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Abstract—Anomaly-based Intrusion Detection Systems (IDSs) 
are rarely deployed in real networks, because of their high false 
positive rate. Their ability to detect unknown attacks is, however, 
very valuable in a context where new threats are emerging 
almost daily. This paper presents an unsupervised anomaly- 
based intrusion detection solution focused on protocol headers 
analysis. This approach is tested on a recent and realistic dataset 
(CICIDS2017) over a 4-day period. Each protocol is converted 
to a set of normalized numeric features, which are processed by 
5 neural network architectures: deep autoencoders, deep MLPs, 
LSTMs, BiLSTMs, and GANs. The output of these algorithms 
is an anomaly score, which is normalized and combined with 
the anomaly scores of other protocols. We argue that this 
classification problem is very different from the actual problem 
of intrusion detection and requires new metrics. In particular, 
packet anomaly scores must be refined in a post-processing step 
to aggregate anomalies into continuous attacks. This approach 
successfully detects 7 out of 11 attacks not seen during the 
training phase, without any false positives. It is thus possible 
to consider deployments in real-world networks of such IDSs, 
capable of reliably detecting zero-day attacks. 

Index Terms—intrusion detection, unsupervised learning, CI- 
CIDS2017, neural networks 

 

I. INTRODUCTION 

In recent years, hacking has become an industry unto itself, 

increasing the number and diversity of cyber attacks. Threats 

on computer networks range from malware to denial of service 

attacks, phishing and social engineering. An effective cyber 

security plan can no longer rely solely on antiviruses and 

firewalls to counter these threats: it must include several layers 

of defence. Network-based Intrusion Detection Systems (IDSs) 

are a complementary means of enhancing security, with the 

ability to monitor packets from OSI layer 2 (Data link) to 

layer 7 (Application). 

Traditional intrusion detection techniques compare the mon- 

itored traffic to a database of known attack signatures to 

determine whether an intrusion is under way (e.g., Snort 

[1], Suricata [2]). This method effectively detects attacks that 

match signatures in the database, with high accuracy and low 

computational overhead. However, these systems can only 

detect known attacks. This is why anomaly-based IDSs are 

valuable. They create a model of the normal behavior of 
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the network and detect any variation from this model as an 

anomaly. This approach can thus detect unknown attacks, but 

often generates an overwhelming number of false positives 

(i.e., flows or packets marked as attacks though they are 

benign). 

Anomaly detection is most often based on machine learning 

algorithms with supervised learning. This is a problem as 

anomaly detection specifically learns the behavior of a given 

network: it is therefore not directly transferable to another 

computer network. The IDS must be re-trained on the network 

where it is deployed with a dataset containing labelled attack 

data. Unfortunately, it is difficult in practice to set up such 

a dataset, which requires a dedicated traffic generator [3]. 

Furthermore, such an IDS is mainly trained to detect attacks 

that are already known, which limits its value compared to a 

signature-based IDS. 

On the other hand, unsupervised learning does not require 

any attacks in its training data. It is therefore much easier 

to deploy in reality and not biased by a selection of known 

attacks [4]. 

In this paper, we test 5 different architectures of neural 

networks trained in a unsupervised way on protocol headers. 

The best models are then combined to obtain the most accurate 

detection possible. Finally, a post-processing step refines the 

results and eliminates most false alarms. We argue that the 

metrics usually used to evaluate the quality of an IDS (TPR, 

FPR, F1-score...) are not appropriate to effectively measure 

its performance in a real situation. A new metric is proposed, 

focusing on the detection speed of attacks, and not on a correct 

classification rate. This metric is defined as the time between 

the beginning of the attack and its actual detection. 

Network intrusion detection has been extensively studied 

in the past decades. Clustering is one of the most popular 

unsupervised method to find anomalies in a dataset. Leung 

and Leckie [5] show an application of this technique with a 

clustering algorithm on KDD Cup 99, specifically designed 

for intrusion detection. 

More recently, autoencoders and deep autoencoders have 

been used for their ability to reconstruct their input. How- 

ever, like other methods, they are prone to generate many 

false positives. Kotani and Sekiya [6] developed a flow-based 

method with robust autoencoders to reduce the false positive 

rate on a real-world traffic dataset. Mirza and Cosan [7] 
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tested different RNN units for autoencoders to find the best 

architecture for packet payload reconstruction. This technique 

is complementary to ours since we do not analyze protocol 

payload data in this study. 

The remainder of the paper is organized as follows. Section 

2 introduces the CICIDS2017 dataset and the preprocessing 

stage. Section 3 describes 5 neural network architectures for 

unsupervised learning and a protocol-based ensemble learning 

process. Section 4 discusses the problem of machine learning 

metrics in intrusion detection. Section 5 presents our exper- 

imental results. Finally, section 6 concludes this paper and 

draws the avenues of future work. 

II. DATASET 

This work requires data that is representative of a real net- 

work, including both malicious and normal traffic. This dataset 

needs to be labelled in order to measure the performance of 

the IDS. We chose the CICIDS2017 dataset for its realistic 

network and credible attacks [8]. 

A. CICIDS2017 

CICIDS2017 is a dataset designed for Intrusion Detection 

Systems (IDSs) and Intrusion Prevention Systems (IPSs) by 

the Canadian Institute for Cybersecurity. The goal of the au- 

thors is to propose a reliable, publicly available IDS evaluation 

dataset on a realistic network, with a diverse set of modern 

attack scenarios. It was designed to solve the problem of lack 

of a up-to-date and credible dataset for intrusion detection. 

CICIDS2017 provides 5 days of traffic, from Monday, July 

3, 2017 to Friday July 7, 2017. The first day contains only 

normal traffic, while the 4 next days include normal traffic 

and 14 types of attacks: brute-force (FTP-Patator and SSH- 

Patator), Denial of Service (slowloris, SlowHTTPTest, Hulk, 

GoldenEye), Heartbleed, web attacks (brute-force, SQL injec- 

tion, XSS), infiltration, botnet, Distributed Denial of Service 

(ARES), and port scanning. 

CICIDS2017 consists of 3 119 345 labeled network flows 

(83 features) and 56 329 679 network packets. This dataset 

is also highly imbalanced, with 83.34% normal flows against 

0.00039% flows labelled as ”Heartbleed” [9]. In a supervised 

learning task, data augmentation would be a good solution 

to rebalance the 15 classes of CICIDS2017. However, in our 

unsupervised learning task, data augmentation cannot be used: 

Heartbleed attacks will simply be more difficult to detect 

compared to more prevalent classes. 

To the best of our knowledge, we found an undocumented 

shortcoming of CICIDS2017. The attacker’s private IP address 

(172.16.0.1) remains the same for most attacks (Tuesday, 

Wednesday, Thursday morning and Friday afternoon), contrary 

to the authors’ indications. Furthermore, this IP address is used 

almost exclusively for intrusions, which makes it very easy 

to detect. We could not identify other attacking IP addresses 

from the network packets. We ensured that the neural networks 

used in this study did not simply learn to detect the IP 

address 172.16.0.1. However, this feature was considered too 

important to be simply removed from the dataset. 

B. Preprocessing 

Network traffic analysis is mainly divided into flow and 

packet analysis. RFC 6437 defines a flow as ”a sequence of 

packets sent from a particular source to a particular unicast, 

anycast, or multicast destination that a node desires to label 

as a flow” [10]. The transition from packets to flows leads to 

a loss of the information contained in the packets. The lost 

information is not necessarily useful for intrusion detection, 

and this compression speeds up processing compared to packet 

analysis. 

However, network protocols are a form of artificial lan- 

guage, while flows are only an aggregation of them. Recent 

work in Natural Language Processing (NLP) has shown ex- 

cellent results in language modeling with machine learning 

algorithms [11]. Although network protocols have many differ- 

ences with natural languages, their low variance makes them 

easier to predict than flows. For these reasons, we chose to 

train machine learning algorithms to model the behavior of 

protocol headers. 
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Fig. 1. IPv4 Header Feature Extraction. 

 

In this work, we focus on the 8 protocols most represented 

in CICIDS2017: Frame, Ethernet, ARP, IP, TCP, UDP, DNS, 

and HTTP. First, these protocols headers need to be extracted 

from the packets contained in the dataset. Then, a set of 

features is selected from the variables contained in these head- 

ers. Fig. 1 shows the example of feature extraction for IPv4. 

Categorical features are converted into numerical features by 

one-hot encoding or label encoding. All these features are then 

normalized between 0 and 1 (min-max scaler). 

Finally, each packet must be labelled as an attack or a 

benign packet. Note that only flows are labelled by the 

authors of CICIDS2017. Fortunately, they detailed their la- 

belling process in the original paper [8] with IP addresses and 

timestamps. Although these details are probably not exhaustive 

enough to properly label each packet during an intrusion, they 
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are sufficient to detect continous attacks. This preprocessing 

framework creates 8 datasets for each day that are stored in 

SQL databases. 

This process has been applied on Monday (11 701 690 pack- 

ets – 11GB), Tuesday (11 543 109 packets – 11GB), Wednes- 

day (13 781 563 packets – 13GB), and Thursday (9 314 199 

packets – 7.8GB). Friday (9 989 118 packets – 8.3GB) has 

been excluded to reduce computing time and because of the 

difficulty of labelling numerous very short attacks. 

III. ANOMALY DETECTION PROCESS 

A. Neural network architectures 

The objective of the neural networks is to learn the behavior 

of each protocol header. Different neural network architectures 

can be used to solve this problem. In this paper, 5 archi- 

tectures are studied: deep autoencoders, deep MLPs, LSTMs, 

Bidirectional LSTMs (BiLSTMs), and Generative Adversarial 

Networks (GANs). Each architecture and its specific use is 

briefly described in the following. 

Autoencoder is a feedforward neural network with a bottle- 

neck to force the network to learn a compressed representation 

of the original input. In this paper, we use a wide topology with 

a len(input)-256-128-64-32-64-128-256-len(input) structure 

and ReLU as the activation function. Autoencoders learn to 

minimize the distance between the output x and the input 

real (i.e., from the training set) or fake (i.e., generated). In this 

paper, GANs are trained on Monday with benign traffic. Only 

discriminators are then used as classifiers for the next days. 

This approach assumes that an attack will not be recognized 

by the discriminator as part of the training set. 

B. Ensemble learning 

Fig. 2 illustrates the ensemble learning process that is 

used to infer a packet anomaly from the analysis of multiple 

protocols. First, features are extracted from protocol headers as 

described in the previous section. These features are analyzed 

by each of the 5 neural network architectures to output an 

anomaly score. Finally, these anomaly scores are averaged to 

obtain an anomaly score for the entire packet. 
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MLP is another feedforward neural network, with a 

len(input)-512-256-128-64-len(input) structure and ReLU 

as the activation function. This MLP receives the 50 previous 

protocol headers as input and tries to predict the next protocol 

header. This input window provides context to the network 

compared to the previous approach. The distances between 

each prediction and the actual next protocol header are used 

to evaluate performance during training, and as an anomaly 

score during test. 

LSTM is a recurrent neural network that can learn long- 

term dependencies. Its input is similar to the previous archi- 

tecture, with a window of 40 protocol headers. Its purpose is 

not to rebuild part of the input, but to predict the next protocol 

header. On the other hand, BiLSTMs run input data once 

from beginning to the end, and once from end to beginning to 

understand context better. Their input is comprised of the 20 

previous protocol headers and the 20 next protocol headers. 

BiLSTMs try to predict the protocol header in the middle of 

this input window. Both architectures have len(input) input 

units, 400 LSTM or BiLSTM units, 2 × len(input) ReLU 

units, and len(input) sigmoid units. 

GAN is a deep neural network architecture composed of two 

networks: a generator (1000-128-256-512-len(input) with 

LeakyReLU and dropout) and a discriminator (len(input)- 
256-128-64-1 with LeakyReLU and dropout). The first net 

generates new data, while the other classifies each example as 

Fig. 2. Protocol-based Ensemble Learning. 

 

The purpose of protocol-based ensemble learning is to 

detect attacks related to one protocol (i.e., producing a very 

high anomaly), and to increase confidence in the predictions 

when attacks are detected on multiple protocols. Moreover, it 

also allows to dynamically add or remove protocols according 

to the monitored network. 

IV. THE PROBLEM WITH METRICS 

Anomaly-based intrusion detection usually relies on ma- 

chine learning. Different metrics are used to measure the per- 

formance of these machine learning algorithms: True Positive 

Rate (TPR), False Positive Rate (FPR), F1-score, the Area 

Under the Receiver Operating Characteristics (AUROC), etc. 

[12] The very choice of these metrics is problematic, as none 

of them can perfectly represent the quality of the algorithm’s 

detection alone. For instance, F1-score completely ignores true 

negatives. However, the main problem is that these metrics do 

not reflect the problem that the algorithm is trying to solve. 

Correctly classifying flows or packets and detecting attacks 

are two distinct problems. Nevertheless, the metrics inherited 

from machine learning are only relevant to the first one. 

Indeed, intrusions are most often composed of several flows 

or packets [13]. However, detecting all the flows or packets of 

an unknown attacks is unrealistic without producing a lot of 
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Fig. 3. Autoencoders Predictions of Attacks on Tuesday. 

 

 

false positives. Fortunately, anomaly scores can be correlated 

to better estimate the probability of a given sequence being 

an attack. Therefore, detecting a small portion of the flows 

or packets of an attack is enough to deduce that an intrusion 

Fig. 4. BiLSTMs Predictions of Attacks on Wednesday. 

 

input : Network packet 

output: Packet anomaly (number between 0 and 1) 

1 extract protocol headers from network packet; 
2 foreach protocol header do 

is ongoing. This is why metrics in intrusion detection should 3 

measure the performance of the attack classification. 4 

From the perspective of network administrators, we identi- 

fied 3 expected outputs: 5 

1) Correct alerts. An IDS must be able to detect attacks 
6
 

with a low false positive rate. TPR, FPR, F1-score, 

AUROC, etc. are relevant metrics to measure the per- 
7
 

formance of attack classification. 
8
 

2) Low-latency alerts. Intrusion detection is often fol- 
9
 

lowed by an intrusion reaction stage. This reaction can 
10

 

select list of features; 
convert categorical features into numerical 

features; 

normalize features between 0 and 1; 

if protocol header has a trained neural network 

then 

predict anomaly score; 

else 

train neural network; 

end 

be manual or automatic with an IPS. Reactions are all 

the more effective if the attack is detected early enough. 

This is why we propose a new metric: the time between 

the beginning of the attack and its detection (called Time 

Before Detection in the rest of this paper) 

3) Information gathering. Collecting as much information 

as possible about the attack is also a very important 

feature for an IDS. This information can then be used 

to stop or to block the ongoing attack. However, this 

study does not cover intrusion reaction, so we will not 

collect information on detected attacks to illustrate this 

point. 

V. EXPERIMENTS 

The proposed framework was implemented on two GTX 

1080 Ti GPUs and an Intel i5-7500 CPU with 64GB 

of RAM. 8 models of each neural network architecture 

were trained on Monday’s traffic on each protocol: Frame 

(11 701 690 instances), Ethernet (11 701 690 instances), ARP 

(46 971 instances), IP (11 618 823 instances), TCP (10 710 204 

instances), UDP (934 997 instances), DNS (788 288 instances), 

and HTTP (107 681 instances). 

Training time on the frame protocol depends on the archi- 

tecture, but takes on average between 9 and 15 hours (with 

11 end 

12 average anomaly scores; 

Algorithm 1: Packet Anomaly Prediction 

 

 

early stopping and cyclical learning rate). Autoencoders are 

the fastest architecture to train with 10 minutes 13 seconds 

per epoch on the frame protocol. BiLSTMs are the slowest 

architecture to train with 16 minutes 53 seconds per epoch on 

the same protocol. 

Models are tested on Tuesday, Wednesday, and Thursday. 

Attacks can be deduced from packet anomalies, but these final 

scores are very noisy. A moving average with a window of 

10 000 packets is applied to erase isolated anomalies and to 

aggregate groups of anomalies into continuous attacks. Since 

this detection framework is intended for real world application, 

the moving average is only applied on past packets. Anomalies 

are normalized between 0 and 1, and a threshold of 0.8 is 

chosen to categorize attack packets. 

Results show that GANs produce too many false positives 

to be used. Autoencoder is the only architecture capable of 

detecting the FTP-Patator attack on Tuesday morning (see 

Fig. 3). BiLSTM outperforms other architectures for detecting 

Wednesday and Thursday attacks (see Fig. 4 and Fig. 5). These 
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Fig. 5. BiLSTMs Predictions of Attacks on Thursday. 

selection and a reduced input window for BiLSTMs could help 

speed up the training. 

Attack recognition is also an important information for 

intrusion reaction. Indeed, for example, mitigation methods 

for DDoS attacks and targeted infiltrations are very different 

[14]. A multi-class classifier could analyze protocol anomalies 

to identify patterns specific to certain attacks. This classifier 

would be independent of the network and could be reused in 

all implementations. 
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