
HAL Id: cea-02555669
https://cea.hal.science/cea-02555669

Submitted on 3 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Unsupervised protocol-based intrusion detection for
real-world networks

Maxime Labonne, Alexis Olivereau, Baptiste Polve, Djamal Zeghlache

To cite this version:
Maxime Labonne, Alexis Olivereau, Baptiste Polve, Djamal Zeghlache. Unsupervised protocol-
based intrusion detection for real-world networks. ICNC 2020: International Conference on
Computing, Networking and Communications, Feb 2020, Big Island, United States. pp.299-303,
�10.1109/ICNC47757.2020.9049796�. �cea-02555669�

https://cea.hal.science/cea-02555669
https://hal.archives-ouvertes.fr

 2020 IEEE. This is the author’s accepted version of the article that has been published in the proceedings of the 2020 International Conference on Computing, Networking and Communications
(ICNC), Big Island, HI, USA, 2020. The final version of this article is available at https://ieeexplore.ieee.org/document/9049796 (M. Labonne, A. Olivereau, B. Polvé and D. Zeghlache,
"Unsupervised Protocol-based Intrusion Detection for Real-world Networks", 2020 International Conference on Computing, Networking and Communications (ICNC), Big Island, HI, USA, 2020,
pp. 299-303, doi: 10.1109/ICNC47757.2020.9049796.). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component
of this work in other works.

Unsupervised Protocol-based Intrusion Detection

for Real-world Networks

Maxime Labonne
Institut LIST, CEA

F-91120, Palaiseau, France

maxime.labonne@cea.fr

Alexis Olivereau
Institut LIST, CEA

F-91120, Palaiseau, France

alexis.olivereau@cea.fr

Baptise Polve´
Institut LIST, CEA

F-91120, Palaiseau, France

baptiste.polve@cea.fr

Djamal Zeghlache

Institut Te´le´com

Te´le´com SudParis

E ́vry, France

djamal.zeghlache@it-sudparis.eu

Abstract—Anomaly-based Intrusion Detection Systems (IDSs)
are rarely deployed in real networks, because of their high false
positive rate. Their ability to detect unknown attacks is, however,
very valuable in a context where new threats are emerging
almost daily. This paper presents an unsupervised anomaly-
based intrusion detection solution focused on protocol headers
analysis. This approach is tested on a recent and realistic dataset
(CICIDS2017) over a 4-day period. Each protocol is converted
to a set of normalized numeric features, which are processed by
5 neural network architectures: deep autoencoders, deep MLPs,
LSTMs, BiLSTMs, and GANs. The output of these algorithms
is an anomaly score, which is normalized and combined with
the anomaly scores of other protocols. We argue that this
classification problem is very different from the actual problem
of intrusion detection and requires new metrics. In particular,
packet anomaly scores must be refined in a post-processing step
to aggregate anomalies into continuous attacks. This approach
successfully detects 7 out of 11 attacks not seen during the
training phase, without any false positives. It is thus possible
to consider deployments in real-world networks of such IDSs,
capable of reliably detecting zero-day attacks.

Index Terms—intrusion detection, unsupervised learning, CI-
CIDS2017, neural networks

I. INTRODUCTION

In recent years, hacking has become an industry unto itself,

increasing the number and diversity of cyber attacks. Threats

on computer networks range from malware to denial of service

attacks, phishing and social engineering. An effective cyber

security plan can no longer rely solely on antiviruses and

firewalls to counter these threats: it must include several layers

of defence. Network-based Intrusion Detection Systems (IDSs)

are a complementary means of enhancing security, with the

ability to monitor packets from OSI layer 2 (Data link) to

layer 7 (Application).

Traditional intrusion detection techniques compare the mon-

itored traffic to a database of known attack signatures to

determine whether an intrusion is under way (e.g., Snort

[1], Suricata [2]). This method effectively detects attacks that

match signatures in the database, with high accuracy and low

computational overhead. However, these systems can only

detect known attacks. This is why anomaly-based IDSs are

valuable. They create a model of the normal behavior of

This work was supported by the SCENE project (http://scene-project.eu/),
which has received funding from the European Union's Horizon 2020 research
and innovation program under grant agreement number 831138.

the network and detect any variation from this model as an

anomaly. This approach can thus detect unknown attacks, but

often generates an overwhelming number of false positives

(i.e., flows or packets marked as attacks though they are

benign).

Anomaly detection is most often based on machine learning

algorithms with supervised learning. This is a problem as

anomaly detection specifically learns the behavior of a given

network: it is therefore not directly transferable to another

computer network. The IDS must be re-trained on the network

where it is deployed with a dataset containing labelled attack

data. Unfortunately, it is difficult in practice to set up such

a dataset, which requires a dedicated traffic generator [3].

Furthermore, such an IDS is mainly trained to detect attacks

that are already known, which limits its value compared to a

signature-based IDS.

On the other hand, unsupervised learning does not require

any attacks in its training data. It is therefore much easier

to deploy in reality and not biased by a selection of known

attacks [4].

In this paper, we test 5 different architectures of neural

networks trained in a unsupervised way on protocol headers.

The best models are then combined to obtain the most accurate

detection possible. Finally, a post-processing step refines the

results and eliminates most false alarms. We argue that the

metrics usually used to evaluate the quality of an IDS (TPR,

FPR, F1-score...) are not appropriate to effectively measure

its performance in a real situation. A new metric is proposed,

focusing on the detection speed of attacks, and not on a correct

classification rate. This metric is defined as the time between

the beginning of the attack and its actual detection.

Network intrusion detection has been extensively studied

in the past decades. Clustering is one of the most popular

unsupervised method to find anomalies in a dataset. Leung

and Leckie [5] show an application of this technique with a

clustering algorithm on KDD Cup 99, specifically designed

for intrusion detection.

More recently, autoencoders and deep autoencoders have

been used for their ability to reconstruct their input. How-

ever, like other methods, they are prone to generate many

false positives. Kotani and Sekiya [6] developed a flow-based

method with robust autoencoders to reduce the false positive

rate on a real-world traffic dataset. Mirza and Cosan [7]

mailto:maxime.labonne@cea.fr
mailto:alexis.olivereau@cea.fr
mailto:baptiste.polve@cea.fr
mailto:djamal.zeghlache@it-sudparis.eu
http://scene-project.eu/)

tested different RNN units for autoencoders to find the best

architecture for packet payload reconstruction. This technique

is complementary to ours since we do not analyze protocol

payload data in this study.

The remainder of the paper is organized as follows. Section

2 introduces the CICIDS2017 dataset and the preprocessing

stage. Section 3 describes 5 neural network architectures for

unsupervised learning and a protocol-based ensemble learning

process. Section 4 discusses the problem of machine learning

metrics in intrusion detection. Section 5 presents our exper-

imental results. Finally, section 6 concludes this paper and

draws the avenues of future work.

II. DATASET

This work requires data that is representative of a real net-

work, including both malicious and normal traffic. This dataset

needs to be labelled in order to measure the performance of

the IDS. We chose the CICIDS2017 dataset for its realistic

network and credible attacks [8].

A. CICIDS2017

CICIDS2017 is a dataset designed for Intrusion Detection

Systems (IDSs) and Intrusion Prevention Systems (IPSs) by

the Canadian Institute for Cybersecurity. The goal of the au-

thors is to propose a reliable, publicly available IDS evaluation

dataset on a realistic network, with a diverse set of modern

attack scenarios. It was designed to solve the problem of lack

of a up-to-date and credible dataset for intrusion detection.

CICIDS2017 provides 5 days of traffic, from Monday, July

3, 2017 to Friday July 7, 2017. The first day contains only

normal traffic, while the 4 next days include normal traffic

and 14 types of attacks: brute-force (FTP-Patator and SSH-

Patator), Denial of Service (slowloris, SlowHTTPTest, Hulk,

GoldenEye), Heartbleed, web attacks (brute-force, SQL injec-

tion, XSS), infiltration, botnet, Distributed Denial of Service

(ARES), and port scanning.

CICIDS2017 consists of 3 119 345 labeled network flows

(83 features) and 56 329 679 network packets. This dataset

is also highly imbalanced, with 83.34% normal flows against

0.00039% flows labelled as ”Heartbleed” [9]. In a supervised

learning task, data augmentation would be a good solution

to rebalance the 15 classes of CICIDS2017. However, in our

unsupervised learning task, data augmentation cannot be used:

Heartbleed attacks will simply be more difficult to detect

compared to more prevalent classes.

To the best of our knowledge, we found an undocumented

shortcoming of CICIDS2017. The attacker’s private IP address

(172.16.0.1) remains the same for most attacks (Tuesday,

Wednesday, Thursday morning and Friday afternoon), contrary

to the authors’ indications. Furthermore, this IP address is used

almost exclusively for intrusions, which makes it very easy

to detect. We could not identify other attacking IP addresses

from the network packets. We ensured that the neural networks

used in this study did not simply learn to detect the IP

address 172.16.0.1. However, this feature was considered too

important to be simply removed from the dataset.

B. Preprocessing

Network traffic analysis is mainly divided into flow and

packet analysis. RFC 6437 defines a flow as ”a sequence of

packets sent from a particular source to a particular unicast,

anycast, or multicast destination that a node desires to label

as a flow” [10]. The transition from packets to flows leads to

a loss of the information contained in the packets. The lost

information is not necessarily useful for intrusion detection,

and this compression speeds up processing compared to packet

analysis.

However, network protocols are a form of artificial lan-

guage, while flows are only an aggregation of them. Recent

work in Natural Language Processing (NLP) has shown ex-

cellent results in language modeling with machine learning

algorithms [11]. Although network protocols have many differ-

ences with natural languages, their low variance makes them

easier to predict than flows. For these reasons, we chose to

train machine learning algorithms to model the behavior of

protocol headers.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

V IHL DSCP E Length

Identification Flags Fragment Offset

Time To Live Protocol Header Checksum

Source IP Address

Destination IP Address

Options (up to 320 bits)

¨
•

IPsource1 IPsource2 IPsource3 IPsource4

IPdest1 IPdest2 IPdest3 IPdest4

Length Protocol Time To Live FlagReserved

FlagDF FlagMF

Fig. 1. IPv4 Header Feature Extraction.

In this work, we focus on the 8 protocols most represented

in CICIDS2017: Frame, Ethernet, ARP, IP, TCP, UDP, DNS,

and HTTP. First, these protocols headers need to be extracted

from the packets contained in the dataset. Then, a set of

features is selected from the variables contained in these head-

ers. Fig. 1 shows the example of feature extraction for IPv4.

Categorical features are converted into numerical features by

one-hot encoding or label encoding. All these features are then

normalized between 0 and 1 (min-max scaler).

Finally, each packet must be labelled as an attack or a

benign packet. Note that only flows are labelled by the

authors of CICIDS2017. Fortunately, they detailed their la-

belling process in the original paper [8] with IP addresses and

timestamps. Although these details are probably not exhaustive

enough to properly label each packet during an intrusion, they

Protocol n

Model n

Network Packet

Model 1

Protocol 1

are sufficient to detect continous attacks. This preprocessing

framework creates 8 datasets for each day that are stored in

SQL databases.

This process has been applied on Monday (11 701 690 pack-

ets – 11GB), Tuesday (11 543 109 packets – 11GB), Wednes-

day (13 781 563 packets – 13GB), and Thursday (9 314 199

packets – 7.8GB). Friday (9 989 118 packets – 8.3GB) has

been excluded to reduce computing time and because of the

difficulty of labelling numerous very short attacks.

III. ANOMALY DETECTION PROCESS

A. Neural network architectures

The objective of the neural networks is to learn the behavior

of each protocol header. Different neural network architectures

can be used to solve this problem. In this paper, 5 archi-

tectures are studied: deep autoencoders, deep MLPs, LSTMs,

Bidirectional LSTMs (BiLSTMs), and Generative Adversarial

Networks (GANs). Each architecture and its specific use is

briefly described in the following.

Autoencoder is a feedforward neural network with a bottle-

neck to force the network to learn a compressed representation

of the original input. In this paper, we use a wide topology with

a len(input)-256-128-64-32-64-128-256-len(input) structure

and ReLU as the activation function. Autoencoders learn to

minimize the distance between the output x and the input

real (i.e., from the training set) or fake (i.e., generated). In this

paper, GANs are trained on Monday with benign traffic. Only

discriminators are then used as classifiers for the next days.

This approach assumes that an attack will not be recognized

by the discriminator as part of the training set.

B. Ensemble learning

Fig. 2 illustrates the ensemble learning process that is

used to infer a packet anomaly from the analysis of multiple

protocols. First, features are extracted from protocol headers as

described in the previous section. These features are analyzed

by each of the 5 neural network architectures to output an

anomaly score. Finally, these anomaly scores are averaged to

obtain an anomaly score for the entire packet.

...

...

x. The Mean Squared Error (MSE) is employed to evaluate

performance during training, and as an anomaly score during

test. This approach assumes that an attack will be more

difficult to reconstruct for the network than a normal protocol

header.

Anomaly

Protocol 1

...

Packet

anomaly

Anomaly

Protocol n

MLP is another feedforward neural network, with a

len(input)-512-256-128-64-len(input) structure and ReLU

as the activation function. This MLP receives the 50 previous

protocol headers as input and tries to predict the next protocol

header. This input window provides context to the network

compared to the previous approach. The distances between

each prediction and the actual next protocol header are used

to evaluate performance during training, and as an anomaly

score during test.

LSTM is a recurrent neural network that can learn long-

term dependencies. Its input is similar to the previous archi-

tecture, with a window of 40 protocol headers. Its purpose is

not to rebuild part of the input, but to predict the next protocol

header. On the other hand, BiLSTMs run input data once

from beginning to the end, and once from end to beginning to

understand context better. Their input is comprised of the 20

previous protocol headers and the 20 next protocol headers.

BiLSTMs try to predict the protocol header in the middle of

this input window. Both architectures have len(input) input

units, 400 LSTM or BiLSTM units, 2 × len(input) ReLU

units, and len(input) sigmoid units.

GAN is a deep neural network architecture composed of two

networks: a generator (1000-128-256-512-len(input) with

LeakyReLU and dropout) and a discriminator (len(input)-
256-128-64-1 with LeakyReLU and dropout). The first net

generates new data, while the other classifies each example as

Fig. 2. Protocol-based Ensemble Learning.

The purpose of protocol-based ensemble learning is to

detect attacks related to one protocol (i.e., producing a very

high anomaly), and to increase confidence in the predictions

when attacks are detected on multiple protocols. Moreover, it

also allows to dynamically add or remove protocols according

to the monitored network.

IV. THE PROBLEM WITH METRICS

Anomaly-based intrusion detection usually relies on ma-

chine learning. Different metrics are used to measure the per-

formance of these machine learning algorithms: True Positive

Rate (TPR), False Positive Rate (FPR), F1-score, the Area

Under the Receiver Operating Characteristics (AUROC), etc.

[12] The very choice of these metrics is problematic, as none

of them can perfectly represent the quality of the algorithm’s

detection alone. For instance, F1-score completely ignores true

negatives. However, the main problem is that these metrics do

not reflect the problem that the algorithm is trying to solve.

Correctly classifying flows or packets and detecting attacks

are two distinct problems. Nevertheless, the metrics inherited

from machine learning are only relevant to the first one.

Indeed, intrusions are most often composed of several flows

or packets [13]. However, detecting all the flows or packets of

an unknown attacks is unrealistic without producing a lot of

A
ct

u
a
l
A
tt

a
c
k

P
re

d
ic

te
d
 A

tt
a
c
k

1.0 1.0

0.5 0.5

0.0 0.0

Time (hour) Time (hour)

1.0 1.0

0.5 0.5

0.0 0.0

Time (hour) Time (hour)

Fig. 3. Autoencoders Predictions of Attacks on Tuesday.

false positives. Fortunately, anomaly scores can be correlated

to better estimate the probability of a given sequence being

an attack. Therefore, detecting a small portion of the flows

or packets of an attack is enough to deduce that an intrusion

Fig. 4. BiLSTMs Predictions of Attacks on Wednesday.

input : Network packet

output: Packet anomaly (number between 0 and 1)

1 extract protocol headers from network packet;
2 foreach protocol header do

is ongoing. This is why metrics in intrusion detection should 3

measure the performance of the attack classification. 4

From the perspective of network administrators, we identi-

fied 3 expected outputs: 5

1) Correct alerts. An IDS must be able to detect attacks
6

with a low false positive rate. TPR, FPR, F1-score,

AUROC, etc. are relevant metrics to measure the per-
7

formance of attack classification.
8

2) Low-latency alerts. Intrusion detection is often fol-
9

lowed by an intrusion reaction stage. This reaction can
10

select list of features;
convert categorical features into numerical

features;

normalize features between 0 and 1;

if protocol header has a trained neural network

then

predict anomaly score;

else

train neural network;

end

be manual or automatic with an IPS. Reactions are all

the more effective if the attack is detected early enough.

This is why we propose a new metric: the time between

the beginning of the attack and its detection (called Time

Before Detection in the rest of this paper)

3) Information gathering. Collecting as much information

as possible about the attack is also a very important

feature for an IDS. This information can then be used

to stop or to block the ongoing attack. However, this

study does not cover intrusion reaction, so we will not

collect information on detected attacks to illustrate this

point.

V. EXPERIMENTS

The proposed framework was implemented on two GTX

1080 Ti GPUs and an Intel i5-7500 CPU with 64GB

of RAM. 8 models of each neural network architecture

were trained on Monday’s traffic on each protocol: Frame

(11 701 690 instances), Ethernet (11 701 690 instances), ARP

(46 971 instances), IP (11 618 823 instances), TCP (10 710 204

instances), UDP (934 997 instances), DNS (788 288 instances),

and HTTP (107 681 instances).

Training time on the frame protocol depends on the archi-

tecture, but takes on average between 9 and 15 hours (with

11 end

12 average anomaly scores;

Algorithm 1: Packet Anomaly Prediction

early stopping and cyclical learning rate). Autoencoders are

the fastest architecture to train with 10 minutes 13 seconds

per epoch on the frame protocol. BiLSTMs are the slowest

architecture to train with 16 minutes 53 seconds per epoch on

the same protocol.

Models are tested on Tuesday, Wednesday, and Thursday.

Attacks can be deduced from packet anomalies, but these final

scores are very noisy. A moving average with a window of

10 000 packets is applied to erase isolated anomalies and to

aggregate groups of anomalies into continuous attacks. Since

this detection framework is intended for real world application,

the moving average is only applied on past packets. Anomalies

are normalized between 0 and 1, and a threshold of 0.8 is

chosen to categorize attack packets.

Results show that GANs produce too many false positives

to be used. Autoencoder is the only architecture capable of

detecting the FTP-Patator attack on Tuesday morning (see

Fig. 3). BiLSTM outperforms other architectures for detecting

Wednesday and Thursday attacks (see Fig. 4 and Fig. 5). These

A
ct

u
a
l
A
tt

a
c
k

P
re

d
ic

te
d
 A

tt
a
c
k

1.0

0.5

0.0

1.0

0.5

0.0

Time (hour)

Time (hour)

Fig. 5. BiLSTMs Predictions of Attacks on Thursday.

selection and a reduced input window for BiLSTMs could help

speed up the training.

Attack recognition is also an important information for

intrusion reaction. Indeed, for example, mitigation methods

for DDoS attacks and targeted infiltrations are very different

[14]. A multi-class classifier could analyze protocol anomalies

to identify patterns specific to certain attacks. This classifier

would be independent of the network and could be reused in

all implementations.

ACKNOWLEDGMENT

This work was supported by the SCENE project

(http://scene-project.eu/), which has received funding from

the European Union's Horizon 2020 research and innovation

program under grant agreement number 831138.

REFERENCES

[1] B. Caswell, J. C. Foster, R. Russell, J. Beale, and J. Posluns, Snort 2.0

results are sufficiently uncorrelated to motivate a new step of

ensemble learning, by averaging autoencoders and BiLSTMs

packet anomalies. This final model successfully detects 7 out

of 11 attacks not seen during the training phase, without any

false positives. Table I summarizes the Times Before Detection

for each attack.

TABLE I

TIME BEFORE DETECTION FOR CICIDS2017 ATTACKS

 Time Before Detection (s)

FTP-Patator 28.72

SSH-Patator Not detected

DoS slowloris Not detected

DoS Slowhttptest 550.10

DoS Hulk 23.60

DoS GoldenEye 170.07

Heartbleed 175.78

Web Brute-force 2293.03

XSS Not detected

SQL injection Not detected

Infiltration 874.92

The infiltration attack (Thursday afternoon) is the only

multi-step attack, comprised of 3 stages: Meta exploit Win

Vista (14:19, 14:20-14:21, and 14:33-14:35), Infiltration –

Cool disk – MAC (14:53-15:00) and Infiltration – Dropbox

download Win Vista (15:04-15:45). The intrusion is first

detected between 14:33 and 14:35, and then between 15:10

and 15:31.

VI. CONCLUSIONS

Our proposed detection framework offers a high detection

rate while solving the main problem of anomaly detection

(high FPR). Its deployment in a real network does not require

a traffic generator or transfer learning like supervised learn-

ing methods would. The protocol-based detection is highly

customizable, with the ability to add or remove protocols

depending on the monitored network. The main drawback of

this method is a high training time (up to 14 hours for a single

protocol) compared to other unsupervised techniques. Feature

Intrusion Detection. Syngress Publishing, 2003.
[2] W. Park and S. Ahn, “Performance comparison and detection

analysis in snort and suricata environment,” Wirel. Pers. Commun.,
vol. 94, no. 2, pp. 241–252, May 2017. [Online]. Available:
https://doi.org/10.1007/s11277-016-3209-9

[3] M. Ring, S. Wunderlich, D. Scheuring, D. Landes, and
A. Hotho, “A survey of network-based intrusion detection data
sets,” CoRR, vol. abs/1903.02460, 2019. [Online]. Available:
http://arxiv.org/abs/1903.02460

[4] S. Zanero and S. M. Savaresi, “Unsupervised learning techniques
for an intrusion detection system,” in Proceedings of the 2004
ACM Symposium on Applied Computing, ser. SAC ’04. New
York, NY, USA: ACM, 2004, pp. 412–419. [Online]. Available:
http://doi.acm.org/10.1145/967900.967988

[5] K. Leung and C. Leckie, “Unsupervised anomaly detection in network
intrusion detection using clusters.” 01 2005, pp. 333–342.

[6] G. Kotani and Y. Sekiya, “Unsupervised scanning behavior detection
based on distribution of network traffic features using robust au-
toencoders,” in 2018 IEEE International Conference on Data Mining
Workshops (ICDMW), Nov 2018, pp. 35–38.

[7] A. H. Mirza and S. Cosan, “Computer network intrusion detection using
sequential lstm neural networks autoencoders,” in 2018 26th Signal
Processing and Communications Applications Conference (SIU), May
2018, pp. 1–4.

[8] I. Sharafaldin, A. Habibi Lashkari, and A. Ghorbani, “Toward generating
a new intrusion detection dataset and intrusion traffic characterization,”
01 2018, pp. 108–116.

[9] R. Panigrahi and S. Borah, “A detailed analysis of cicids2017 dataset for
designing intrusion detection systems,” vol. 7, pp. 479–482, 01 2018.

[10] S. Amante, J. Rajahalme, B. E. Carpenter, and S. Jiang, “IPv6 Flow
Label Specification,” RFC 6437, Tech. Rep. 6437, Nov. 2011. [Online].
Available: https://rfc-editor.org/rfc/rfc6437.txt

[11] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever,
“Language models are unsupervised multitask learners,” 2019.

[12] G. Gu, P. Fogla, D. Dagon, W. Lee, and B. Skoric´, “Measuring
intrusion detection capability: An information-theoretic approach,”
in Proceedings of the 2006 ACM Symposium on Information,
Computer and Communications Security, ser. ASIACCS ’06. New
York, NY, USA: ACM, 2006, pp. 90–101. [Online]. Available:
http://doi.acm.org/10.1145/1128817.1128834

[13] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, “A detailed
analysis of the kdd cup 99 data set,” in 2009 IEEE Symposium on
Computational Intelligence for Security and Defense Applications, July
2009, pp. 1–6.

[14] N. Z. Bawany, J. A. Shamsi, and K. Salah, “Ddos attack detection
and mitigation using sdn: Methods, practices, and solutions,” Arabian
Journal for Science and Engineering, vol. 42, no. 2, pp. 425–441, Feb
2017. [Online]. Available: https://doi.org/10.1007/s13369-017-2414-5

A
ct

u
a
l
A
tt

a
c
k

P
re

d
ic

te
d
 A

tt
a
c
k

http://scene-project.eu/)
http://arxiv.org/abs/1903.02460
http://doi.acm.org/10.1145/967900.967988
http://doi.acm.org/10.1145/1128817.1128834

