DE LA RECHERCHE À L'INDUSTRIE

www.cea.fr

First WEST experimental data analysis using machine learning algorithms

J. Morales, L. Fleury, P. Maini, J.-F. Artaud, H. Ancher, B. Faugeras, E. Nardon, F. Imbeaux and the WEST team

13 May 2019

WEST Tungsten (W) Environment Steady-state Tokamak

Diagnostics organized into groups related to their measurement principle

WEST data signal example First use of a pattern recognition tool

- We are interested on steady-states reached by the plasma
 need for a plateau recognition algorithm
- In this case we use a Kernel density linear estimator provided by scikit-learn

WEST data signal example First use of a pattern recognition tool

- We are interested on steady-states reached by the plasma
 need for a plateau recognition algorithm
- In this case we use a Kernel density linear estimator provided by scikit-learn
- Also we need to find steady-states taking into account more than one single signal

WEST reduced database

- Using the plateau recognition algorithm a reduced WEST database is constructed from statistical moments calculated at each detected plateau
- We are interested in studying the confinement quality using the plasma **stored energy** W_{mhd} and the **confinement time Tau** = $\frac{W_{mhd}}{P_{tot}}$ (main target features)
- First constructed reduced database: 36 features (diagnostic measurements) and 254 samples (detected plateaus)

Plot example of mean quantities at detected plateaus

Three different feature selection algorithms are tested:

- **Pearson correlation**: measures the linear correlation between variables
- Mutual information: measures linear and non-linear dependences between variables
- Random forest: feature importance estimated by how much the tree node that use that feature reduce impurity on average in all decision trees

Three different feature selection algorithms are tested:

- **Pearson correlation**: measures the linear correlation between variables
- Mutual information: measures linear and non-linear dependences between variables
- Random forest: feature importance estimated by how much the tree node that use that feature reduce impurity on average in all decision trees

| PAGE 8

Three different feature selection algorithms are tested:

- Pearson correlation: measures the linear correlation between variables
- Mutual information: measures linear and non-linear dependences between variables
- Random forest: feature importance estimated by how much the tree node that use that feature reduce impurity on average in all decision trees (cross validation mean error of 14%)

Stored plasma energy decreases as a function of q_95 (edge safety factor) for a given total power level

Mutual information is used to detect nonlinear relations between variables

First data analysis Confinement time scaling with total power

In the literature total power exponents in scaling laws vary between: -0.73 and -0.5 (our value: -0.57)

Summary

- To carry out plasma steady-state analyses a WEST reduced database is created. To this aim a plateau recognition algorithm for time signals is developed
- The plasma energy content measured by W_{mhd} and the confinement time (Tau) are the selected targets
- To detect the principal features impacting the targets three feature selection algorithms are tested (Pearson correlation, mutual information and random forest)
- The evolution of the target variables as a function of the main features is analyzed. Comparison with literature shows good agreement in the total power exponent computed for Tau scaling

DE LA RECHERCHE À L'INDUSTRIE

Conclusion and perspectives

Summary

- To carry out plasma steady-state analyses a WEST reduced database is created. To this aim a plateau recognition algorithm for time signals is developed
- The plasma energy content measured by W_{mhd} and the confinement time (Tau) are the selected targets
- To detect the principal features impacting the targets three feature selection algorithms are tested (Pearson correlation, mutual information and random forest)
- The evolution of the target variables as a function of the main features is analyzed. Comparison with literature shows good agreement in the total power exponent computed for Tau scaling

Perspectives

- More diagnostics data will be added to reduced database
- Failure and error detection algorithms for diagnostics
- Improve main feature selection, regression for targets of interest, WEST pulses classification... More ideas are more than welcomed!