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Poloidal asymmetry 

• Asymmetry parameters (d,D) verify:

• with                                         , e=r/R, and 

• Defining                                         and                            :

• This fully determines the self-consistent asymmetry when the ion and electric potential 

asymmetries can be neglected (the formula can be extended in these cases).

• Characteristics of the asymmetry circle (fig. 1 & 2)

• The circle is centered at d<0 for a peaked ion density profile (d>0 for a flat one)

• The asymmetry angle a increases with impurity charge [A=q2Rna/(e
2Wa)~Za]

• At saturation (Vr,a=0), the asymmetry vanishes

Neoclassical impurity transport  &
self-consistent poloidal asymmetry
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 Neoclassical impurity transport & poloidal asymmetry

 Can be determined analytically in a self-consistent way

 Natural asymmetry (no torque) has already a large impact

 A magnetic island suppresses thermal screening above a critical size

 Verified numerically on a typical WEST plasma equilibrium

 When impurity transport is predominantly turbulent (as on WEST)

 Poloidal asymmetry remains essentially neoclassical

Neoclassical impurity transport in presence of a (2,1) 
island on WEST
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Summary

Magnetic islands remove the outward thermal screening term

• This mechanism could accelerate plasma contamination [4]

• A (2,1) island is inserted in a WEST equilibrium 

and decays to Wsat~4% (fig.7)

• Locally, the radial flow of W28+ approaches its theoretical

value without thermal screening (fig.8).

The radial flow can be fitted by a tanh by introducing 

the characteristic transport width Wc [5] (fig.9).

The Tungsten transport is in fact dominated by turbulence on WEST [6,7]

• An ad-hoc model is implemented in XTOR with D=8m2/s, Dthd=0.8m2/s, Vcur=-6.7m/s:

• The Tungsten profile remains flat

as observed experimentally [7]

• Poloidal asymmetry remains close

to its neoclassical value (fig.10).

Turbulent impurity transport on WEST

Fig.1 : Self-consistent asymmetry

Neoclassical impurity transport: numerical settings
Numerical experiments are performed with the XTOR-2F code [2] including 

neoclassical physics [3] and two equations per impurity:

with                                                                                          … (small terms)

• The impurity-ion collision frequency na is scanned artificially

• We consider a peaked and a flat ion density profile (same pressure) (fig.3a)

• Turbulent diffusion coefficient is set to a very low value (fig.3b)

Fig.3a : Ion

density and

temperature

profiles.
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Neoclassical impurity transport 

• With a poloidal distribution parametrized as                                                     [1]:

• with                                                  , C0
a~1.5 and ki~-1,17 in the banana regime

(peaked ni)

(flat ni)

Fig.2 : Radial impurity flow as a

function of the impurity charge Za

with & without selft-consistent

poloidal asymmetry (left);

corresponding asymmetry

(right).The impurity profile is flat.

Fig.3b: Pfirsch-

Schlüter diffusion

coefficient & ki

parameter.

Neoclassical impurity transport: validation
Impurity flow & poloidal asymmetry during the (artificial) collisionality scan 

• Impurity : Tungsten W44+, flat initial profile, and decreasing collisionality (fig.4)

Fig.4 : Radial flow, d and D during

the collisionality scan with factor

8, 4, 2, 1, 0.5, 0.25 (peaked ion

density profile).

Fig.5 : Asymmetry (top) and ratio of radial flow to theoretial

value without asymmetry (bottom), for the peaked and flat ion

density profiles, and several radial positions.

Radial flow & poloidal asymmetry vs theoretical model

• The asymmetry circle is reproduced (fig. 5)

• The radial flow & poloidal asymmetry profiles

are well predicted (fig.6).

• Radial W44+ flow is damped for both the peaked &

flat ion density profiles (fig.5 & 6)

Fig.6 : Radial flow, d and D profiles for the real

collisionality (peaked ion density profile).

Comparison of simulation results with theory with

(th(d,D)) and without (th(0)) poloidal asymmetry.

Fig.7 : Island size (W=w/a) & radial

flow at the island position for # seeds.

Fig.8 : Radial flow profile & theoretical

flow without thermal screening
Fig.9 : Radial flow as a function

of (2,1) island size.

Fig.10 : Radial flow & W28+ density

at =0.5 (left); asymmetry profiles

with and without turbulence (right).
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