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Abstract

The effective diffusion theory, which is generally used in the modelling of
base-irradiation of nuclear fuel, cannot predict the intra-granular fission gas
release during post-irradiation annealing tests. From this discrepancy be-
tween experiments and usual theory, several alternative scenarios emerged.
The purpose of this work is to model these scenarios, as mechanistically as
possible, and to distinguish those that could really explain the observations.
The difficulty is that the fission gas bubbles in irradiated UO2 are extremely
small and numerous (mean distance between nano-bubble centers is only of
the order of 10-20 nm) while the grain radius is about 5µm. A new spatial-
ized mesoscale model was developed where individual bubbles are described,
along with the diffusion of vacancies from each bubble to the other, as well
as from the free surface. Random movement and coalescence of the bubbles
have also been included in the model. Based on this principal, two scenar-
ios, and the combination of those, could be assessed: (a) the movement of
bubbles in a vacancy gradient, and (b) the Brownian movement of bubbles.
It was demonstrated that neither of these two scenarios, nor the combi-
nation of them, could explain the large fission gas release obtained during
post-irradiation annealing in our reference experiment. This encourages us
to consider additional mechanisms, involving dislocations for instance, that
could explain the high fission gas release.
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Meso-scale

1. Introduction

Fission gases generated during irradiation in a nuclear fuel cause macro-
scopic phenomena like Fission Gas Release (FGR) and swelling in the fuel.
These phenomena can affect the proper functioning of the fuel rod. FGR
from the fuel increases the pressure in the fuel rod plenum, subjecting the
cladding to additional stress, and also reduces the thermal conductivity of
the fuel-cladding gap causing the fuel operating temperature to increase.
Due to their low solubility in UO2, fission gases also precipitate into highly
pressurized bubbles causing the swelling of the fuel. Swelling contributes to
the fuel-cladding interaction, again exposing the cladding to higher stress
and temperature conditions and ultimately hampering its lifetime. So, un-
derstanding fission gas behaviour is very important for optimal utilization of
fuel rod during nuclear reactor operation.

In order to understand fission gas behaviour, in-pile as well as out-of-pile
measurements are carried out in the nuclear fuel. It is, however, difficult
to carry out measurements in a fuel under irradiation (in-pile) due to un-
controllable environment variables. Post-irradiation annealing (out-of-pile)
tests are carried out to obtain data on FGR under controlled and monitored
environment. One of the interesting issues during post-irradiation annealing
tests has been the transport of intra-granular gas to the grain surface, as it
is found to be significant while effective diffusion theory [1] would predict
no intra-granular gas release at all. Indeed, the effective diffusion coefficient
is equal to Deff = b

b+g
DXe, where b and g are the re-solution and trapping

probabilities per second, respectively, and DXe is the intrinsic diffusion coeffi-
cient of the gas. In the absence of fission and if Xe is considered as insoluble
in UO2, the re-solution probability, b, is nil. In other words, atomic gas
is immediately trapped by the intra-granular bubbles, which are present in
abundance [2]. Several mechanisms for the transport of intra-granular gas
atoms outside the grain have been proposed. These include thermal reso-
lution of gas atoms [3, 4] or the inhibition of gas precipitation into bubbles
[5]. Other scenarios have to consider bubble movement. Evans [6] suggested
that the rapid transport of gas atoms could be due to the movement of intra-
granular bubbles containing the gas in a vacancy concentration gradient.The
mechanism of bubble movement in a vacancy gradient was further modelled
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by Veshchunov and Shestak [7] to analyze the fission gas release from ir-
radiated UO2 fuel under high-temperature annealing conditions. They also
considered the role of dislocations in aiding the bubble movement.

In this paper, we focus on the mechanism proposed by Evans, and analyze
the fission gas release due to the directed movement of gas bubbles in a
vacancy concentration gradient. The experimental studies carried out by
Kashibe et al. [2] showed a preferential coarsening of bubbles near the grain
boundaries and showed that the bubble coarsening was associated with a
decrease in the bubble number density. This coarsening was attributed to
coalescence due to migration of bubbles. Thermal treatment of uranium oxide
carried out by Zacharie et al. [8] also attributed the swelling and gas release
to the coalescence of bubbles. Although there have been several studies
focused on the behaviour of intra-granular bubbles and their post-irradiation
treatment [9, 10, 11], we believe that a thorough analysis of FGR due to intra-
granular bubble movement incorporating bubble coalescence is missing. In
a previous paper by the authors [12], a new model was presented for the
interactions between fission gas bubbles and vacancies. The advantages and
limitations of the model with respect to already existing methods like phase-
field [11, 13] and cluster dynamics [14] were also discussed. Simple analyses
using the model showed that the model was capable of simulating the bubble
movement and evolution in a vacancy concentration gradient. Here, we use
the model to carry out a more extensive analysis of gas bubble movement
and its impact on overall fission gas release.

The organization of the paper is as follows: In Section 2 are discussed
the mechanisms of intra-granular bubble movement. The model used for
the study, which was presented in detail in [12], is described in brief in
Section 3. Section 4 presents the verification tests for the various aspects of
the model such as the grid sensitivity, the diffusion calculation and the bubble
movement. The results of the analyses for fission gas release are presented
and discussed in Section 5 and the conclusion drawn from the analyses are
presented in Section 6.

2. Mechanisms of intra-granular bubble movement

2.1. Directed movement in a vacancy concentration gradient

As stated before, Evans[6] proposed a mechanism for the transport of
gas atoms by the movement of intra-granular bubbles containing the gas.
According to him, during high temperature annealing, the influx of vacancies
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from the grain surface towards the grain would create a vacancy concentration
gradient and this would impose a directed movement of intra-granular gas
bubbles towards the boundary, eventually accelerating the gas release. He
based this mechanism on the well-known mechanisms of movement of bubbles
up vacancy gradients [15] and efficiency of grain boundaries and surfaces as
high temperature vacancy sources as recognized in the early works of Barnes
et al. [16, 17] and more recently in [2, 18]. The mechanism of directed bubble
migration can be understood better with a pictorial representation shown in
Fig.1. From the figure, we see that the free surface - or grain boundary coated
by large, already vented bubbles - generates vacancies which move towards
the gas bubble and are trapped by it. This is due to the difference between the
equilibrium concentration of vacancy at the vicinity of the free surface and the
vicinity of the pressurized bubble [19]. The gas bubble may, in turn, emit
vacancies towards other more pressurized bubbles. As a consequence, the
bubble shifts towards the free surface/grain boundary. So, the bubble moves
up the vacancy gradient and may reach the grain boundary and eventually
cause the gas within the bubble to be released.

Over-pressurized bubble
surface

(sink for vacancies)

v

v

v

v

v

Old center New center

Free surface
(source of vacancies)

Directed movement 

Figure 1: Directed movement of a bubble in a vacancy concentration gradient.

Evans also carried out a quantitative assessment [20] of the mechanism
by using numerical calculations to simulate the phenomenon. He assumed
a spherical grain with uniform distribution of over-pressurized gas bubbles.
Annealing of the grain allowed an influx of vacancies from the grain surface
inwards the grain, causing the bubbles to grow by migration and coalescence.
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The model used by Evans postulates the existence of a front (defined by
Cv ≈ 0), where the bubbles undergo a local fractional swelling, ∆S, (a key
parameter of his model) before the front progresses inwards the grain. In this
model, the vacancies that arrive from the surface are supposed to be entirely
trapped by the bubbles located on the front. This causes the vacancy gradient
to last long enough to allow bubbles that are in the gradient to reach the grain
boundary. However, the existence of this front has never been demonstrated.
The FGR values are also found to be a function only of this fractional swelling
in his model. Moreover, in this model, the bubbles which are further into
the grain remain unaffected by the influx of vacancies while the bubbles at
the front grow to equilibrium values. Though the bubbles closest to the
grain boundary trap the vacancies first, it is not obvious that the bubbles a
little further from the grain boundary do not grow at all before the closest
bubbles reach equilibrium values. So, we require to develop more mechanistic
models that would explicitly describe the bubbles and their migration in a
vacancy gradient to access the impact of intra-granular bubble migration on
the overall FGR.

2.2. Random (Brownian) movement of bubbles
A bubble can move in a solid without any driving force - in particular no

temperature gradient - by the transfer of atoms around it . This transfer of
atoms can be governed via volume or surface diffusion mechanisms. These
mechanisms are random by nature.An advanced model for intra-granular
bubbles diffusivity in irradiated UO2 fuel via these mechanisms was proposed
by Veshchunov and Shestak [10] for the Van-der Waals gas in bubbles by
using a non-linear adsorption law. We discuss the equations governing the
diffusion of bubbles via random motion in the following sections.

2.2.1. Bubble diffusion by volume diffusion mechanism

The volume diffusion mechanism is the transfer of crystal atoms via va-
cancies in the bulk solid near the bubble and in the absence of any driving
forces. The diffusion of bubbles is characterized by the diffusion coefficient,
Dvol
b , which is defined according to the expression given by Olander [21] as:

Dvol
b =

3

4π

Ω

rb3
DvC

eq
v (bubble) (1)

where Ω is the atomic volume, rb is the radius of the bubble, Dv is the
vacancy diffusion coefficient and Ceq

v (bubble) is the concentration of vacancy
(at the vicinity of a bubble) in equilibrium with the bubble.
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The relation that we use between Dv and the uranium tracer coefficient,
DU , is the following:

DU = Dv ∗ Ceq
v (Pb = 0, κ = 0) ∗ f (2)

where, f is the correlation factor that expresses that the U atoms do not
exactly follow random-path theory because of the substitutional type of their
diffusion. For this study, we have taken the value of f = 1. Ceq

v (Pb = 0, κ = 0)
is the concentration of vacancy (vacancy/site) at equilibrium in a solid limited
by a flat surface (curvature, κ = 0) and no external pressure (Pb = 0). This
relation supposes that DU was measured when the concentration of vacancy
was at equilibrium.

The volume self-diffusion coefficient,DU , can be calculated using Matzke’s
relation[22]

DU = 6.5 ∗ 10−5 exp

(
−5.6eV

kT

)
m2/s (3)

From Eq.11 in Section 3, we have the expression for Ceq
v (bubble) as:

Ceq
v (bubble) = Ceq

v (Pb = 0, κ = 0) exp

(
−Ω

kT
(Pb − γbκ)

)
(4)

where, Pb is the pressure in the bubble in Pa, γb is the surface energy in J/m2

and κ is the curvature of the bubble surface in m−1. So, using Eq.2 and Eq.4
in Eq.1, we get the expression for Dvol

b as:

Dvol
b =

3Ω

4πrb3
DU exp

[
−Ω

kT
(Pb − γbκ)

]
(5)

So, the random movement of bubbles via volume diffusion mechanism is
characterized by the diffusion coefficient as given in Eq.5.

2.2.2. Bubble diffusion by surface diffusion mechanism

The surface diffusion mechanism is the transfer of crystal atoms on the
surface of the bubbles. The coefficient of bubble diffusion via surface diffusion
mechanism can be expressed from [21] as:

Dsurf
b =

3Ω4/3

2πrb4
Ds (6)

where again, Ω is the atomic volume, rb is the radius of the bubble and Ds

is the surface diffusion coefficient.
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Different values for the surface diffusion coefficient, Ds, have been used
by different authors in the past. The value for Ds is usually obtained by
either mass transport methods [23, 24, 25] such as grain boundary grooving
or scratch decay or by means of tracers [26, 27, 28, 29]. The available data on
surface diffusion and matter transport driven by surface energy in ceramics
has been reviewed by Matzke [30]. The most accepted expression for Ds

recently [21, 31, 10, 32] is the one given by Maiya[25] or by Matzke[30] in the
temperature range of 1200-18000C as given by:

Ds = 50 exp

(
−4.67eV

kT

)
m2/s (7)

Following results from Baker’s data [33], which showed an increase in
the bubble diffusivity with increasing radius in the small radius regime,
Mikhlin [34] suggested a mechanism for the observed suppression of these
small gas bubble diffusion mobility in solids. According to him, the interac-
tion of ad-atoms with gas atoms, which are present in high density in small
bubbles, causes a decrease of the ad-atom jump frequency on the bubble sur-
face leading to the observed suppression of small gas bubble mobility. The
expression for the bubble diffusion coefficient can be modified by incorporat-
ing a suppression factor, Wb, which is equal to the probability that a region
near an ad-atom is free of gas atoms and is expressed as:

Wb =

[
1− q

Vb

]Nb

(8)

where, q is the volume of the region with no gas atoms so that a jump can
occur, Nb is the number of gas atoms in the bubble of volume Vb. We obtain
the new values for the diffusion coefficient of bubbles by multiplying Mikhlin’s
suppression factor, Wb, with the expression for Dsurf

b . The expression for the
bubble diffusion coefficient including Mikhlin’s suppression factor becomes:

Dsurf
b =

3

2π

Ω4/3

rb4
Ds

[
1− q

Vb

]Nb

(9)

So, the bubble diffusion by surface diffusion mechanism use Eq.9 for the
diffusion coefficient with Eq.7 for the value of Ds.
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3. Model description

To deal with the particular problem of bubble movement in a vacancy
concentration gradient, the following assumptions and conditions have been
adopted in the model [12]:

• We assume that the simulation starts after gas has been trapped in the
bubbles. So, the Xe gas atoms are present inside the cavities and not in
the solid. We also think that the irradiation defects largely annihilate
with the temperature and the few that remain would be trapped in the
extended defects. This is why we only consider thermal defects in the
model.

• The UO2 fuel is modeled as a mono-crystal containing spherical cavities.

• Each UO2 is considered as an “atom” and Schottky defects as “vacan-
cies” in the description of the model.

• Only vacancies are considered as point defects in the model for the
present study. Indeed the auto-interstitial U or the anti-Schottky defect
have large formation energies and can hardly be produced thermally.

• Bubbles are assumed to be spherical and remain so. This assumption
is justified for the intra-granular bubbles at high temperature.

• No irradiation is considered in the model, i.e., it is applicable for an-
nealing tests.

• The sources or sinks of vacancies are the surfaces in the model - surfaces
of the bubbles and surface of the grain. In reality, dislocations could
also be sources or sinks of vacancies, however, they have not been
considered in the model presented here.

• The model is developed to function in both 2-D and 3-D, but for the
results presented in this paper, only 2-D analysis has been done due to
computation cost.

In the representation of the model, the domain is discretized on a regular
mesh. Two types of independent variables are sufficient to represent the
model and these are the spins and concentration fields. The first variables,
spins, are integer numbers (0, 1 or 2) allocated to the cells (pixel in 2-D/voxel
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in 3-D) to categorize their position in the domain. The spin is 2 for the cells
in the solid region, 0 for the cells in a cavity and 1 for the cells at the interface
between solid and cavity. In the following sections, “2-cell”, “1-cell” and “0-
cell” will refer to cells tagged with spin 2, 1 and 0, respectively. The 1-cells
are partially solid and partially void.

The other variables, the concentration fields, represent the concentrations
of different species in the model and are calculated by a system of ordinary
differential equations. The field for a 2-cell is the concentration of vacancies,
Cv. For a 1-cell the field is the concentration of crystalline atoms, Ca. All
the concentrations are expressed in fraction of sites. Ca in particular, is
the number of U atoms in the cell divided by the number of U-sites in the
cell (itself equal to the volume of the cell divided by Ω). Ca can also be
assimilated to the solid fraction (RS) in the interface cell. No fields are
required for the 0-cells.

The limit condition imposed for the diffusion of vacancies in the solid is
that the concentrations of vacancies at the interface cells will be the equi-
librium concentrations of vacancies in the vicinity of the bubble that these
cells are an interface of. These equilibrium concentrations of vacancies at the
considered temperature in the proximity of a surface with curvature κ and
exposed to a pressure Pb are denoted as Ceq

v (Pb, κ). The method to calculate
the equilibrium concentrations of vacancies in the vicinity of over-pressurized
bubbles has been presented by Noirot [19] and the expression for this is:

Ceq
v (bubble) = exp

[
−(εv − svT )

kT
− Ω

kT
(Pb − γbκ)

]
(10)

where, εv is the formation energy of vacancies (more precisely, Schottky de-
fects), sv is the excess entropy of vacancy formation, T is the annealing tem-
perature in K, k is Boltzmann constant, Ω is the volume of one UO2-site and
γb is the surface tension at the solid-bubble interface (γb depends on the tem-
perature by the relation γb = 0.41∗ (0.85−1.4∗10−4(T −273)) in J/m3 [35]).
The excess entropy of vacancy formation, sv, is assumed purely vibrational
and is taken as sv = 0 for this study. The expression for Ceq

v (bubble) in Eq.10
can be split in two where the first factor is the concentration of vacancy at
equilibrium in a solid limited by a flat surface (curvature, κ = 0) and no
external pressure (Pb = 0):

Ceq
v (bubble) = Ceq

v (Pb = 0, κ = 0)exp

(
−Ω

kT
(Pb − γbκ)

)
(11)
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The pressure Pb in the bubble is calculated using the Carnahan-Starling
Equation of State [36] given as:

PbV

NkT
= (1 + η + η2 − η3)/(1− η)3

where η is the packing fraction given by the expression:

η =
π

6

Nd3

V

with d being the hard sphere diameter, calculated from the modified Buck-
ingham potential as [37]:

d = 4.45 ∗ 10−10 ∗
[
0.8542–0.03996 ln

(
T

231.2

)]
The bubbles in the model are characterized by the position of their cen-

ters, the total volume of the 0-cells included in the bubbles, the total volume
of the bubbles, the gas content and the list of 1-cells forming the interface.
In this study, we have considered the presence of gas in the bubbles, but we
do not consider gas in the solid. We can define a bubble entirely within a
cell. For such a bubble, the volume of the 0-cells would be 0 and the spin of
the cell containing the bubble would be 1.

3.1. Methodology adopted in the model

The model simulates micro-structure evolution with time by taking into
account the various aspects of interaction between defects and bubbles such
as diffusion of defects and the update of bubble characteristics. A general
algorithm adopted in the model is depicted in Fig.2.

Note that we use an adaptive time step for the ”macroscopic time”, i.e.,
the one between two updates of the bubbles. The second condition for adapt-
ing the time step, namely the relative change in Cveq for any bubble is the
most demanding condition. Moreover, the diffusion calculation of vacancies
is done using ”microscopic time steps” during each ”macroscopic time step”.
This microscopic time step must respect the Courant–Friedrichs–Lewy (CFL)
condition for the numerical scheme that we adopted (discussed later).

(i) Initialization
The initial and boundary conditions as well as the physical properties
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Choose	Δt
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Bubbles	Volume	and	Cveq calculation
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Calculate new	center	and	radius	of	bubbles

Update	t	=	t	+	Δt

Is	relative	change	in	Cveq >	1%	for	anybubble?	

Figure 2: General algorithm adopted in the model.

are provided into the model. Table.1 describes the physical parameters
considered in the model. The initial representation can be viewed us-
ing the visualization application PARAVIEW [38]. In this paper, all
the visualizations are represented in terms of RS, which is the solid
ratio/fraction of a particular cell. RS = 1 (red region) means that the
cell is completely solid and RS = 0 (black region) means the cell is
completely void (cavity), with values of RS in between signifying an
interface cell which is partly solid and partly cavity.

(ii) Diffusion of vacancies and crystal atoms
The diffusion of vacancies and crystal atoms is governed by the Fick’s
law. A balance equation is written for each 2-cell and 1-cell interacting
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Parameter Description Value

εv Formation energy of vacancy [39, 19] 2.47 eV
k Boltzmann constant 1.38*10−23 J/K
sv Excess entropy of vacancy formation 0 J/K
Ω Volume of one UO2 site 40.9*10−30 m3

h Grid size 4 nm
DU Self-diffusion coefficient [22] 5.82*10−20 m2/s
Dv Vacancy diffusion coefficient 2.52*10−13 m2/s

†DU = Ceq
v (Pb = 0, κ = 0)*Dv*f

T Isothermal annealing temperature 1600◦C
kT Energy term 2.58*10−20 J
γb Surface tension at the solid-cavity 0.25666 J/m2

interface
Ds Surface diffusion coefficient [30] 1.39*10−11 m2/s
q Region without gas atoms 1.5*10−27 m3

in Mikhlin’s suppression term

Table 1: Physical parameters used in the model; †f, which is the correlation factor, is taken
as f = 1 in this study. (Temperature dependent parameters are calculated at T = 1600◦C).

with its 2-cell neighbours as:

∂Cj
∂t

= −
−→
∇ .
−→
φj (12)

Here
−→
φj represents the flux of the diffusing species, where j is either

vacancy (when a 2-cell is considered) or crystal atom (when a 1-cell
is considered). Fig.3(a) represents the 0-cells (black), 1-cells (yellow)
and 2-cells (red) in a domain. Eq.12 is solved for vacancies in the red
domain with Dirichlet boundary conditions imposed on the yellow cells.
It means that for this problem, there is a variable (Cv) for each 2-cell,
while for the 1-cells, Cv is imposed to Ceq

v (bubble).
For the crystal atoms, Eq.12 is solved in each yellow cell with the Neu-
mann boundary conditions. Since, we consider only vacancies as diffus-
ing species, exchanging with a 2-cell, the flux of atoms is a consequence
of the flux of vacancies and can be determined as:

−→
φa = −

−→
φv (13)

On the red-yellow interface, the flux of atoms is imposed to the opposite
of vacancy flux (Eq.13) and on the other interfaces, the flux of atoms
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2-cells (solid)
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#$(Bubble 2)
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∅' = 0

Figure 3: (a) Representation of 0, 1 and 2-cells in the domain; (b) Flux of atoms at various
interfaces.

is nil (Fig.3(b)). Eq.12 for the atoms of a 1-cell is just the integration
with time of atoms that accumulated in the cell due to the emission of
vacancies by the bubble.
These equations are then discretized in space and time. In the present
model, only the face neighbors have been taken into consideration using
a 5-point stencil in 2-D for space discretization. Once the set of space-
discretized equations is written, a set of ordinary differential equations
is obtained. An Euler explicit scheme is then used for time discretiza-
tion.

(iii) Bubble volume calculation
After the diffusion process, the total volume of the bubbles has to be
calculated for each bubble. This is done using the volume of the 0-cells
and the Ca that has been calculated for each interface cell of the bubble.
Then knowing the volume of each bubble, the temperature and the
equation of state of the gas, we can determine the pressure, Pb, as well as
the new value of Ceq

v . The volume of the bubble and the relative change
in the value of Ceq

v is checked and if the conditions are not satisfied (see
Fig.2), the time step is reduced by half and the diffusion calculation is
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repeated to meet the conditions for bubble volume and Ceq
v .

(iv) Updating the new center of bubbles (target center)
If the flux of vacancies is not isotropic, the bubble is shifted from its

position. The direction of bubble movement depends on the direction of
vacancy absorption or removal from the bubble surface. The new center
of the bubble is calculated as the barycenter of voids (i.e., the 0-cells in
the bubble and the void fraction (1-RS=1-Ca) of the 1-cells). Since at
each time step, the Ca values are modified during the diffusion process,
the new (target) centers of the bubbles are calculated accordingly.

(v) Re-drawing the bubbles
Once the new characteristics of the bubbles are updated, the list of
interface cells of each bubble also has to be updated. This means that
the spins of some cells may be changed and the RS = Ca (solid ratio
in the interface cells) are re-calculated as if the bubble was re-drawn.
The atom balance is checked and any error is accounted for during
the volume update. If the target center of the bubble is too far from
its previous center (meaning that their distance is larger than h), this
process of re-drawing may be done in several steps, moving the bubble
by shorter distances to mimic the simultaneous movement of bubbles.
Coalescence with other bubbles is also checked during the process. Once
the re-drawing process is done for each bubble, a new time step can
begin for the diffusion process.

(vi) Random movement of the bubbles
To incorporate the random movement of bubbles, the diffusion coeffi-

cient is chosen depending on the mechanism adopted (volume or surface
mechanism). In 2-D, the most probable diffusion distance between the
position of the bubble at time t = 0 and its position at ∆t is given by
the expression:

d =
√

4Db∆t (14)

where Db is the bubble diffusion coefficient and ∆t is the elapsed time.
We then choose a direction of movement by randomly generating an
angle, φ ε [0, 2π[. However, we want the diffusion distance for a single
jump to not exceed the length of one cell (defined as ‘h’ in the model).
So, in order to restrict our jump distance to h, we impose another limit
on the time step that must not exceed:

∆t =
h2

4Db

(15)
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The random displacement of the bubble is added to the directed dis-
placement calculated in (iv) to determine the target center of the bub-
ble. The bubble is then re-drawn in the way described earlier.

4. Verification

4.1. Verification for diffusion calculation

In order to verify the diffusion calculation in the model, a test was carried
out in which the vacancies with an initial sinusoidal concentration profile
were made to diffuse in the solid and the results obtained numerically were
compared with the analytical results. The diffusion of vacancies in the solid
follow the Fick’s second law which is described by the equation:

∂Cv(x, t)

∂t
= Dv

∂2Cv
∂2x

(16)

An analytical solution of Eq.16 for a sinusoidal vacancy concentration
profile can be obtained as:

Canalytic
v (x, t) = exp

(
−
(

2πn

a

)2

Dvt

)
sin

(
2πn

a
x

)
(17)

For the model, an initial concentration of vacancies was provided as a si-
nusoidal profile. A rectangular domain of size 128nm*64nm was taken with
a grid size of 4 nm and ∆t = 0.99 ∆tCFL (to respect the CFL condition).
Periodic boundary condition was imposed at all the boundaries. No bubbles
were considered within the box for the test. One thing to note here is that
this verification test is purely mathematical in the sense that Cv(x, t) can
take negative values (due to the sinusoidal profile).

The time evolution of vacancy concentration along the length of the do-
main was analyzed. As expected, with time the vacancies diffuse in the solid
and the concentration profile becomes flatter and tends to zero with time.
We defined the error as:

error =

√√√√∑N

(
Canalytic
v − Cnum

v

)2

N

where N is the number of cells in the domain. This error never exceeds
4.06*10−4 in the calculation. Then we perform an analysis of the order of

15



convergence in space and time. To determine the order of convergence in
space, we choose a small ∆t and perform several calculations by varying
’h’. Each time the error defined above is calculated at the same time of Cv
evolution. Then we plot log(error) as a function of log(h). As expected for our
numerical scheme, we obtain a straight line with a slope close to 2.0 (Fig.4).
The dependence of error in function of h is found to be 10−4.6864 ∗ h2.0176.

Figure 4: Determining the order of convergence in space.

To determine the order of convergence in time, we perform several calcu-
lations with different ∆t and a fixed h. We plot log(error - 10−4.6864 ∗h2.0176)
in function of log(frac∆tCFL

), with frac∆tCFL
= ∆t/∆tCFL. Fig.5 shows the

plot and as expected, we obtain aligned points with a slope close to 1.
The tests of order of convergence in space and time are found to behave

as expected for the numerical scheme we adopt in this model.

4.2. Crystal atom balance

The process of re-drawing of bubbles is done using a recursive procedure
to identify the new interface cells and their new solid ratio (RS=Ca). This
can be done more or less precisely, but a high precision costs computation
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Figure 5: Determining the order of convergence in time.

time. We used a procedure that keeps track of any error balance and avoid
errors to cumulate with the time steps. Due to this procedure, the relative
error in the crystal atom balance in the model is less than 4.5*10−15 during
the entire calculation.

4.3. Coalescence and space discretization

In the present formulation of the model, the problem of the coalescence
of bubbles is not completely independent of the spatial discretization as the
coalescence condition is “If two interface cells are neighbours and they belong
to two different bubbles, then the two bubbles have to coalesce”. Another
approach that could be adopted to deal with the coalescence is to define a
physical distance of coalescence, dcoal (minimum acceptable distance between
the bubble surfaces), and write the condition for coalescence differently. For
instance, if dcoal > 2h, then at least the second shell around each interface
cell should be analyzed to check for coalescence. With such an algorithm,
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the solution, including the coalescence, should remain stable even if h is
diminished. The development and tests of such an algorithm is beyond the
scope of this work, but is feasible.

Our calculations, with h = 4 nm and the present algorithm corresponds
to a dcoal ∼8 nm which is reasonable since d−3

coal = 1.95∗1024m3 is of the order
of magnitude of the maximum bubble densities observed.

4.4. Verification for bubble movement

As discussed earlier, a pressurized bubble will move up in a vacancy con-
centration gradient by trapping vacancies emitted by a free surface at lower
pressure or higher curvature. In order to verify that the bubble movement
simulated by the model is accurate, we carry out a test for the bubble move-
ment in a vacancy concentration gradient and compare the velocity of the
bubble to the theoretical value obtained from literature. For the test, we
consider a domain of 128nm*32nm with a grid size of 4 nm. We consider
two exterior regions, Region 1 and Region 2, with width 1 nm and 255 nm,
respectively, on both ends of the domain box and a bubble of radius 7.15 nm
within the box. In the model, the interfaces solid-Region 1 and solid-Region
2 are dealt with exactly as the solid-bubble interface. This means that a con-
centration Ca of the crystal atoms is calculated at the interface cells and the
surface can move accordingly. The only difference with the bubble surface is
that this surface remains flat. We provide periodic boundary condition on the
top and bottom and symmetric condition on the right and left boundaries.

We imposed constant pressures, P1 and P2, in the two regions to main-
tain a constant vacancy gradient in the solid throughout the duration of the
test.1 The properties of the different regions and the bubble for the test
are presented in Table 2. A linear profile for initial vacancy concentration is
provided. The evolution of the bubble with time is depicted in Fig.6 in terms
of RS which is the solid fraction/ratio in a cell. The figure shows that the
bubble moves towards the region 2 by trapping vacancies which are emitted
by the surface of Region 2, and by emitting vacancies towards the Region 1
which traps the vacancies arriving at its surface. The bubble also grows by

1Note that here, the solid moves due to the vacancy flux (Nabarro-Herring creep) only.
However, as P1 and P2 are different, they should induce a resulting effect that would shift
the solid much more quickly towards the right, if the solid is not somehow held in an other
way. Here, we can imagine that the solid is a section of a very large and thin tube, with
P1 inside the tube and P2 outside the tube.
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trapping the vacancies. In the meanwhile, Region 2 reduces in size due to
the loss of vacancies from its surface and the contrary for Region 1.

Type Coordinate Initial width/ Imposed
of center Radius (nm) pressure (Pa)

Region 1 (0,0) 1 9.19*109 (P1)
Region 2 (512,0) 255 9.04*104 (P2)
Bubble (16,64) 7.15 -

Table 2: Conditions used in the model.

Region 1
High Pressure (P1)

Region 2
Low Pressure (P2)

t = 5.5 h

t = 110 h

t = 209 h

t = 220 h

Figure 6: Bubble movement and growth in a vacancy concentration gradient.

The bubble can be seen to move up in the vacancy concentration gradient
as expected. We compare the numerically calculated velocity of the bubble
to the theoretical value. The velocity of a bubble moving in a vacancy con-
centration gradient is given as:

−→vb = 2Dv
−→
∇Cv (18)

where, Dv is the vacancy diffusion coefficient and
−→
∇Cv is the vacancy con-

centration gradient (see Appendix A).
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Figure 7: Theoretical vs Numerical value of bubble velocity.

Fig.7 shows the theoretical as well as the calculated (numerically) values
of velocity as a function of time. The theoretical value of velocity is a constant
since we assume/impose a constant gradient of vacancy concentration. It
can be seen from the figure that the numerically calculated value of bubble
velocity is in quite good agreement with the theoretical value considering
that no adjustment was made to obtain the numerical value. Moreover, the
numerical velocity tends to the theoretical one when the grid is refined (from
h = 4 nm to h = 2 nm).

5. Results and discussion

2-D analyses were carried out to determine the fission gas release due to
intra-granular gas bubble movement to the grain boundary. First, the case
with bubble movement in a vacancy concentration gradient was analyzed to
assess Evans’ mechanism. Later, the influence of the random movement of
bubbles due to volume as well as surface diffusion mechanisms was analyzed
without the diffusion of vacancies. Moreover, the overall fission gas release
was analyzed by incorporating the random movement of the bubbles along
with the directed motion in the vacancy concentration gradient. Finally, the
influence of Mikhlin’s suppression term on the overall FGR was assessed.
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5.1. Fission gas release values from experiments for comparison

The analyses carried out are presented in this section with the primary
focus being on the fractional FGR due to intra-granular bubble migration.
We compare the values of FGR obtained from our analyses to the results from
the experiments presented in the thesis of Valin [40]. She used a pellet of UO2

fuel (enriched to 4.5% of U-235) from a PWR which had been irradiated for
one cycle. The mean grain size was 11 µm. At the end of the irradiation, the
burnup was 14.2 GWd/tU and there was nearly no FGR. The fragments of
the whole pellet were annealled for 3 hours at 1600◦C. During the annealing,
the specimen was swept by helium at a flow rate of 60 cm3/min. The Kr85

release was continuously monitored by a spectrometer and the total quantity
released was also determined by analyzing cold traps. The fraction of FGR
was found to be ∼65%.

The value of FGR obtained from the experiments of Valin is, however, the
overall FGR, from the intra as well as inter-granular bubbles. Earlier studies
had been carried out using the MARGARET model [41] to discriminate
the intra-granular and inter-granular retained gas. At the end of one cycle
irradiation, we get approximately 10% of inter-granular gas. Supposing that
the inter-granular gas has been completely released, leads to 55% of the
total created gas coming from the grain in the FGR. This would mean that
0.55
0.9

= 61% of the intra-granular gas has been released during this annealing
test. Moreover, for our analysis in this paper, we use a planar geometry
rather than the actual spherical geometry of the grain. Going from spherical
to planar geometry, we get an equivalent value for the FGR as ∼27% as
compared to ∼61% FGR from intra-granular bubbles (Appendix B). So, our
reference value for FGR from intra-granular bubbles during post-irradiation
annealing of UO2 for 3 hours at 1600◦C is 27% for comparison with the
calculations.

5.2. Conditions for numerical analyses

For all the tests, we consider a planar domain of 5120nm*128nm with a
grid size of 4 nm (i.e., the mesh is 1280*32 cells). We consider this domain
size, as it represents the actual grain size radius (∼ 5µm). We consider a free
surface and an exterior region at a low pressure and a large number of over-
pressurized bubbles within the grain. We try to respect a distance between
the bubbles while generating the bubbles randomly in the grain that would be
consistent with a bubble number density in the range 1023-1024 bubbles/m3 as
observed in experiments [42, 43, 2]. We reached an equivalent bubble density
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of ∼ 2.8*1023 bubbles/m3. The bubble size is distributed randomly with the
radius, r ε (0.4, 1) nm [2, 44]. The volume per atom of gas within the nano-
bubbles was taken equal to Ω. This value is justified from the measurements
of Nogita and Une [45] and Thomas [46], who measured Xe density inside
intra-granular bubbles in UO2 after base-irradiation in function of the bubble
diameter. For 1-2 nm size bubbles, a value of 5g/cm3 is consistent with these
measurements. The mean mass of Xe produced by irradiation is 134.2g,
which leads to a volume per atom close to Ω. We provide periodic boundary
condition on the top and bottom boundaries and symmetric condition on the
right and left boundaries. An isothermal annealing temperature of 1600◦C is
used for the analysis. A domain with the provided conditions is depicted in
Fig.8 and the initial conditions used for the analyses are described in Table 3.

5120 nm

Periodic condition
Free surfaceSymmetric condition

low P 128 nm

Over-pressurized bubbles

w

Figure 8: Domain used for the analyses with various conditions.

Property Description Value
T Annealing temperature 1600◦C
Nb Initial bubble number density 2.8*1023 bubbles/m3

w Exterior region width 255 nm
rb Small bubble Radius (0.4 - 1) nm

Vol/at (ext) Volume per atom of gas in the Exterior region 286 nm3

Vol/at (bub) Volume per atom of gas in the bubbles 0.0409 (= Ω) nm3

t Simulation time 3/110 h

Table 3: Initial conditions used for the analyses.

Since the domain used for the analyses is quite large as compared to the
bubbles, in order to have a better view of the distribution of the bubbles,
we represent only an enlarged region of the domain (represented by dashed
box in Fig.9) towards the vicinity of the exterior surface in all the cases.
We calculate the fractional FGR due to intra-granular bubble migration by
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the increase in the net content of gas in the exterior region before and after
annealing, divided by the total gas contained initially in the bubbles.

Enlarged region for analysis

Figure 9: Dashed box representing the enlarged region of the actual domain presented in
the results.

5.3. Fission gas release due to directed bubble motion in a vacancy concen-
tration gradient

Evans [6] had proposed that the directed movement of intra-granular
bubbles in a vacancy concentration gradient could account for the large gas
release observed during post-irradiation annealing tests. In order to test
Evans’ mechanism for the fission gas release, we consider a constant initial
vacancy concentration of Cini

v = 1.08*10−12 in the solid, which is of the
same order as the Ceq

v in the vicinity of the small bubbles 2. The simulation
is carried out for a simulated time of 3 hours. We expect the bubbles in
the vicinity of the exterior surface to grow by trapping the vacancies emitted
from the surface and also to move towards the exterior surface in the vacancy
gradient. The distribution of the bubbles near the exterior surface after 3
hours is depicted in Fig.10.

Fig.10 shows an enlarged view of the bubbles in the domain near the
exterior surface at time t = 0 and at t = 3 h. It can be noticed that the bub-
bles grow by trapping the vacancies which are generated at the free surface.
Some of the bubbles also move out of the grain into the exterior region. The
number of bubbles in the domain decreased from 2647 bubbles at time t = 0
to 2634 bubbles at t = 3 h. The fractional FGR after 3 hours of annealing
was found to be 0.112%, which is insignificant as compared to the values
obtained from experiments if we compare it to our reference value (27%).

The analysis was continued for annealing up to 110 hours of simulated
time in order to see any further evolution of the bubbles and the effect on

2The implicit hypothesis that we make is that the vacancies and auto-interstitials from
the irradiation mainly annihilate with one another at the very beginning of the annealing
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t = 0

t = 3 h

Figure 10: Directed bubble movement in a vacancy concentration gradient for 3 hours of
simulated time (enlarged view near the vicinity of the external surface).

the overall fission gas release. The bubbles grew further and up to a wider
extent into the grain. The bubble evolution from time t = 0 to t = 110 h
is depicted in Fig.11. The number of bubbles further reduced to 2266 at
time t = 110 h. However, the fractional fission gas release went up to only
1.204%, which is still insignificant as compared to the values obtained from
experiments. The values for various parameters at time t = 0, 3 and 110 h
for the case are presented in Table 4 and the mean radius of bubbles along
the domain is depicted in Fig.12.

t = 0

t = 3 h

t = 110 h

Figure 11: Directed bubble movement in a vacancy concentration gradient for 110 hours
of simulated time (enlarged view).

An interesting question is to evaluate the impact of Dv on this result. In
practice, we solve the equations using a non-dimensional time constructed as

t∗ =
Dv

l2adim
∗ t
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time Number of Mean radius Mean gas FGR
(hr) bubbles (nm) content (at) (%)

0 2647 0.719 167.664 -
3 2634 0.756 168.303 0.11 %

110 2266 0.966 193.496 1.20 %

Table 4: Evolution of various parameters with time for the directed movement case.

with ladim = 1 nm and the non-dimensional length as

l∗ =
l

ladim

With this choice, the non-dimensional coefficient of vacancy diffusion,
D∗v = 1. This was done in order to accelerate the calculation of the diffusion
(by avoiding multiplication by Dv). The interest in the question is also that
in this case of directed movement in a vacancy gradient, where the kinetics is
solely governed by Dv, changing Dv means that the t∗ is related differently to
the real time. In this analysis, we showed that the vacancy gradient became
almost flat before any significant gas release could take place. Taking another
value for Dv only changes the axis of time by a multiplying factor, however,
the conclusion remains the same. So, having conducted the calculation up to
a long duration is equivalent to having done a parametric study on Dv, for
the case of directed bubble movement and there is no impact on the results
whatsoever.

In conclusion, it is evident from this analysis that the FGR from the
grain cannot solely be due to the transport of gas via intra-granular bubble
movement in a vacancy concentration gradient. Other mechanisms of gas
release have to play a significant role in the overall fission gas release during
post-irradiation annealing of UO2.

5.4. Influence of random bubble movement without vacancy diffusion

The influence of random movement of bubbles within the grain on the
evolution of bubbles was tested. We present the analysis of random bub-
ble movement via volume and surface diffusion mechanisms in the following
section. In order to emphasize on the random movement only, we do not con-
sider any driving force (diffusion of vacancies) in the solid. The simulation
is carried out for a simulated time of 3 hours. To account for the variability
due to randomness, all calculations are carried out 10 times and the mean of
these values is used as the results.
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Figure 12: Mean bubble radius along the domain for directed movement case.

5.4.1. Random movement of bubbles due to volume diffusion mechanism

The random movement of the bubbles by volume diffusion mechanism is
governed by the bubble diffusion coefficient, Dvol

b , which is defined by the
Eq.5. It was observed from the analysis that there was negligible movement
of bubbles via volume diffusion mechanism. After 3 hours of annealing, the
number of bubbles remained the same, 2647, as before. The mean value for
the diffusion coefficient of bubbles, Dvol

b also remained unaltered at a very
low value of 2.10*10−27 m2/s.

So, it could be concluded that there is no notable contribution of volume
diffusion mechanism on the random movement of the bubbles and, thus, no
additional impact on the fractional FGR.

5.4.2. Random movement of bubbles due to surface diffusion mechanism

The random movement of the bubbles by surface diffusion mechanism
is governed by the bubble diffusion coefficient, Dsurf

b , which is defined by
the Eq.9. Using the value of q as 1.5*10−29 m3, as proposed by Mikhlin for
UO2, to evaluate the value of Wb and multiplying the expression for Dsurf

b
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with Wb, we obtain the values for the diffusion coefficient of bubbles. The
values of diffusion coefficient with the suppression factor are found to be very
low and the mean value of Dsurf

b at t = 0 is 3.79*10−31 m2/s. There is no
movement of bubbles because of such low values of the diffusion coefficients.
After 3 hours of annealing, the number of bubbles remained the same, 2647,
as before. The mean value for the diffusion coefficient of bubbles, Dsurf

b also
remained unaltered at a very low value of 3.79*10−31 m2/s.

So, from this analysis of the random movement of bubbles, we can con-
clude that neither the volume diffusion mechanism nor the surface diffusion
mechanism can solely explain the observe FGR. However, since the Mikhlin’s
suppression term in the bubble diffusion coefficient suppresses the diffusion of
small bubbles, an interesting scenario can further be considered if we provide
the diffusion of vacancies into the grain and allow random motion of bubbles
via surface diffusion including the Mikhlin suppression term. As the bubbles
trap vacancies and grow, the suppression of diffusion of small bubbles would
reduce. This would eventually enhance the diffusion of such bubbles and
account for a higher fractional gas release.

5.5. Fission gas release due to combined random and directed bubble move-
ment in a vacancy concentration gradient

We now try to analyze the overall fractional FGR via intra-granular gas
bubble movement, taking into consideration the directed movement in the va-
cancy concentration gradient as well as the random movement of the bubbles
due to surface diffusion mechanism including Mikhlin’s suppression factor.

For incorporating the diffusion of bubbles due to surface mechanism, we
determine the diffusion coefficient of bubbles by Eq.9. There exists a vacancy
concentration gradient between the exterior surface (at low pressure) and the
over-pressurized bubbles within the grain. The bubble distribution for this
case at time t = 0, 3 and 110 h is depicted in Fig.13.

As can be observed from Fig.13, at time t = 3 h, the bubbles at the
vicinity of the exterior surface have moved significantly as compared to time
t = 0. At time t = 110 h, this bubble movement is extended further into the
solid. The number of bubbles in the domain decreased from 2647 bubbles
at time t = 0 to 2560 bubbles at t = 3 h and to 1879 bubbles at time
t = 110 h. The mean diffusion coefficient of bubbles increased from its initial
value of 3.76*10−31 m2/s at t = 0 to 6.69*10−23 m2/s at 3 hours and reached
3.91*10−23 m2/s after 110 hours. The fractional FGR increased to 0.84% in
3 hours and to 2.32% in 110 hours.
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t = 0

t = 3 h

t = 110 h

Figure 13: Bubble movement in a vacancy concentration gradient with random movement
of bubble by surface diffusion for 110 hours of simulated time (enlarged view).

We notice that the bubble diffusion due to surface diffusion was enhanced
as the vacancies were trapped by the bubbles and caused significant bubble
movement. The reduction in number of bubbles was, however, attributed
majorly to the coalescence of bubbles rather than the transfer of bubbles
outside the grain and thus, the FGR is still too low. The values of various
parameters at time t = 0, 3 and 110 h for the case are presented in Table 5
and the mean radius of bubbles along the domain is depicted in Fig.14.

time Mean Db Number of Mean radius Mean gas FGR
(hr) (m2/s) bubbles (nm) content (at) (%)

0 3.76*10−31 2647 0.719 167.66 -
3 6.69*10−23 2560 0.743 171.65 0.84

110 3.91*10−23 1879 0.899 231.09 2.32

Table 5: Evolution of various parameters with time for the combined directed and random
movement case.

The bubble diffusion coefficient by surface diffusion using Mikhlin’s sup-
pression term depends on two opposing factors depending on the radius of
bubbles. The first term in Eq.9, reduces the bubble diffusion coefficient as the
radius of the bubble increases. At the same time, increasing the radius causes
the suppression factor term (Wb) to increase making the bubble diffusion co-
efficient to increase. Fig.15 depicts the overall mean diffusion coefficients of
bubbles at different distances within the domain. It can be observed that
for time t = 3 h, the mean diffusion coefficient of bubbles in the vicinity of
the exterior surface increases. This implies that the suppression factor term

28



Figure 14: Mean Bubble radius along the domain for combined movement case.

dominates the first term in the bubble diffusion coefficient expression. The
extent of enhanced bubble diffusion coefficient is even further into the grain
as time goes to t = 110 h. We note that the bubble diffusion coefficient
enhancement due to increasing radius continues even after 110 hours of an-
nealing time. This means that the contribution of the suppression factor
term in aiding the bubble diffusion continues even at 110 hours of annealing,
however, the fission gas release observed in 110 hours is merely 2.32%, which
is not enough compared to the value from experiments.

Finally, we tried to continue the calculation until the concentration of
vacancies in the solid reaches equilibrium value. This was done to check the
extent to which the FGR values reach as long as the vacancy concentration
gradient lasts. The evolution of vacancy concentration in the domain length
with time is plotted in Fig.16. It can be noted from the figure that the
vacancy concentration values have not completely reached the equilibrium
value. The simulation was discontinued after a simulation time of t = 3080 h
because immediately after t = 3080 h, the two largest bubbles closest to
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Figure 15: Mean Bubble diffusion coefficient for bubbles along the domain.

the exterior surface coalesced with each other and formed a bubble with
diameter larger than the width of the domain. The model did not consider
any condition for such a scenario and thus, the simulation could not be
continued further. At t = 3080 h, only 20 bubbles remained in the domain
with a mean bubble diffusion coefficient of 1.39*10−21 m2/s and a mean
radius of 20.4 nm. At the end of the simulation, the vacancy concentration
at the rightmost end of the domain was 2.31*10−7 and at the leftmost end
was 1.63*10−7. The FGR from the grain in 3080 hours was still found to
be 2.158%, same as that at 110 hours. Note that this value is lower than
the one presented at t = 110 h (2.32%) as the calculations up to t = 110 h
were done 10 times to account for the variability due to randomness and the
mean of these calculations was used as the FGR value, whereas, only one of
these calculations was continued for the longer duration and it had a FGR
of 2.158% at t = 110 h.

The bubbles grew by trapping the vacancies and coalesced among them-
selves but did not move out of the grain, thus, not contributing to the FGR.
The bubble distribution after time t = 110 h and t = 3080 h is shown in
Fig.17. Even if we assume that the large bubble formed after coalescence
moves out of the grain at some point, the FGR would reach 18.5%. So, even
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Figure 16: Vacancy concentration values along the grain at different times.

though the simulation could not be carried out till the equilibrium value
for vacancy concentration was reached, it is still conclusive that the extent
of FGR would still be less than the equivalent target value of ∼27% from
experiments.

t = 110 h

t = 3080 h

Figure 17: Bubble distribution in the entire domain for the extended simulation.

Hence, from the analyses carried out in this paper, it can be concluded
that, as far as crystal atoms diffusion at the surface and the Mikhlin’s sup-
pression term are reliable, the gas bubble migration in a vacancy gradient
and its random movement cannot solely be responsible for the high value of
fission gas release observed during post-irradiation annealing tests. This re-
sult does not depend on the diffusion coefficient of vacancies since we showed
that even if the calculation is performed until vacancy equilibrium is reached,
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the FGR is too low as compared to the experiment.

5.6. Parametric investigation of Mikhlin’s suppression term

In order to study its influence on the diffusion of bubbles, the Mikhlin’s
suppression term was excluded from the expression of bubble diffusion coeffi-
cient. This was done by using the value of q in Eq.8 as 0, making Wb=1. The
resulting expression which is given by Eq.6 is used to calculate the diffusion
coefficient of bubbles. Here again, we do not consider the driving force of
vacancy diffusion and consider only random movement by surface diffusion
mechanism. The simulation was carried out for 3 hours of annealing. It
was observed that the mean value of Dsurf

b was very large. At time t = 0,

the mean value of Dsurf
b was found to be 6.04*10−13 m2/s. Due to the high

diffusion coefficient, the bubbles were observed to move quickly and coalesce
with each other and the number of bubbles reduced from 2647 to just 5 bub-
bles at time t = 3 h. The Dsurf

b values reduced gradually as the bubbles

grew by coalescence and the mean Dsurf
b at time t = 3 h was found to be

1.46*10−18 m2/s. The mean radius of the remaining 5 bubbles was found to
be 16.33 nm. The fractional FGR in this time was calculated to be 6.64%.
The bubble distribution via surface diffusion mechanism at time t = 3 h in
the entire domain is depicted in Fig.18.

Figure 18: Bubble distribution due to random movement by surface diffusion mechanism
at time = 3 h.

Since the FGR values were comparatively higher for this case in 3 hours
of annealing, this case was continued further for a longer duration. The
simulation was carried out up to the time t = 5500 h. It was, however,
realized that the remaining 5 bubbles also coalesced with each other leaving
a single large bubble to move within the grain. This bubble can no longer
coalesce with any other bubble, however, in principal, due to the periodicity
conditions along the top and bottom boundaries, there exist bubbles similar
to the one large bubble which it can interact with. So, in order to encounter
the problem in a more realistic manner, we consider a domain 10 times larger
in the vertical direction. For the new case, we consider the initial conditions
to be the same as at time t = 3 h. The new domain is a 5120nm*1280nm
box with grid size of 4 (i.e., a mesh of 1280*320 cells). Using the periodic
conditions, the initial number of bubbles for the new case are 50. The mean
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radius of the 50 bubbles is 16.3 nm and the mean bubble diffusion coefficient
is 1.46*10−18 m2/s. The initial conditions of the domain with the bubbles (at
t = 0, after the first 3 hours) are depicted in Fig.19.

t = 5500 h

t = 110 h

t = 0 h

Figure 19: Random movement of bubbles via surface diffusion in the new domain at time
t = 0, t = 110 h and t = 5500 h, after the first 3 hours.

The simulation was carried out and we observed that the bubbles moved
randomly within the grain. The bubbles majorly coalesced with each other
and at time t = 110 h, only 12 bubbles remained in the grain (Fig.19).
However, no bubbles moved out of the grain and thus, did not contribute to
any further FGR. As the simulation continued, further coalescence occurred
and also some bubbles moved out of the grain. By the end of the simulation
time of 5500 hours, only 3 bubbles remained within the grain. The mean
radius of these bubble was 57.96 nm and the mean bubble diffusion coefficient
was 1.085*10−20 m2/s. The overall FGR at t = 5500 h after the first 3 hours
was calculated to be 28.67%. This FGR had been achieved at ∼3366 h and
then the bubbles continued to move randomly within the grain but did not
contribute to further FGR. The bubble distribution at time t = 5500 h is
depicted in Fig.19.
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This investigation shows that even after neglecting the Mikhlin’s sup-
pression term, the random movement of bubbles do not explain the observed
FGR obtained after 3 hours of annealing. The target values for FGR are
reached in 3366 hours, which implies that in order to attain the target FGR
in 3 hours, the value of Ds required would have to be ∼ 103 times larger with
no Mikhlin’s suppression of surface diffusion. However, in our opinion, doing
so would lead us too far from the literature recommendations.

6. Conclusions

Using a new model for fission gas bubble and vacancy interactions, the
intra-granular gas bubble movement was analyzed for its impact on the over-
all gas release during post-irradiation annealing tests. This kind of mecha-
nistic evaluation had not been done before, to our knowledge. The model
was verified for various aspects like grid sensitivity, diffusion calculation and
bubble movement and was found to simulate the various aspects with good
precision. Intra-granular gas bubble migration and fission gas release was an-
alyzed via the mechanism of directed movement in a vacancy concentration
gradient as well as for the random movement without any driving force. A
combined effect of directed and random movement due to surface mechanism
was also analyzed. The conclusions for the different cases are as follows:

• The fission gas release due to directed movement in a vacancy concen-
tration gradient was found to be 0.11% in 3 hours and 1.2% in 110
hours of annealing at 16000C. This is far less than the values of fission
gas release observed during our post-irradiation annealing reference ex-
periment.

• The random movement of bubbles without the diffusion of vacancies
was tested for volume and surface diffusion mechanisms. The bubble
movement was negligible due to both, the volume diffusion mechanism
and the surface diffusion mechanism with the Mikhlin’s suppression
term.

• The fission gas release due to combined directed movement and random
movement by surface diffusion mechanism including Mikhlin’s suppres-
sion term was found to be 0.84% in 3 hours and 2.32% in 110 hours of
annealing time. Even the combined movement mechanism could not
account for the observed high values of fission gas release during the
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post-irradiation annealing test. Even if the calculation was continued
till the vacancy concentration gradient lasted, the value of FGR did
not increase beyond 2.32%.

• Parametric study of the Mikhlin’s suppression term to test its influence
on the overall FGR was done. It was found that the FGR is sensitive
to the Mikhlin’s suppression term. However, even after neglecting the
the Mikhlin’s suppression term completely, the random movement of
bubbles did not explain the observed FGR obtained after 3 hours of
annealing.

The analyses show that based on bulk diffusion coefficient of vacancies and
the surface diffusion of crystal atoms, and on the Mikhlin’s suppression term,
the directed movement of bubbles in a vacancy concentration gradient can-
not account for the large FGR which is observed during the post-irradiation
annealing test of UO2 sample that we took as a reference, even if the di-
rected movement is assisted by random movement of bubbles due to surface
diffusion. Further work would be necessary to get a better knowledge about
the suppression of surface diffusion, which seems to be a sensitive parameter.
Other mechanisms for gas atom migration within the grain such as influence
of dislocations need to be addressed in detail to understand the fission gas
release during post-irradiation annealing tests.
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Appendix A. Demonstration for the bubble velocity in a vacancy
gradient

Following Geguzin et al.[47], the vacancy field in the permanent state
around a bubble placed in a vacancy gradient is the following :

Cv(~r) = Cv0 + ~rB · ~∇Cv∞ + (Ceq
v (bubble)− Cv0 − ~rB · ~∇Cv∞)

R

r′
+ (1− R3

r′3
)~r′ · ~∇Cv∞

where
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• Cv(~r) is the vacancy concentration (fraction of sites) at a particular
position ~r

• Cv0 is the vacancy concentration (fraction of sites) at the origin of the
position vectors

• ~∇Cv∞ is the vacancy gradient far from the bubble

• Ceq
v (bubble) is the equilibrium vacancy concentration at the vicinity of

the bubble. It is the limit condition of the vacancy concentration field
at the bubble surface.

• ~rB is the position of the bubble center

• R is the bubble radius

• ~r′ = ~r − ~rB

We can re-write the above equation by adopting Cv0 for Cv0 + ~rB · ~∇Cv∞,
and taking the center of the bubble as the origin. This gives:

Cv(~r) = Cv0 + (Ceq
v (bubble)− Cv0)

R

r
+ (1− R3

r3
)~r · ~∇Cv∞

where the definitions that have changed are below :

• ~r is the position of a point, the center of the bubble being the origin

• Cv0 is the vacancy concentration (fraction of sites) that would be at
the origin (center of the bubble) if the bubble was not there

Now, if we consider the spherical coordinates (r, θ, ϕ), and the z-axis

placed in the direction of ~∇Cv∞, as in Fig.A.20.

Cv(~r) = Cv0 + (Ceq
v (bubble)− Cv0)

R

r︸ ︷︷ ︸
T1(r)

+ (1− R3

r3
)rcosθ‖~∇Cv∞‖︸ ︷︷ ︸
T2(r,θ)

Considering that the vacancy field does not depend on ϕ, it can be easily
verified that :

4(Cv(~r)) =
1

r2

∂

∂r
(r2∂Cv(~r)

∂r
) +

1

r2sinθ

∂

∂θ
(sinθ

∂Cv(~r)

∂θ
) = 0
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Figure A.20: Spherical coordinates in 3D.

The gradient of the vacancy concentration field is the sum of the gradients
of the T1 and T2 fields which can be described as:

~∇(T1) = −(Ceq
v (bubble)− Cv0)

R

r2
~e1

and

~∇(T2) =
∂T2

∂r
~e1 +

1

r

∂T2

∂θ
~e2 = ‖~∇Cv∞‖(1 + 2

R3

r3
)cosθ ~e1 − ‖~∇Cv∞‖(1−

R3

r3
)sinθ ~e2

The growth rate of the bubble is defined by :

∂V

∂t
= −Ω

∫
S

~ϕv · ~dS = Dv

∫
S

~∇(T1 + T2) · ~dS

where V is the volume of the bubble, t is the time, Ω is the vacancy volume,
~ϕv = − 1

Ω
Dv

~∇(Cv(~r)) is the vacancy flux (m−2), ~dS is the elementary surface
vector oriented towards the exterior of the bubble, and Dv is the vacancy
diffusion coefficient.

~dS = R2sinθdθdϕ ~e1

It appears that the contribution to the growth rate of the bubble is only
due to the T1 field, and this gives :

∂V

∂t
= 4πRDv(Cv0 − Ceq

v (bubble))
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Now, to calculate the bubble velocity, let us define the center of the bubble
at t as C, the center of the bubble at t + dt as C ′, a current point on the
bubble surface as M . C ′ may be defined as the center of voids of the bubble
at t and the different new voids added to the bubble in each point M of the
surface. With an arbitrary fixed origin point O, this gives :

~OC ′ =
1

V (t+ dt)

(
V (t) ~OC + dt

∫
S

~OM ×−Ω ~ϕv · ~dS
)

(A.1)

This may be transformed, using ~OM = ~OC + ~CM = ~OC + ~r, into :

~OC ′ =
1

V (t+ dt)

(
V (t+ dt) ~OC + dt

∫
S

~r ×−Ω ~ϕv · ~dS
)

~OC ′ = ~OC +
dt

V (t+ dt)

∫
S

~r ×−Ω ~ϕv · ~dS

The bubble velocity ~v is obtained by :

~v = lim
dt→0

~CC ′

dt
=
Dv

V

∫
S

~r ×
(
~∇(T1 + T2) · ~dS

)
Because of the spherical symmetry of the field T1, it does not contribute

to the bubble velocity. The contribution from T2 can be calculated using the
expressions of ~∇(T2) and ~dS to calculate ~∇(T2) · ~dS in function of r and θ
first, and then using the expression of ~r :

~r = Rcosϕsinθ~i+Rsinϕsinθ~j +Rcosθ~k

to integrate the limits on ϕ from 0 to 2π, and on θ from 0 to π. The
contributions along~i and ~j are nil because of the cylindrical symmetry of the
problem.

Finally, the expression for the bubble velocity is:

~v = 3Dv ‖~∇Cv∞‖~k

Note that this velocity has been calculated in the fixed referential. In the
model, we calculate the new center of the bubble using the numerical equiva-
lent of the relation A.1, and the numerical bubble velocity has been calculated

by ~v =
~CC′

dt
based on the output file that gives the bubble center position
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for each time of the simulation. So the numerical bubble velocity is also
calculated in the fixed referential.

In several articles, the bubble velocity is said to be equal to 2Dv ‖~∇Cv∞‖.
As Geguzin explains, this is the velocity of the bubble in a system of coor-
dinates linked to the matter far from the bubble, in the case where the solid
moves like in the test case, because of the vacancy flux that goes through it.

For a numerical simulation in 3D, the numerical velocity should be com-
pared with 3Dv ‖~∇Cv∞‖. However, the simulations presented in this paper
are 2D. That is why we need to find a theoretical expression in 2D.

In 2D, if we consider a bubble that has reached equilibrium with the
vacancy field at the position where its center stands (Ceq

v (bubble) = Cv0), the
solution for the vacancy field in 2D would be:

Cv(~r) = Cv0 + (1− R2

r2
)rcosθ‖~∇Cv∞‖︸ ︷︷ ︸
T2(r,θ)

In 2D, we verify that :

4(Cv(~r)) =
1

r

∂

∂r
(r
∂T2

∂r
) +

1

r2

∂2

∂θ2
(T2) = 0

X
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𝚥

𝑒$
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r
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Figure A.21: Polar coordinates in 2D.
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We also have

~∇(T2) =
∂T2

∂r
~e1 +

1

r

∂T2

∂θ
~e2 = ‖~∇Cv∞‖(1 +

R2

r2
)cosθ ~e1 − ‖~∇Cv∞‖(1−

R2

r2
)sinθ ~e2

and

~dS = Rdθ ~e1

The growth rate of the bubble is nil, which is consistent with the fact
that the bubble is already at equilibrium.

The velocity of the bubble is calculated exactly as above

~v =
Dv

V

∫
S

~r ×
(
~∇(T2) · ~dS

)
with ~r = Rcosθ~i+Rsinθ~j and V = πR2.

Finally, the expression of the bubble velocity in 2D and in a fixed
referential is :

~v = 2Dv ‖~∇Cv∞‖~i

This latter expression is the suitable one for comparison with our numer-
ical velocity in the paper.
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Appendix B. Target value of FGR (From spherical to planar ge-
ometry)

Following the idea of Evans[20], if the spherical grain is divided into shells
and the FGR comes from the outermost shell of the grain, then a sphere of
radius Rext would be depleted of gas bubbles up to the radius R1 (Fig.B.22).

Rext
R1

Figure B.22: Target value of FGR from spherical to Planar geometry.

The volume of FGR from the sphere can be represented as:

4

3
π(R3

ext −R3
1)

This volume represents 61% of total gas release, so

4

3
π(R3

ext −R3
1) = 0.61 ∗ 4

3
πR3

ext

which gives us the fraction of gas retained in the sphere as:

R1

Rext

= 0.7306

Now, if we consider the same R1 and Rext in a planar geometry, then the
fraction of gas released would be given by 1− R1

Rext
and this value is 0.2694.

So, for a 61% FGR in a spherical geometry, we can roughly have an
equivalent FGR of ∼ 27% in the planar geometry.
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des gaz de fission du dioxyde d’uranium irradié, Ph.D. thesis, Institut
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