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Abstract

Several 3D distributions of pin-by-pin data are produced in nodal core cal-
culations. In particular, burnup distributions are used as input of thermo-
mechanical computer codes in one-way coupling in order to verify the com-
pliance to safety constraints, either at operation or in accidental transients.
Their storage is required because they are computed with restart from pre-
vious calculations. Since one value is needed per fuel pin and per axial level,
the amount of data to be stored for one reactor configuration is very high.
Data compression techniques are very powerful to reduce the storage need.
They are proposed in this work to optimise the amount of data saved and
processed, without compromising the final accuracy. Specifically, we recom-
mend the Hotelling transform to achieve higher compression performances.
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1. Introduction

The calculation of pin-wise reaction rates is mandatory in reactor analysis,
and their storage takes several Giga-Bytes in memory for the many possible
configurations of the reactor. Computed data are archived in external files
for different purposes. Their storage allows restart capabilities in complex
calculations by accessing data from earlier code execution. Backups allow
also data recovery in case of deletion or corruption, and they are fundamental
in quality assurance protocols for non-regression testing and version release
of computer codes.

The most common application of 3D pin-by-pin data is probably the cal-
culation of the local power and burnup distributions in nodal codes. These
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computer codes reproduce the physics of neutron diffusion in the core, con-
sidering also the thermal feedback on the reactivity by a few group cross
sections model. The standard modelling approach in LWRs resolves the neu-
tron balance equation on a coarse mesh whose typical cell size is of the order
of the fuel assembly, or of its quarter (Lawrence, 1986). Pin-wise quantities
are then reconstructed by a dehomogenization procedure (Koebke and Het-
zelt, 1985). Specifically, pin burnups are currently computed by integrating
the dehomogenized pin power distributions in time along fuel exposure. Its
follow-up needs to store all spatial distributions on disk-file. These distribu-
tions are provided to thermo-mechanical computer codes in order to verify
the fuel rod performances and the mechanical integrity during load-following
operations and accidental transients.

The estimated storage need of pin-wise data corresponds to a large amount
of information indeed. For example, the core of a 900 MWe French PWR has
157 assemblies, each containing 264 fuel rods, and with 32 axial nodes we
have 1326336 values to store per 3D sample, which means about 5.3 Mega-
bytes (in simple precision). This is about twice the size of the full data stored
for one reactor state calculation point, which is based on a coarse nodal mesh
instead. The use of different types of pin-data other than burnup, like general
reaction rates, will increase the storage requirement. Besides, this amount
will certainly increase in the future because nodal methods are expected to
be replaced by pin-by-pin methods, and in this case nuclide distributions
will be stored per fuel cell as well. Taking into account that this information
has to be collected in all physical states of interest of the reactor, one can
easily go beyond Tera-Bytes. Recently compression techniques have been
applied successfully on power form factors, showing a considerable storage
gain (Tomatis, 2019). Compression techniques are also used in this work to
reduce this amount. We apply these techniques to compress the 3D burnup
distributions with a resolution of the fuel pin in the radial direction xy and
32 axial segments in the z direction.

2. Pin-by-pin Burnup

The core of the reactor is composed of several fuel elements stacked to-
gether according to a regular grid. The fuel elements are in turn assemblies
of thin and elongated rods surrounded by a coolant for heat removal and still
arranged in a similar geometrical grid. Since the characteristic lengths of
the assembly grids are usually the same, the whole construction becomes a
wide lattice with the same basic geometric cell. Therefore, the spatial mesh
upon which the pin burnup values are computed relies as well on a regular
geometry. Ordinary grids are either Cartesian or hexagonal.
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The burnup is a measure of thermal energy released in a given time per
unit mass of heavy metal fuel loaded at the beginning of the reactor operation.
It is customarily measured with the peculiar unit of MWd per metric tonne
(t), where the amount of energy is given by the product between the effective
full power in MW sustained along the days of operation (d). The varying
neutron flux in space draws uneven burnup distributions in time because
of leakage due to the finite domain and for the material differences of the
local fuel inventories. Because of the assumptions in the calculations, the
elemental values of a distribution are de facto the average burnups computed
in the single pins.

We are considering square rectangular fuel assemblies in the following,
because they are the most common in western LWRs. The extension to
other geometries, like the hexagonal grid typical of VVER, is straightforward.
Provided a core comprising K different assemblies, each made respectively
of X × Y rods along the x and y coordinates, the total amount of pin data
to compute is X × Y × Z × K, where Z is the number of planes chosen
along the z axial coordinate. A pin burnup is then identified as a positive
real-valued scalar quantity by the tensor notation bxyzk, with x = 1, . . . , X,
y = 1, . . . , Y , z = 1, . . . , Z and k = 1, . . . , K. The values are stored in
contiguous array, using for instance the FORTRAN column-major ordering
with memory-offset as:

b[(x, y, z, k)] = b[x+X(y − 1 + Y (z − 1 + Z(k − 1)))]. (1)

In this work, we call matricization the specific operation that rewrites
a multi-dimensional array as a matrix where two subsets of subscripts are
selected out of the original ones. For consistency, we keep the column-major
ordering with the subsets too. They designate then rows and columns of a
new matrix. The operation of recurrent concatenation of all subscripts in
order to obtain an array similar to the one in Eq. 1 is called vectorization
instead. Still about Eq. 1, we refer to B as the set of all possible matrices
B retrieved by matricization on b. Disregarding the order of the subscripts
in the subsets, its cardinality is |B| =

∑3
i=1

(
4
i

)
= 14. Here, the binomial

coefficients counts the number of subsets obtained by grouping together i
subscripts out of the original four on the first dimension of the target matrix
B. These matrices are suitable for compression by numerical transforms that
implement a linear transformation through matrix multiplication.

After considering the presence of guide tubes, which do not contribute
to the global burnup, it is preferable to store the pin burnup using its pin
index in the corresponding vectorized matrix for each fuel assembly. This
change makes one axis available for the time (or exposure) dependence in
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the multi-dimensional representation. We use the Cartesian coordinates to
refer to the positions of the fuel assemblies in the core, using letters and
numbers for rows and columns respectively. Each position is then uniquely
tagged by one letter and by one number, allowing the storage in lexical order
on a single axis (K in the following).

3. Data Compression

Compression is about different representations of the given data in more
compact forms, achieved by means of redundancy reduction with the goal
to keep the initial amount of information. This statement follows as simple
observation of practical applications. More rigorous definitions require a
wider introduction to information theory and coding, available elsewhere
(Shi and Sun, 1999).

Data compression fulfils various needs, like matching a target transmis-
sion bandwidth in communication channels or reducing the storage require-
ments. In this work, we focus our attention only on the second goal. Notably,
compression is classified as lossy or lossless according to possible information
loss occurring after reconstruction of the original signal from the compressed
data. Compression algorithms are based on different steps, summarised in
three main parts: a numerical transform, quantization and entropy encoding.
Here, we will consider only lossy compression, by truncating out the trans-
formed coefficients of negligible magnitude and without addressing quanti-
zation or other subsequent encoding.

The literature about compression offers many numerical transforms aim-
ing at signal decorrelation, that is looking for a signal decomposition in a new
linear space whose basis components are much less correlated. These linear
transformations provide then the weighting coefficients of the basis compo-
nents. The Hotelling transform (HT) and the Discrete Cosine Transform
(DCT) are introduced hereafter.

3.1. The Hotelling Transform

The Hotelling transform (HT) has high decorrelation capabilities, but it
is signal-adaptive and requires to store also the new basis vectors, which
depend on the input signal (Shi and Sun, 1999; Penna et al., 2007). The HT
is often referred to as the discrete version of the Karhunen-Loève transform.

Provided a matrix B = (bij) ∈ RI×J , we interpret its column vectors

as particular realizations of the random variable ~b whose mean vector is
~µ = E[~b] = (µi = E[bi], i . . . , I)T . If the variables bi are uniformly distributed,
the expected values can be estimated by the arithmetic averages of the J
samples: µi =

∑
j bij/J . The covariance between the components i and
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j of ~b is Cov(bi, bj) = E[(bi − µi)(bj − µj)], or in matrix notation Cb =

E[(~b− ~µ)(~b− ~µ)T ]. By definition Cb is diagonalizable, because it is real and
symmetric (Cb = CT

b ), so that its eigen-decomposition yields CbE = EΛ,
with the orthogonal matrix E (i.e. E−1 = ET ) containing the eigenvectors
per column and their corresponding eigenvalues in the diagonal matrix Λ,
which are all real. The HT consists in the linear transformation

~β = ET (~b− ~µ), (2a)

and its anti-transform is
~b = E~β + ~µ. (2b)

It is easy to verify that E[~β] = 0 and that the new covariance matrix in

the transformed space is purely diagonal, Cβ = E[~β~βT ] = ETCbE = Λ.
The two covariance matrices have the same eigenvalues for the similarity
transformation, Λ = diag(σ2

i , i = 1, . . . , I), being exactly the variances of

the elements of ~β. It follows that the new variables are fully uncorrelated.
After sorting the eigenpairs in decreasing order and retaining only L terms for
the reconstruction, it can be shown that the mean squared error MSE is equal
to the sum of the discarded variances: MSE = E[||~b−~b′||2] =

∑I
i=L+1 σ

2
i .

The spectral factorization of the real symmetric matrix Cb can be per-
formed by the QR algorithm, or by the singular value decomposition of the
matrix (B − ~µ ⊗ ~1J) when I > J . In this last case, the eigenvalues of the
covariance matrix are simply the squared non-vanishing singular values and
the left-singular vectors are their eigenvectors.

3.2. The Discrete Cosine Transform

The Discrete Cosine Transform (DCT) expands the input signal as a sum
of cosine functions at different frequencies. Its performances in terms of
energy compaction capabilities are close to the HT, with the advantage that
the basis components are analytical and do not need to be stored (Shi and
Sun, 1999). It is very popular in image compression, being a fundamental
element of the JPEG standards (Wallace, 1992).

The DCT reproduces a periodic discrete sequence of values. The repeti-
tion can be odd or even, with symmetry at the midpoint or at the border of
the peripheral cells, for a total of eight different variants. We use here the
DCT-II (even at both borders), which is the most used in image and sig-
nal processing. Thanks to the tensor representation, the multi-dimensional
ortho-normalized DCT-II is:

βlmnp =
K∑
k=1

Z∑
z=1

Y∑
y=1

X∑
x=1

dpkdnzdmydlxbxyzk, (3a)
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where,

dlx =

√
2− δl1
I

cos
π(x− 1/2)

I
(l − 1) for l, x = 1, . . . , X, (3b)

and similarly for the other 2D tensors acting on the remaining coordinates1.
The inverse transformation is exactly the ortho-normalized DCT-III:

bxyzk =
K∑
p=1

Z∑
n=1

Y∑
m=1

X∑
l=1

dkpdzndymdxlβlmnp. (4)

Both direct and inverse transformations can be efficiently implemented by
simple matrix multiplication and subsequent reshape of the partial products.

3.3. Truncation and Performance Parameters

The numerical transforms rewrite the original data through a weighted
sum, where in general many coefficients can be neglected still providing
a good approximation by anti-transformation. Concretely, the coefficients
whose magnitude is lower than a given threshold are zeroed. This truncation
process is called threshold coding. About the HT, it applies on the sorted
variances, thus discarding implicitly the associated eigenvectors. Instead
with the DCT, the zeroed coefficients do not follow a fixed order, forcing to
keep track of their positioning, which is sometimes disadvantageous. It must
be noted however, that lower frequencies take usually the higher coefficients,
suggesting to save only the coefficients in a given spectral zone. This last
truncation scheme is known as zonal coding.

The error after truncation is simply determined by e = b − b′, where b′

indicates the reconstructed value. Performances of compression techniques
are determined by the compression ratio CR, defined as the ratio between
the amounts of uncompressed and compressed data. Since we always deal
with real floating-point burnup values, these amounts are expressed by the
number of initial values in the dataset and the number of transform coef-
ficients retained after truncation. The memory saving is then defined as
η = 1− 1/CR.

4. Results

4.1. Characterization of the dataset

The studied configuration refers to a 900 MWe French reactor (157 fuel
assemblies) during an equilibrium fuel cycle (Coppolani, 2012; IRSN, 2008).

1By the Kronecker function, it is δl1 = 1 if l = 1, 0 otherwise.
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The core loading consists of 125 UO2 assemblies enriched at 3.25% w/o 235U
and 32 MOX assemblies with 5.3% and 5.4% average Pu content. The MOX
assemblies have 3 zones, with the central one showing highest Pu content.
The plan of the south-east core quadrant is reported in Fig. 1. The assembly
type, its batch number, and the average burnups at BOC and EOC (Begin-
ning/End Of Cycle) are specified per each FA. The core presents the half-π
rotational symmetry, which means that the total core configuration is given
by rotating three times the given quadrant of 90◦. The pin-by-pin burnup
values are calculated by the nodal code SMART, belonging to code suite
SCIENCE of Framatome (Girieud et al., 2001). The calculation geometry is
composed of 1 central assembly having spent 3 cycles, 52 assemblies having
spent 2 cycles, 36 assemblies having spent 1 cycle and 36 fresh assemblies in
the periphery of the core.

Fig. 2 shows the axial distributions of the pin burnup for the average fuel
rods of four assemblies from different batches. The average is carried on the
264 fuel rods and the coloured areas around the curves indicate the values
within two standard deviations. The distributions are plotted at different
times along the cycle with the average core burnup values in the legend.
The figure enlightens the out-in loading pattern. In fact, fresh fuel at the
position A08 has larger radial variations of the pin burnups because of the
fading neutron flux near the reflector. This trend increases during the cycle
exposure. As expected, higher axial values are observed in the lower part
of the core for the enhanced neutron thermalization and fission due to the
denser cooling water. Assemblies from other batches are exposed to a flatter
flux for being farther from the boundary. Radial variations of pin burnup
are smoothed out in time, since the generation of the power is favoured in
the zones where the pin burnup is lower and so the concentration of fissile
material is relatively higher. This is noticed in the same figure, and verified
in the assembly H08 which is located at the core center. Each batch counts
52 FAs, and this last assembly is the only one to incur an additional cycle
for the unequal size three batches per cycle loading. The 3D pin burnup
maps are available at 20 different times along the core exposure and at 32
axial planes evenly distributed on the active height. It must be considered
that the compression of the current datasets is quite challenging because the
numerical values span almost ten decades in magnitude.

4.2. Application of numerical transforms

The error observed by applying the (ortho-normalized) DCT-II on the
whole dataset is shown in Fig. 3a up to a saving of η = 80% (CR = 5). The
interest in the DCT is motivated by the theoretical advantages introduced in
section 3.2. The dotted green line marks the mean error, while the 5%, 50%
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Figure 2: Axial distributions of the average pin burnup for four
different FAs, selected at different core cycle burnup.

and 95% quantiles are plotted by dashed lines. The values of the pin burnup
vary on several decades over the entire core, that is between zero and a few
dozens of GWd/t. Although the 95% of the errors are smaller than 0.08%,
the maximum error given by the solid red line on the right axis is quite high
and is always located on the fresher pins of pin burnup less than 1 MWD/t.
Since these values are on the tail of the distribution and they are very low,
close to 0, relative errors are high. Although the average absolute error is
of a few hundreds of kWd/t, its maximum jumps rapidly above the MWd/t.
We note that unfortunately the error distribution has large tail.

Indeed the CR should be halved to account for the additional storage for
the positions of the retained coefficients, for which an unsigned char data
type is assumed, except for the dimension of the number of fuel rods that
demands 16 bits. An option to get rid of this disadvantage is zeroing terms by
the zig-zag scheme (Shi and Sun, 1999), but no significant improvement was
noticed in this case. This particular scheme selects all elements belonging to
a given (multi-dimensional) plane perpendicular to the main diagonal.
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When applying the transform separately per FA, it can be observed that
the higher errors are due to the FAs from batches 1 and 2 whose spatial
distributions of pin burnup are less uniform, see Fig. 3b. Consequently,
the acceptable savings depend on the FA position in the core, with 20% as
maximum storage gain for some assemblies from batch 2 still aiming at errors
smaller than 1 MWd/t. However, separate compression by FA can achieve
more interesting scores for about a third of the total FAs.

As suggested by the JPEG format, the DCT can also be applied on sub-
blocks of the input image, after partitioning the whole pixel space (Wallace,
1992). This means in practice that each DCT application elaborates a local
bi-dimensional signal using only a few frequencies. We have tried to repro-
duce the same application on our multi-dimensional arrays without remark-
ing significant improvement. In general, the results improve with hyper-cubic
samples of increasing size, i.e. 4, 8, 16, up to other powers of 2, but the un-
wanted large tails in the error distributions remain. The global trend is still
observed when truncating the transform coefficients.

The application of the HT needs a former matricization on the given
dataset, and there are apparently as many different combinations of i sub-
scripts out of the original four as

∑3
i=1

(
4
i

)
= 14. Indeed the true number

is rather the half as shown in Fig. 4, because the singular values neither
change by transposing the original matrix, nor by swapping the order of the
indices grouped on the same dimension of the matrix. The small differences
between these corresponding curves are mainly due to the different vectors
containing the average values per row of the tested matrices. According to
the maximum relative errors and to the 95% quantiles plotted in the figure,
the selection XYK-Z (or Z-YXK) is the best option with potential savings
higher than 60%. This is due to the fact that the XY burnup shapes are
quite similar along the Z axis, and redundancy is high. Briefly, we remind
that X, Y, Z, K represent the different FAs, the points in time during cycle
exposure, the fuel rods of a given assembly and the axial planes, respectively.

The storage of the new basis components in E and of the average val-
ues in ~µ causes an additional cost with respect to the DCT. After applying
the HT on a matrix of shape I × J and keeping only c variances (and the
corresponding eigenvectors), the storage reduces to S = Ic + Jc + I, as ex-
pressed by Eq. 2b. Since our goal is S < (IJ), c cannot exceed the threshold
I(J − 1)/(I + J). The maximum achievable CR is (IJ)/(2I + J). The as-
pect ratio of the matrix affects then the performances on two aspects. The
computational cost of the eigen-decomposition needed by the HT requires a
small I, which limits however the maximum achievable CR. Instead, I > J
can yield higher savings but with a more expensive HT computationally. The
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choice XYK-Z uses as secondary axis the Z-axis, which is the one with more
values, thus attaining potentially higher CR. Moreover, the decomposition
of this matrix is rather cheap.

5. Conclusion

The applications of the HT and of the multi-dimensional DCT on 3D
pin-by-pin burnup distributions are presented in this work. The numerical
transforms are briefly recalled to support the numerical results. The results
from different configurations of a PWR unit are analyzed all along a typical
equilibrium cycle. The given dataset shows values spanning over ten decades
at least, becoming a challenging test for compression algorithms based on
numerical transforms. In addition, the accepted relative and absolute tol-
erances on the reconstructed values were of the order of kWd/t. These are
consistent with the accuracy of nodal diffusion codes. Provided the strict
tolerances, the HT showed compression ratios of about 60% with a partic-
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ular matricization of the original data. Although several DCT applications
were tested, none could achieve comparable performances in compression to
the HT indeed.

We encourage the use of numerical transforms for compression purposes in
core reactor analysis also for other 3D pin-by-pin distributions. For instance,
a method to take into account the local history at pin level (Dall’Osso and
Hobson, 2017) needs the pin-by-pin distribution of the ratio between the
densities of 239Pu and 238U. Since nodal methods are expected to be replaced
by pin-by-pin methods, the distributions of the whole set of nuclides will be
stored in next generation codes. In this case compression techniques will be
unavoidable.
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