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We consider the Basset-Boussinesq (history) force experienced by a spherical drop. We
seek to determine the kernel of the Basset-Boussinesq force when internal circulation of
the fluid occurs. We first characterize the slip at a fluid-sphere interface. Under both steady
and unsteady conditions, the corresponding slip length is remarkably uniform along the
fluid-sphere interface and is directly related to the viscosity ratio. Combining the analytical
expression of the Basset-Boussinesq kernel obtained for a solid sphere with the interface
slip and the obtained description of the slip at the fluid-fluid interface, we are able to
describe the Basset-Boussinesq history force acting on a spherical drop. This expression is
valid whatever the viscosity ratio from bubbles to viscous drops.

DOI: 10.1103/PhysRevFluids.4.073603

I. INTRODUCTION

Under the Stokes flow condition, the force experienced by a fluid sphere of radius R, viscosity μi,
and density ρi moving with relative velocity W (t ) = U (t ) − V (t ) in an unbounded fluid of viscosity
μe and density ρe is composed of the steady drag force, the Basset-Boussinesq history force, and
the added mass force [1,2]

F (t ) = 6πμeR
2 + 3μ∗

3 + 3μ∗W (t ) + 6πμeR
∫ t

0

dW

dt ′ Kμ(t − t ′, μ∗)dt ′ + 2

3
ρeπR3 dW

dt
, (1)

where μ∗ = μi/μe is the viscosity ratio and Kμ is the memory kernel. The external Reynolds
number Re = 2RW ρe/μe should satisfy Re � 1. A constant relative slip velocity will be denoted
by W0.

Here we obtain the general expression for Kμ as a function of μ∗ for a fluid sphere. The analytic
solution for the force has been obtained in the Fourier-transform space but the transform from the
frequency domain to the time domain can only be achieved under the two limits of a solid sphere
and spherical bubble [3,4]. The asymptotic limits for Kμ are discussed in [5].

In the solid sphere limit (μ∗ = ∞), the Basset-Boussinesq history force is associated with the
kernel [6,7]

Kμ(t, μ∗ = ∞) = 1√
πt/tν

, (2)

where tν = R2/νe is the characteristic diffusion timescale based on the kinematic viscosity νe =
μe/ρe of the external fluid. We also introduce the characteristic diffusion time tνi = R2/νi based on
the kinematic viscosity νi = μi/ρi of the internal fluid. In contrast, in the bubble limit (μ∗ = 0),
Yang and Leal [4] have demonstrated that

Kμ(t, μ = 0) = 4
3 exp[9t/tν]erfc[3

√
t/tν]. (3)
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In parallel, the unsteady Stokes problem has also been considered for a slip sphere. The Navier
slip condition is then applied to the sphere surface

uθ = λr
∂

∂r

(uθ

r

)
for r = R, (4)

where uθ is the tangential velocity, λ is the surface slip length, and r is the radial position. The force
experienced by the sphere is then [3,8,9]

F (t ) = 6πμeR
1 + 2λ/R

1 + 3λ/R
W (t ) + 6πμeR

∫ t

0

dW

dt ′ Kλ(t − t ′, λ)dt ′ + 2

3
πρeR

3 dW

dt
, (5)

where the expression for the memory kernel Kλ for a uniform slip along the surface is

Kλ(t, λ) = (1 + 2λ/R)2

λ/R(1 + 3λ/R)
exp

[
(1 + 3λ/R)2

λ2/R2
t/tν

]
erfc

[
(1 + 3λ/R)

λ/R

√
t/tν

]
. (6)

The expression for Kλ can be matched to the solution for a solid sphere and a spherical bubble
considering asymptotic values of the slip length, i.e., λ = 0 for a no-slip surface (solid sphere case)
and λ = ∞ for a free-slip surface (bubble case), considering that Kμ(t, μ∗ = 0) = Kλ(t, λ = ∞)
and Kμ(t, μ∗ = ∞) = Kλ(t, λ = 0).

The aim of this work is to first relate the slip length at a fluid-sphere interface to the viscosity
ratio and then use it to extend the Basset-Boussinesq history force acting on a fluid sphere. The
relevance of the proposed history force is validated by direct numerical simulations obtained with
the JADIM code.

II. NAVIER-STOKES SOLVER

The computations in this paper were carried out with the JADIM code described in detail in
previous studies. In particular, the JADIM code has been used for the simulation of bubble and particle
dynamics [10–15]. The code has been extended for this study to handle simulations of unsteady
flows around a viscous fluid sphere. With this aim, we solve numerically the incompressible
Navier-Stokes equations for the velocity uk and the pressure pk for both the internal fluid (k = i)
and the external fluid (k = e),

∇ · uk = 0, ρk

(
∂uk

∂t
+ uk · ∇uk

)
= −∇pk + 2μk∇ · Sk, (7)

where Sk = [∇uk + (∇uk )T]/2 is the rate-of-strain tensor. Associated with Eqs. (7) are the
boundary conditions at the fluid-fluid interface, which read, for axisymmetric two-dimensional
geometry,

ue,r = ui,r = 0, ue,θ = ui,θ , μeee,rθ = μiei,rθ . (8)

Numerically, the boundary conditions at the interface are implemented in the following manner.
Using finite-difference discretization, the tangential strain rate on each side of the interface Sk,rθ =
∂uk,θ /∂r − uk,θ /R can be estimated with second-order accuracy using

∂ue,θ

∂r
= −de,2 + de,3

de,2de,3
ue,θ + de,3

de,2(de,3 − de,2)
ue,θ2 − de,2

de,3(de,3 − de,2)
ue,θ3, (9)

∂ui,θ

∂r
= di,2 − di,3

di,2di,3
ui,θ − di,3

di,2(di,3 − di,2)
ui,θ2 + di,2

di,3(di,3 − di,2)
ui,θ3, (10)

where uk,θ2 and uk,θ3 are the velocities placed at the center from the two first cells to the interface and
located in fluid k at distances dk,2 and dk,3 (dk,2 < dk,3) from the interface, respectively. Combining
Eqs. (8) and (9) for k = i and k = e, the velocity at the interface is deduced from the calculated
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TABLE I. Drag coefficient for μ∗ = 1 and ρ∗ = 1 at Re = 0.1, 0.5, and 1.

Re Present study Relation (12) Ref. [17] Ref. [18] Ref. [19]

0.1 205.3 203.1 202.4
0.5 42.8 43.1 42.9 42.6 42.6
1 22.4 23.1 22.4 22.5 22.4

velocity

ue,θ = ui,θ =
[

de,3

de,2(de,3 − de,2)
ue,θ2 − de,2

de,3(de,3 − de,2)
ue,θ3 + μ∗ di,3

di,2(di,3 − di,2)
ui,θ2

−μ∗ di,2

di,3(di,3 − di,2)
ui,θ3

][
1

R
+ de,2 + de,3

de,2de,3
+ μ∗

(
de,2 + de,3

de,2de,3
− 1

R

)]−1

. (11)

Combining this expression with Eqs. (9) and (10), the calculation of the interfacial shear stress
τk,rθ = 2μSk,rθ involved in the local momentum balance ensures that the set of boundary conditions
(8) is satisfied at the fluid-sphere interface.

The Navier-Stokes equations are solved with velocity-pressure variables in a general system
of orthogonal curvilinear coordinates. The discretization is based on a staggered grid on which
the equations are integrated in space using a finite-volume method with second-order accuracy.
The advection and viscous terms are evaluated through second-order centered schemes whereas
time advancement is achieved through a second-order time-accurate Runge-Kutta–Crank-Nicolson
algorithm. Finally, incompressibility is satisfied at the end of each time step by solving a Poisson
equation for an auxiliary potential. An axisymmetric mesh is made using a polar grid extending up to
R∞ = 50R or 100R. The number of nodes is Nθ = 34 along the polar direction (from θ = 0 to θ =
π ) and Nr = 20 and Nr = 100 along the radial direction inside and outside the drop, respectively. A
specific condition needs to be implemented at r = 0. Considering the staggered mesh used in JADIM,
only radial velocities ui,r are located at nodes r = 0. Using the symmetry of the problem, the value
of ui,r for each node is interpolated using the mirror values located on the same radial direction.

A uniform distribution along the θ direction and a geometrical progression along the r direction
are used. The thickness δ of the closest cell to the drop surface is fixed to δ = 0.01R on both sides
of the interface. The influence of these numerical parameters was carefully verified to make sure
that the results are grid independent.

The developments of the code allowing for solving flows around fluid spheres have been validated
considering a uniform steady flow of velocity W = W0 for small to large Reynolds numbers Re and
a wide range of viscosity ratio μ∗. For the tests in the two limits μ∗ = 0 (bubble) and μ∗ = ∞
(solid sphere), very good agreement was achieved with the values previously obtained with the
same code JADIM [13,14]. We focus here on a series of validation performed for Reynolds number
Re � 1 and a density ratio ρ∗ = ρi/ρe = 1. For this range of Reynolds number the drag coefficient
CD = 2F/πR2ρeW 2

0 is supposed to follow the Stokes solution corrected by the Oseen term [16]

CD = 24

Re

2 + 3μ∗

3 + 3μ∗ + 9

2

(
2 + 3μ∗

3 + 3μ∗

)2

. (12)

Our simulations are compared to the prediction of the relation (12) in Table I for μ∗ = 1 at Re = 0.1,
0.5, and 1. Numerical values obtained by Rivkind et al. [17], Oliver and Chung [18], and Feng and
Michaelides [19] are also reported. Very good agreement is observed with previous works.

The normalized drag coefficient defined as C∗
D = [CD(Re, μ∗) − CD(Re, 0)]/[CD(Re,∞) −

CD(Re, 0)] is plotted as a function of μ∗ in Fig. 1 for different Reynolds numbers. Considering
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FIG. 1. Evolution of the normalized drag coefficient C∗
D with the viscosity ratio μ∗. The following

denotations are used for numerical simulations: , Re = 0.1; , Re = 1; —, relation (13); and from Ref. [18],

, Re = 0.1; , Re = 0.5; and , Re = 1.

the analytical solution (12), C∗
D is expected to evolve as

C∗
D = μ∗

1 + μ∗ + O(Re) (13)

in the limit Re → 0, which is accurately reproduced by our simulations for Re = 0.1 and also
Re = 1. The numerical results of Oliver and Chung [18] for Re = 0.1, 0.5, and 1 also confirm that
the relation (13) predicts correctly the dependence of the normalized drag coefficient C∗

D with μ∗ up
to Re = 1.

III. RELATION BETWEEN SLIP LENGTH AND VISCOSITY RATIO AT
A FLUID-SPHERE INTERFACE

A. Steady uniform flow

We consider a steady uniform flow of velocity W0 around a fixed fluid sphere of radius R. The
stream functions for the flow inside and outside the fluid sphere are, respectively [20,21],


i = −W0r2

4

1

1 + μ∗

[
1 − r2

R2

]
sin2 θ, (14)


e = W0r2

2

[
1 − 2 + 3μ∗

1 + μ∗
R

2r
+ μ∗

1 + μ∗
R3

2r3

]
sin2 θ. (15)

From this solution we can calculate the tangential velocity

ue,θ = 1

2

1

1 + μ∗W0 sin θ (16)
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0 20 40 60 80 100 120 140 160 180
10−2

10−1

100

θ

λ/
R

FIG. 2. Effective interface slip length λ for a steady uniform flow obtained from numerical simulations.
The interface distribution of λ is shown as a function of angular position θ for Re = 0.01 (black symbols)
and Re = 0.1 (blue symbols) for μ∗ = 0.1 (�), μ∗ = 1 (◦), and μ∗ = 10 (�). The dashed line denotes the
expression (18).

and the velocity gradient

r
∂

∂r

(ue,θ

r

)
= 3

2

μ∗

1 + μ∗W0 sin θ (17)

at the fluid sphere interface (r = R). Considering the Navier-slip boundary condition at the interface
given by Eq. (4), we can define an effective surface slip length λ for the external fluid. From Eqs. (16)
and (17) we show that for the steady Stokes flow the slip length is uniform at the interface and is
directly related to the viscosity ratio by the relation

λ = R

3μ∗ . (18)

This expression is valid in the limit Re → 0. Note that in [22] a drop with an imposed slip at the
interface is considered while the slip given by (18) results from the “natural” boundary conditions
at a clean drop interface. Typical interface distributions of λ obtained from the Navier-Stokes solver
JADIM are reported in Fig. 2. Here λ/R is reported as a function of the angular position θ for Re =
0.01 and 0.1. Different values of μ∗ are considered: μ∗ = 0.1, 1, and 10. As shown, λ is remarkably
uniform and close to the value R/3μ∗. The maximum deviation of λ is less than 2% for all the
simulated cases.

The evolution of the mean interfacial value of λ with the viscosity ratio μ∗ is reported in Fig. 3.
Different Reynolds numbers were considered (Re = 0.01, 0.1, and 1). As evidenced by the figure,
all the simulations collapse onto the relation (18), while no noticeable effect of the Reynolds number
on λ is observed for the range of Reynolds number considered.

It should also be noted that we have compared the meshes of spatial extents 50R and 100R (not
shown here for clarity). Both meshes give very close values for the interface slip length.

073603-5
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FIG. 3. Effective interface slip length λ for a steady uniform flow as a function of μ∗ for Re = 0.01 (◦),
Re = 0.1 (♦), and Re = 1 (�). The solid line denotes λ = R/3μ∗ [Eq. (18)].

B. Unsteady uniform flow

We now analyze the variation of the interfacial slip length λ under unsteady conditions. For
that purpose, the case of a fixed fluid sphere suddenly immersed in a uniform flow of velocity

0 20 40 60 80 100 120 140 160 180
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

θ

λ

FIG. 4. Effective interface slip length λ as a function of the angular position θ for Re = 0.1 and μ∗ = 1 at
different times: t/tν = 0.002 (♦), t/tν = 0.006 (�), t/tν = 0.012 (�), t/tν = 0.02 (∗), t/tν = 0.04 (�), t/tν =
0.12 (�), t/tν = 0.4 (�), t/tν = 1 (◦). The dashed line denotes λE = R/3μ∗ [relation (18)].
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−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ui,θ /W0

r/R

FIG. 5. Tangential velocity profile across the middle of the fluid sphere (θ = 90o) for Re = 0.1 and μ∗ = 1
at different times: t/tν = 0.0002 ( ), t/tν = 0.002 ( ), t/tν = 0.01 ( ), t/tν = 0.04 ( ), t/tν = 0.1 ( ), t/tν =
0.4 ( ), and t/tν = ∞ (steady state) ( ).

W0 is considered. Distributions of λ along the interface at Re = 0.1 and μ∗ = 1 are reported in
Fig. 4 at different times. As shown, λ starts from λ = 0 and then increases in time. As observed
for the steady uniform flow, the slip is remarkably uniform along the interface for all the times
considered. A maximum is reached around t = 0.12tν . Then λ tends to R/3μ∗ as expected for
steady state. It should be stressed here that this asymptotic value is reached for a time 1/10 of the
characteristic diffusion time tν . The evolution of λ is directly connected to the development of the
internal recirculation as illustrated in Fig. 5 for Re = 0.1 and μ∗ = 1. The liquid is first shear driven
close to the interface, generating the internal recirculation, and then a maximum reversal velocity
near the drop axis of symmetry is observed, corresponding to the maximum slip value observed in
Fig. 4. Then, due to momentum diffusion across the fluid sphere, both the interfacial velocity and
the reversal velocity decrease and converge to their steady-state values.

The time evolution of λ is reported in Fig. 6 for Re = 0.1 and different viscosity ratios. Two time
scalings are presented: t/tν [Fig. 6(a)] and t/tνi [Fig. 6(b)]. As shown, all the time evolutions follow
a unique curve when λμ∗ is reported as a function of t/tνi, thus highlighting that tνi is the relevant
time to describe the time evolution of the interfacial slip of a fluid sphere. The interface slip length
λ increases, reaching a maximum slightly larger than R/3μ∗, and then rapidly decreases toward the
plateau value λ = R/3μ∗ for t > 0.15tνi. The maximum value λmax reached by the slip decreases
when the viscosity ratio is increased for a given Re. The λmax can be roughly fitted by λmax =
[1 + 0.0047(μ∗)1/3]R/3μ∗, while the transient evolution for the slip length can be approximated by
the equation

λ = R

3μ∗ {1 − exp[−(60t/tνi )
0.55]} cos(20t/tνi ), (19)

where the coefficients have been adjusted to the evolution observed for μ∗ = 1. This relation,
reported in Fig. 6(b) using a solid blue line, clearly describes the fast increase of the slip and the
relaxation time necessary to reach the steady value.
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FIG. 6. Time evolution of the effective interface slip length λ for Re = 0.1. Here λμ∗ is plotted as a
function of (a) t/tν and (b) t/tνi for μ∗ = 0.01 (♦), μ∗ = 0.1 ( ), μ∗ = 0.25 ( ), μ∗ = 1.0 ( ), μ∗ = 4.0

( ), μ∗ = 10.0 ( ). The dashed line denotes λE = R/3μ∗ [relation (18)] and the solid line relation (19).

IV. MEMORY KERNEL Kμ OF A FLUID SPHERE

Replacing λ by R/3μ∗ in the steady drag force [first term in Eq. (5)] enables us to recover the
dependence of the drag force on the viscosity ratio [first term in Eq. (1)]. The idea is now to apply
the same substitution to the memory kernel. Due to the numerical simulations, we have highlighted
that the slip length is uniform along a fluid-fluid interface for the range of small Reynolds number
considered here. We first consider the memory kernel obtained by simply combining the relation
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μ*=∞
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FIG. 7. Evolution of the memory kernel for different viscosity ratios. From top to bottom the solid lines
denote μ∗ = ∞ (red curve), μ∗ = 1 (green curve), and μ∗ = 0 (blue curve) and the dashed lines stand for
μ∗ = 10, 2, 0.5, 01.

(18) and the kernel expression (6):

Kμ(t, μ∗) = (2 + 3μ∗)2

3(1 + μ∗)
exp[9(1 + μ∗)2t/tν]erfc[3(1 + μ∗)

√
t/tν]. (20)

This expression is actually equivalent to expressions (2) and (3) in the limits μ∗ = ∞ (solid sphere)
and μ∗ = 0 (spherical bubble), respectively. The evolution of Kμ given by the relation (20) for
different values of μ∗ is reported in Fig. 7. Varying μ∗ allows the evolution of Kμ from the spherical
particle to the spherical bubble limit. The case μ∗ = 1 lies in between these two limits.

The force’s expression given by Eq. (1) is now compared to the force obtained by direct numerical
simulations with the JADIM code for different viscosity ratios μ∗. For a fluid sphere suddenly
submitted to a uniform relative flow W0 the experienced force is

F (t ) = 6πμeR
2 + 3μ∗

3 + 3μ∗W0 + 6πμeRKμ(t )W0 (21)

Thus, subtracting the steady drag force from the unsteady force F (t ) gives direct access to the
memory Kernel Kμ(t ). The time evolution of Kμ(t ) obtained from direct numerical simulation is
reported in Fig. 8 for Re = 0.1. It is compared to the relation (20), reported using a dashed line. The
proposed relation is observed to correctly describe the memory kernel for a large range of time.

Regarding the long time behavior, the effect of the Oseen wake is known to become more
effective than the viscous diffusion [23,24], so the sphere adjusts more rapidly to the velocity
changes than predicted by the Basset-Boussinesq memory force. Thus, for time larger than ν/W 2

0 ,
i.e., t > tνRe−2, the kernel decays faster as observed in Fig. 8.

Considering now the behavior at early time, the kernel’s evolution correctly fits with the relation
(20) (reported using a dash-dotted line) once the slip has reached the value λ = R/3μ∗, evidencing
that for times larger than 0.15tνi, the evolution of the kernel is accurately described using the relation
(20). For early times, i.e., smaller than 0.15tνi, the unsteady behavior of the interface slip needs to
be considered. For that purpose, we propose to combine the fit given by the relation (19) obtained
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101
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FIG. 8. Evolution of the memory kernel Kμ(t ) (solid black lines). Also shown are values measured in the
numerical simulations for different viscosity ratio μ∗ at Re = 0.1: μ∗ = 0.25 (red), μ∗ = 1 (green), and μ∗ = 4
(blue). Dash-dotted lines represent the relation (20) and dashed lines the kernel expression (6) combined with
the unsteady slip length λ(t ) given by Eq. (19).

for λ(t ) with the kernel expression (6). The corresponding evolution is reported in Fig. 8 using solid
lines. As shown, the early time evolution is now correctly described by the proposed memory kernel.

Finally, our simulations indicate that the general force equation (1) combined with the kernel
expression (20) can be used to model unsteady fluid-sphere motion as long as the characteristic
timescale of the flow variation is larger than 0.15tνi. For higher frequency, adapted time evolutions
of the interface slip length need to be provided. The corresponding expression (19) is suitable for a
fluid sphere suddenly submitted to a uniform flow.

V. CONCLUSION

We have considered in this study the Basset-Boussinesq (history) force experienced by a fluid
sphere. First, the slip at a fluid-sphere interface was considered. We showed that for both steady
and unsteady conditions, the slip length distribution is remarkably uniform along the fluid-sphere
interface and is directly related to the viscosity ratio. Combining the analytical expression of the
Basset-Boussinesq kernel for a slip sphere and the description of the slip length at the interface of a
fluid particle, we were able to describe the Basset-Boussinesq history force acting on a fluid sphere
whatever the viscosity ratio considered, i.e., for spherical bubbles, drops, and particles.
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