

Impact of penalized SOL boundary conditions on plasma turbulence

E. Caschera, Guilhem Dif-Pradalier, P Ghendrih, V. Grandgirard, P. Donnel,

X. Garbet, C. Gillot, G. Latu, C. Passeron, Y. Sarazin

▶ To cite this version:

E. Caschera, Guilhem Dif-Pradalier, P Ghendrih, V. Grandgirard, P. Donnel, et al.. Impact of penalized SOL boundary conditions on plasma turbulence. 46th European Physical Society Conference on Plasma Physics (EPS 2019), Jul 2019, Milan, Italy. cea-02555086

HAL Id: cea-02555086 https://cea.hal.science/cea-02555086

Submitted on 27 Apr 2020 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. DE LA RECHERCHE À L'INDUSTRIE

www.cea.fr

Impact of penalized SOL boundary conditions on plasma turbulence

E. Caschera, G. Dif-Pradalier, P. Ghendrih,

V. Grandgirard, P. Donnel, X. Garbet, C. Gillot,

G. Latu, C. Passeron, Y. Sarazin

CEA, IRFM, F-13108 Saint-Paul-lez-Durance, France

HPC plasma modeling

GYSELA GYrokinetic SEmi LAgrangian

- Electrostatic ITG
- Global
- 5D full-f

Huge computational effort 10⁴processors 10 millions h/monoproc

Penalization for plasma-wall interaction

- Plasma open system \rightarrow boundary = Heat sink
- Affect edge-core turbulence [Dif-Pradalier PFR 2017]
- Realistic boundary = 2 directions
- Penalized immersed boundary as edge fluid codes [Bufferand, JNM, 2013],
 [Isoardi, JPC, 2010]

- Restoring towards exponential profiles
- Heat sink = Cold
- Resolution demanding $(v_{\parallel}, \mu) \& (r, \theta)$
- I transport in SOL, interrupts current loop
- Adiabatic electrons = NO $\perp e^-$ transport

The reversed Er builds a transport barrier

- || electron dynamic in the SOL $\rightarrow \langle \phi \rangle_{FS} = \Lambda T_e$
- *core* dominated by ion physics
- Reversed Er self-consistently generated (as experimental measurements)
- \rightarrow Edge transport barrier (not steady state simulation)

A strong *E* × *B*shear drives axisymmetric instability

> Axisymmetric simulation, evolving <u>only n=0</u> \rightarrow « Neoclassical »

- Threshold on ExB shear
- ExB shear = poloidal velocity \rightarrow Kelvin-Helmholtz

→ Plasma polarization is sufficient to drive turbulence

SOL impact on turbulent fluctuations

- ITG modes
- Same core turbulence

Global = core + edge + SOL

- 2) Instability even in axisymmetric framework
- 3) Qualitative $\delta n/n$ experimental trend

- Many different non-linear phenomena at a time: Kelvin-Helmholtz, ITG, spreading, flows
- Push towards steady-state boundary layer

Limiter boundary leads to new physics in GYSELA simulations

Back-up slides

Cea Evidence of edge-core interplay

PAGE 10

DE LA RECHERCHE À L'INDUSTRIE

The weak transport barrier depends on core dynamics

E_r Reversal at separatrix modifies SOL poloidal symmetries

LIMITER brakes the current loop \rightarrow SOL poloidal asymmetries

SOL Polarization

Reversed $E_r \leftrightarrow v_{\theta}$

Inverse rotation btw core/SOL

- Vertical drift + SOL flows
- HFS density accumulation
- Barrier at separatrix

Initial transient in the SOL

DE LA RECHERCHE À L'INDUSTRIE

Axisymmetric simulations: barrier on the profiles

Recovering $\delta n/n$ behavior

Self-organized heat sink

- 1. Heat & momentum sink
 - \rightarrow Cold immersed boundary
 - \rightarrow Poloidally asymmetric
 - \rightarrow || transport in SOL
- All heat reaching the limiter is removed
- □ SOL = boundary for core
- ❑ Drift killed in the boundary

Heat Sink Self-organized

Adiabatic electrons

NO Particle sink,

Constrained ⊥ particle transport

NO recombination

Adiabatic electrons

Flux surface averaged profiles

