to reduce energy for computation

 Anonymization
 Accepts the error to preserve privacy
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A new privacy preserving method that fits the 
feature of  the transprecision computing should 
be made



Proposed method
 Precision variable anonymization method supporting　

transprecision computing
 The method has the parameters for level of anonymization and 

level of precision
 Gives a trade-off between information loss and computational cost

 Steps
 Use k-member clustering to group the data
 Anonymize the exponent bit
 Reduce the mantissa bit to chosen precision and anonymize the 

mantissa bit
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K-member clustering
 K-member clustering

 Clusters the data to maintain at least k data values in each cluster

 Steps
1. Choose the point furthest from a randomly chosen point.

2. Gather k data values nearest from the point chosen in Step 1.

3. Choose the furthest point from the center of the cluster and 
repeat Step 2.

4. Execute Step 3 repeatedly until there are less than k – 1 non-
clustered points.

5. Add each left data value to the nearest cluster
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Anonymize the exponent bit
 Exponent bits

 Change the exponent bit into the most appeared exponent in the 
cluster

 If the exponent is larger than before change the mantissa to 0 and 
if smaller than before change the mantissa to 1
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value sign exponent mantissa cluster

18.12 0 10000011 001…11000010 1

17.56 0 10000011 000…11100001 1

15.17 0 10000010 111…01010001 1

value sign exponent mantissa cluster

18.12 0 10000011 001…11000010 1

17.56 0 10000011 000…11100001 1

16 0 10000011 000…00000000 1



Reduce and anonymize 
mantissa bit

 Mantissa bits
 Change least number of bits into 0 chosen according to the 

precision
 Change the mantissa bit into the most appeared bit in the cluster
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value sign exponent mantissa cluster

18.12 0 10000011 001…11000010 1

17.56 0 10000011 000…11100001 1

16 0 10000011 000…00000000 1

value sign exponent mantissa cluster

17.227 0 10000011 000…11000000 1

17.227 0 10000011 000…11000000 1

17.227 0 10000011 000…11000000 1



Evaluation(1/3)
 The relationship between precision and MAPE

 Proposed method gave less precision with higher MAPE
 Less precision means less power consumption

 Precision can be chosen by the anonymized data application
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Evaluation(2/3)
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 The relationship between k and MAPE
 The MAPE of anonymization data only rises 0.14% compared to 

the conventional when the precision is 16bit
 The larger the anonymity level is the error by precision lowers



Evaluation(3/3)
 Evaluation of demand and response service and power 

consumption

 Demand and response service
 The service curtails top 15% power users to 85% of the maximum 

power consumption

 Energy consumption simulation of the computation
 Number of floating operation multiplied by the size of mantissa

 The number of operations means the cycles of instruction
 The size of mantissa = the length of the critical path
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Evaluation(3/3)
 The relationship between the error of service and the 

simulated energy consumption
 Energy consumption of the computation can be reduced to 15% 

when k = 2 and 18% when k = 3,4
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Simulated energy consumption of the 
computation



Conclusion
 Showed a connection between anonymization and 

transprecision computing
 Made an anonymization method, which has parameter of k 

and precision
 Gave a trade-off between information loss and computational cost 

by deleting the mantissa bits 

 Float32 anonymized data could be changed to float16 data 
with only 0.14% error increase

 Using this anonymization method the power consumption 
of the service can be reduced to 16% in average. 
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Thank you for your attention
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