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Abstract 

The effect of the relativistic treatment of two-body reaction kinematics on atomic 

recoil energy and subsequent primary damage parameters, such as damage energy and 

number of atomic displacements, has been studied. If the emitted particle has a mass 

larger than the incident particle, the ratios of relativistic quantities in comparison to the 

classic mechanical ones can be null and infinite due to the null recoil energies. However, 

the relativistic corrections on recoil energies are limited in [-0.6%, 0.5%] and [-6%, 5%] 

for 20 MeV and 200 MeV neutron discrete (n,𝛼) reactions of 56Fe. For (n,n’) and (n,p) 

reactions of any nucleus, the relativistic corrections are about 1% on recoil energy for 

a 20 MeV incident neutron, while the corrections can be more than 30% (about 10% on 

average) for 200 MeV incident energy. The relativistic effect is less than 5% on (𝛼,n) 

reaction inducing recoil energy of any nucleus (and within 0.6% on atomic 

displacement damage for 56Fe) for secondary energy lower than the incident energy of 

200 MeV. On the other hand, about 10 keV and 1500 keV broader Primary Knock-on 

Atom (PKA) spectra are respectively found for 20 MeV and 200 MeV neutron-induced 

(n,n’), (n,p), and (n,𝛼) reactions of 56Fe. Therefore, the relativistic treatment of two-

body reactions should be applied for computing PKA spectra and subsequent radiation 

damage for high energy neutrons. 

 

Keywords: Relativistic effect, Two-body reaction, Atomic displacement damage, 

Recoil energy, Damage energy 

1. Introduction 

Many physical properties of materials are changed after their irradiation by an 

energetic particle bombardment. The Single Event Effect (SEE) is an example of the 

change of physical properties under irradiation. Extensive studies on irradiation damage 

have been carried out over the past decades. The stable crystallographic defects in 

materials are formed after displacement cascades induced by the Primary Knock-on 

Atom (PKA). Many models have been developed to calculate the number of 

Displacements per Atom (DPA), which is proposed to quantify the primary radiation 
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damage. 

Thanks to the development of computation capacity, Molecular Dynamics (MD) 

can calculate the DPA in crystalline using interatomic potentials. Examples of MD 

simulations on semiconductor and metals can be found in Ref. [1]. MD simulation 

allows us to compute irradiation damage for all types of materials, including polyatomic 

materials such as pyrochlore La2Zr2O7 [2]. However, MD simulations are difficult in 

the case of high PKA energy owing to the huge computational cost. To overcome this 

drawback, the Cell Molecular Dynamics for Cascades (CMDC) [3] code has been 

developed to accelerate the MD simulations by treating only the “active box” rather 

than the whole domain of the simulation. Ortiz proposed another solution that uses the 

MD at low energy and the Binary Collision Approximation (BCA) [4] at high energy 

[5]. 

On the other hand, some universal DPA metrics have been developed including the 

prototype Kinchin-Pease (KP)-DPA model [6], the current international standard 

Norgett-Robinson-Torrens (NRT) formula [7] and the recently proposed Athermal 

Recombination-Corrected (ARC) model [8]. The former two are supposed to be 

available for all monatomic materials, while the latter introduces MD simulation results 

to correct the NRT-DPA metric. Details concerning the DPA metrics are presented in 

Refs. [9], [10]. The NRT-DPA metric and the ARC-DPA formulae are used in the 

present work and briefly presented in Section 2.3. 

Both MD simulation and DPA formulae use the PKA energy as a major parameter. 

In applications, the given quantities are the spectra of incident energetic particles, such 

as neutron spectra in nuclear reactors, rather than PKA spectra. For a given neutron 

spectrum, the corresponding PKA spectrum can be calculated by the standard code, 

SPECTER [11] and two recently developed codes DART [12] and SPECTRA-PKA 

[13]. SPECTER only uses the nuclear data library ENDF/B-V that was released in 1983. 

DART applies the formulae of classic mechanical kinematics. SPECTRA-PKA is based 

on NJOY [14], which also uses the classic mechanical formulae. Therefore, the 

relativistic effect has not been taken into account in these codes which transform the 

neutron spectra into PKA spectra. 

However, a recent study shows the importance of relativistic correction for neutron 

scattering reactions with incident energy above 20 MeV [10]. Because neutron-induced 

charged particle emission channels are generally open at MeV energy, the effect of 

relativistic treatment should be studied for these reactions. In particular, it is important 

to study the relativistic corrections for neutron energy above MeV energy, such as 200 

MeV DPA cross sections [15], higher than 50 MeV for the International Fusion 

Materials Irradiation Facility (IFMIF) [16], and even up to GeV energy for spallation 

neutron sources [17]–[19]. Therefore, the present work investigates the relativistic 

effect on PKA energy and DPA calculations for general two-body reactions, which 

include most of the reactions inducing atomic displacement. 
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2. Methods 

2.1 Recoil energy of PKA within the relativistic assumption 

Figure 1 illustrates the scheme of general two-body collision kinematics in the 

laboratory frame. The kinetic energies of the incident and the emission particles are 

respectively denoted by E and E’. The corresponding momenta are denoted by p and p’. 

Due to the negligible influence of thermal vibration of the target particle [20], the 

kinetic energy of the target is supposed to be 0. The recoil energy and momentum of 

the residual particle are denoted by ER and pR, respectively. m, M, m’, and M’ represent 

the rest masses of the incident, target, emission, and residual particles in the ground 

state, respectively. The emission angle and the recoil angle are respectively denoted by 

𝜑 and 𝛼. 

 

Figure 1. Scheme of the collision in a laboratory framework 

 

The special relativity can be used in a laboratory framework that is approximatively 

an inertial reference. For the system illustrated in Figure 1, the conservation of 

momentum shows: 

 𝑝′ sin 𝜑 = 𝑝𝑅 sin 𝛼, (1) 

 𝑝 = 𝑝′ cos 𝜑 + 𝑝𝑅 cos 𝛼. (2) 

Eliminating 𝛼 and denoting 𝜇 = cos 𝜑, one obtains: 

 𝑝𝑅
2 = 𝑝2 − 2𝑝𝑝′𝜇 + 𝑝′2. (3) 

On the other hand, the relationship between relativistic momentum and energy shows: 

 𝑝2𝑐2 + 𝑚2𝑐4 = (𝐸 + 𝑚𝑐2)2, (4) 

 𝑝′2𝑐2 + 𝑚′2𝑐4 = (𝐸′ + 𝑚′𝑐2)2, (5) 

 𝑝𝑅
2𝑐2 + 𝑀′2𝑐4 = (𝐸𝑅 + 𝑀′𝑐2)2. (6) 

For the sake of convenience, the rest energy is simply noted by the corresponding rest 

mass in the following equations. Replacing momenta by kinetic energies, the 

conservation of momentum before and after the reaction leads to: 

 𝐸𝑅(𝐸𝑅 + 2𝑀′) = 𝐸(𝐸 + 2𝑚) + 𝐸′(𝐸′ + 2𝑚′) − 2√𝐸𝐸′(𝐸 + 2𝑚)(𝐸′ + 2𝑚′)𝜇.(7) 

Because both the recoil energy and the right-hand side of Eq. (7) are always positive, 

the physical solution of Eq. (7) is: 
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 𝐸𝑅 = √𝑀′2 + 𝐸(𝐸 + 2𝑚) + 𝐸′(𝐸′ + 2𝑚′) − 2√𝐸𝐸′(𝐸 + 2𝑚)(𝐸′ + 2𝑚′)𝜇 − 𝑀′.(8) 

The first order approximation of Eq. (8) is: 

 𝐸𝑅 =
1

2𝑀′ [𝐸(𝐸 + 2𝑚) + 𝐸′(𝐸′ + 2𝑚′) − 2√𝐸𝐸′(𝐸 + 2𝑚)(𝐸′ + 2𝑚′)𝜇]. (9) 

The approximation of Eq. (9) is valid for 𝐸𝑅 ≪ 𝑀′𝑐2 ≈ 𝐴𝑅  GeV where 𝐴𝑅  is the 

mass number of the recoil particle. For incident energy that 𝐸/𝑚 ≪ 1, one can further 

obtain the recoil energy within classic mechanical assumption as: 

 𝐸𝑅,𝑐 =
1

𝑀′ [𝑚𝐸 + 𝑚′𝐸′ − 2√𝑚𝑚′𝐸𝐸′𝜇]. (10) 

According to Eqs. (9) and (10), it is noticeable that for a specific reaction type and a 

given (𝐸′, 𝜇), the recoil energy is inversely proportional to the mass of the residual 

nucleus. Therefore, the 2-D plots of recoil energies for the 56Fe target are general for all 

the nuclei by a factor of the ratio of residual masses. Moreover, the ratio of relativistic 

recoil energy to the classic mechanical one 𝐸𝑅/𝐸𝑅,𝑐 depends only on reaction type. In 

other words, for a specific reaction type, the 2-D plots of 𝐸𝑅/𝐸𝑅,𝑐 are exactly the same 

for all nuclei. 

 Due to the conservation of energy, the allowed range of the secondary energy in 

Eqs. (9) and (10) is determined by the energy loss and the recoil energy. In the present 

work, the maximum secondary energies are taken from JEFF-3.1.1 [21] for 20 MeV 

incident neutron-induced continuum reactions. For 200 MeV neutron-induced reactions, 

roughly assuming that the recoil energy is proportional to the incident energy (which is 

the case for classical elastic scattering), the reasonable maximum secondary energy 

becomes: 

 𝐸𝑚𝑎𝑥
′ (200 MeV) = 𝐸 − 10(20 − 𝐸𝑚𝑎𝑥

′ (20 MeV) − 𝑄𝑡) − 𝑄𝑡, (11) 

where 𝑄𝑡 (in MeV) is the threshold energy of the continuum reaction. 

For a discrete reaction having determined excitation energy -Q’ (by convention, Q’ 

represents the increase in kinetic energy of the system due to excitation of nuclei), the 

conservation of energy before and after the reaction implies: 

 𝐸′ = 𝐸 + 𝑄 − 𝐸𝑅, (12) 

where  

 𝑄 = 𝑄′ + [𝑚 + 𝑀 − (𝑚′ + 𝑀′)]. (13) 

An equation governing 𝐸𝑅 can be determined by inserting Eq. (12) into Eq. (9). Due 

to the square root term in Eq. (9), one puts the square root term in one side and then 

takes the square to eliminate the square root for solving 𝐸𝑅 . Because the equation 

involving 𝐸𝑅  is a quartic equation, numerical methods are more feasible for a 

determined reaction Q-value. 

 For a specific Q-value at given incident energy, the relationship between 𝐸𝑅 and 

E’ given in Eq. (12) does not depend on reaction type nor on masses of particles. On 

the other hand, Eq. (9) points out that 𝐸𝑅  strongly depends on the residual mass. 

Therefore, the recoil energy calculated by combining Eqs. (9) and (12) with a selected 

Q-value and a selected target nucleus is not as general as the 2-D plots of 𝐸𝑅(𝐸′, 𝜇), 

which are representative of the corresponding reaction types by a factor of the ratio of 

residual masses (except that the maximum secondary energy depends on nucleus). 
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2.2 Damage energy 

From PKA kinetic energy to the primary radiation damage, one should consider the 

energy lost to the electronic excitation and ionization during the cascade of atomic 

collisions. The available energy to displace atoms is defined as damage energy. To 

compute the damage energy, Lindhard proposed integral equations governing radiation 

effects [22]. Using the Thomas-Fermi interatomic potential [23], [24]-based atomic 

collision cross sections [25], a universal partition function P that defines the fraction of 

PKA energy used to displace atoms is obtained for monatomic materials as [22]: 

 𝑃(𝜀) =
1

1+𝑘𝐿𝑔(𝜀)
, (14) 

where 𝜀 = 𝐸𝑃𝐾𝐴/𝐸𝐿, and 

 𝐸𝐿 = 30.724𝑍𝑅𝑍(𝑍𝑅
2/3

+ 𝑍2/3)
1/2

(𝐴𝑅 + 𝐴)/𝐴, (15) 

 𝑘𝐿 =
0.0793𝑍𝑅

1/3
𝑍1/2(𝐴𝑅+𝐴)3/2

(𝑍𝑅
2/3

+𝑍2/3)
4/3

𝐴𝑅
3/2

𝐴1/2
, (16) 

where Z and A (𝑍𝑅 and 𝐴𝑅 resp.) are respectively the atomic number and the atomic 

mass number of the lattice atom (PKA resp.). 𝑔(𝜀)  is numerically computed by 

Lindhard [22] and fitted by Robinson [26]: 

 𝑔(𝜀) = 3.4008𝜀1/6 + 0.40244𝜀3/4 + 𝜀. (17) 

 

Figure 2. Different partition functions for 28Si (left) and the corresponding ratios to 

Robinson’s analytic fitting (right) 

 

Lindhard’s results or Robinson’s partition function are available for all isotopes. 

However, Akkerman and Barak found a 𝑔(𝜀) expression different from Robinson’s 

formula for silicon by using the BCA [27]: 

 𝑔(𝜀) = 0.90565𝜀1/6 + 1.6812𝜀3/4 + 0.74422𝜀. (18) 
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Moreover, Coulter and Parkin [28] recalculated the partition function for 

monatomic materials for 𝑘𝐿 values of 0.12, 0.15, and 0.18 using Lindhard’s integral 

equation. For analytical expression of the partition function, the term 𝜀1/6  in 

Robinson’s function was replaced by 𝜀0.15. The average 𝑔 function for 0.12 ≤ 𝑘𝐿 ≤

0.18 and 0 ≤ 𝜀 ≤ 5000 obtained by Coulter and Parkin is [28]: 

 𝑔(𝜀) = 3.3967𝜀0.15 + 0.9863𝜀0.75 + 0.8490𝜀. (19) 

Although the analytical expression of Coulter is very different from that of 

Robinson, their results have only small differences (as illustrated in Figure 2). It is 

noticeable that the upper limit of Lindhard’s theory [22] is 24.9𝐴𝑅𝑍𝑅
4/3

 keV, which is 

107 MeV for 56Fe and 23.5 MeV for 28Si PKAs. 

2.3 DPA formulae 

Different DPA formulae are discussed in Ref. [9]. For the sake of convenience, this 

section briefly shows the two formulae used in the present work, the current 

international standard NRT-DPA and the MD based ARC-DPA formulae. Based on KP-

DPA formula [6] and Lindhard’s damage energy [22], the standard NRT-DPA [7] is 

expressed by: 

 𝑁(𝐸𝑎) = {

0, 𝐸𝑎 < 𝐸𝑑

1, 𝐸𝑑 < 𝐸𝑎 < 2𝐸𝑑/0.8
0.8𝐸𝑎

2𝐸𝑑
, 𝐸𝑎 > 2𝐸𝑑/0.8

 (20) 

where 𝐸𝑎  is the damage energy, 𝐸𝑑  is the average displacement threshold energy. 

The widely used value of 𝐸𝑑  is 40 eV for iron [29]. It is noteworthy that a recent 

Density Functional Theory (DFT)-MD study gives a value of 30 ± 2 eV [30]. 

Due to the overestimation of the NRT-DPA formula, Nordlund et al. [8] proposed 

the ARC-DPA by introducing the relative damage efficiency 𝜉: 

 𝑁(𝐸𝑎) = {

0, 𝐸𝑎 < 𝐸𝑑

1, 𝐸𝑑 < 𝐸𝑎 < 2𝐸𝑑/0.8
0.8𝐸𝑎

2𝐸𝑑
𝜉(𝐸𝑎), 𝐸𝑎 > 2𝐸𝑑/0.8

 (21) 

where: 

 𝜉(𝐸𝑎) = (1 − 𝑐𝑎𝑟𝑐) × [0.8
𝐸𝑎

2𝐸𝑑
]

𝑏𝑎𝑟𝑐

+ 𝑐𝑎𝑟𝑐, (22) 

where the coefficients 𝑏𝑎𝑟𝑐  and 𝑐𝑎𝑟𝑐  need to be fitted. Ref. [8] proposes 𝑏𝑎𝑟𝑐 =

−0.568 and 𝑐𝑎𝑟𝑐 = 0.286 for iron using 𝐸𝑑 = 40 eV. 

3. Results and Discussion 

3.1 Relativistic effect on recoil energy 

Figure 3 and Figure 4 respectively show the recoil energy within special relativity 



7 
 

(in MeV) versus 𝐸′  and 𝜇  for 20 MeV and 200 MeV neutron-induced proton 

production reaction (n,p) and 𝛼 production reaction (n,𝛼). It is remarkable that the 

results for the (n,n’) reaction are quite similar to those of the (n,p) reaction due to the 

quasi-identic masses of proton and neutron. Figure 5 illustrates the same results for 200 

MeV 𝛼 induced (𝛼,n) reaction of 56Fe. As explained in Section 2.1, these 2-D plots of 

the recoil energy are general for the corresponding reaction types by a factor of the ratio 

of residual masses (except that the maximum secondary energy depends on nucleus).  

 

(a) (n,p) 

 

(b) (n,𝛼) 

Figure 3. Recoil energy within special relativity (left, in MeV) for 20 MeV neutron-

induced proton emission reaction (a) and 𝛼 emission reaction (b) of 56Fe and the 

ratio of relativistic to classic mechanical results for all nuclei (right) 

 

As shown in Figure 3 and Figure 4, the global maximum (minimum resp.) recoil 

energies are always at 𝜇 = −1 (𝜇 = 1 resp.) because Eq. (9) points out the decrease 

of 𝐸𝑅 with 𝜇. For 𝜇 = −1, 𝐸𝑅 increases with 𝐸′, so that the global maxima are at 

𝐸′ = 𝐸𝑚𝑎𝑥
′ . In fact, according to Eq. (9), 𝐸𝑅 increases with 𝐸′ when 𝜇 ≤ 0. For a 

given 𝜇 > 0 , 𝐸𝑅  is not a monotone function of 𝐸′ . An example of a 200 MeV 
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neutron-induced (n,𝛼) reaction with 𝜇 =  1 is shown in Figure 6. 

  

(a) (n,p) 

  

(b) (n,𝛼) 

Figure 4. Recoil energy within special relativity (left, in MeV) for a 200 MeV 

neutron-induced proton emission reaction (a), and 𝛼 emission reaction (b) of 56Fe 

and the ratio of relativistic to classic mechanical results for all nuclei (right) 

 

The corresponding ratios of recoil energies with relativistic calculations to the 

classic mechanical ones 𝐸𝑅/𝐸𝑅,𝑐 are illustrated in the corresponding right figures of 

Figure 3, Figure 4 and Figure 5. Since 𝐸𝑅/𝐸𝑅,𝑐  is neither independent on target 

particles nor recoil particles, the 2-D plots of 𝐸𝑅/𝐸𝑅,𝑐  are the same for the 

corresponding reactions of all nuclei (except that the maximum secondary energy 

depends on nucleus). For the (n,n’) and (n,p) reactions, the relativistic corrections on 

recoil energy are always positive, while both positive and negative relativistic 

corrections are possible for (n,𝛼) and (𝛼,n) reactions. The maximum and minimum 

ratios for the (n,𝛼) reaction are respectively infinite and null. 

As a matter of fact, as the example shown in Figure 6, the recoil energy at 𝜇 =  1 

is null at 𝐸′ = 𝑚𝐸/𝑚′  for classic mechanical collision and at 𝐸′ =



9 
 

√𝐸(𝐸 + 2𝑚) + 𝑚′2 − 𝑚′  (larger than 𝑚𝐸/𝑚′because 𝐸(𝐸 + 2𝑚) + 𝑚′2 = (𝑚𝐸/

𝑚′ + 𝑚′)2 + [1 − (𝑚/𝑚′)2]𝐸2  and 𝑚′ > 𝑚 ) for relativistic collision. Different 

secondary energies at which the recoil energies are null lead to the values of infinity 

(i.e. 𝐸𝑅,𝑐 = 0) and zero (i.e. 𝐸𝑅 = 0) for the relativistic to classic mechanical ratio. 

For reactions such as (n,n’), (n,p), and (𝛼,n), because 𝑚′ ≤ 𝑚 and 𝐸′ < 𝐸, the recoil 

energy cannot be null, such extreme values of infinity and zero are not possible. More 

precisely, when 𝐸′ < 𝑚′𝐸/𝑚 or 𝜇 ≤ 0, the relativistic correction is always positive. 

  

Figure 5. Recoil energy within special relativity (left, in MeV) and 200 MeV 𝛼 

induced (𝛼,n) reaction of 56Fe and the ratio of relativistic to classic mechanical results 

for all nuclei (right) 

 

Figure 6. Recoil energies within special relativity and classical mechanics versus 

secondary energy for the 200 MeV neutron-induced (n,𝛼) reaction with 56Fe at 𝜇 =  1 

 

For incident neutron energy below 20 MeV, the relativistic treatment has less than 

3% correction on recoil energy. However, the relativistic effect should be taken into 
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account for high incident energy. Taking the examples of 200 MeV incident neutron, 

the relativistic recoil energies can be more than 30% higher than the classic mechanical 

ones. Moreover, large relativistic corrections on recoil energy lead to the broadening of 

PKA spectra. Table I gives the ranges of PKA energies for 20 MeV and 200 MeV 

neutron-induced (n,n’), (n,p) and (n,𝛼) reactions of 56Fe. The maximum recoil energy 

is about 10 keV and 1500 keV higher by considering the relativistic effect for 20 MeV 

and 200 MeV incident neutron, respectively. Such a considerable increase in maximum 

PKA energy implies that the range of energies for MD or BCA simulations should be 

extended when the relativistic effect is taken into account in PKA energy calculations.  

 

Table I. Recoil energy ranges of 20 MeV and 200 MeV incident neutron with 56Fe 

target within classic mechanical (𝐸𝑅,𝑐) and relativistic (𝐸𝑅) assumptions 

E (MeV) Reaction 
𝐸𝑅,𝑐 (keV) 𝐸𝑅 (keV) 

Min Max Min Max 

20 

(n,n’) 6.9 1250 7.1     1262     

(n,p) 2.2 1332  2.3 1345 

(n,𝛼) 0.0 2955  0.0 2970 

200 

(n,n’) 0.6 14245   0.8 15743 

(n,p) 0.4 14275   0.5 15780 

(n,𝛼) 0.0 33544   0.0 35318 

 

Figure 7. Recoil energy within special relativity versus secondary energy obtained 

with Eq. (9) (𝜇 = −1, 0, 1) and Eq. (12) (blue lines) for 20 MeV neutron discrete (n,p) 

reactions of 56Fe 

 

Because the minimum PKA energies are quite smaller than the maximum ones, the 

ranges of PKA spectra are approximatively equal to the corresponding maximum recoil 

energies. In addition, Eqs. (9) and (10) point out that ER and ER,c are inversely 

proportional to the residual mass. Consequently, for a specific reaction type at a given 

incident energy, the broadening of the ranges of PKA spectra due to the relativistic 
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effect is almost inversely proportional to the PKA mass. 

  
(1a) 20 MeV (n,p) reactions       (1b) 20 MeV (n,𝛼) reactions 

  
(2a) 200 MeV (n,p) reactions       (2b) 200 MeV (n,𝛼) reactions 

Figure 8. Recoil energy versus 𝜇 for relativistic kinematics and the corresponding 

relativistic corrections for 20 MeV and 200 MeV neutron-induced discrete p and α 

emissions of 56Fe 

 

For a determined reaction Q-value, the recoil energy has only one degree of freedom 

on 𝜇. Nevertheless, as mentioned in Section 2.1 the equation governing 𝐸𝑅 is a quartic 

equation. Numeric method is more feasible for calculating the recoil energy. Figure 7 

shows the relationship between 𝐸𝑅  and 𝐸′  according to both the conservation of 

momentum (i.e. Eq. (9)) and the conservation of energy (i.e. Eq. (12)) for the ground 

state ( 𝑄 = −2.91  MeV), the fifth excitation state ( 𝑄 = −3.25  MeV), and the 

thirteenth (and the last in the JEFF-3.1.1 nuclear data library [21], 𝑄 = −3.75 MeV) 

excitation state of proton production reactions. Because the recoil energy obeys both 

Eq. (9) and Eq. (12), the recoil energy for a given 𝜇 and a given Q is found at the 

intersection of the two corresponding curves.  

The numerical results for the relativistic recoil energies of (n,p0), (n,p5), and (n,p13) 

reactions versus 𝜇 and the corresponding relativistic corrections are plotted in Figure 

8 for 20 MeV and 200 MeV incident neutrons. The same results for (n,𝛼0) and (n, 𝛼10) 

reactions (ground state 𝑄 = 0.326 MeV and the last excitation level in JEFF-3.1.1 

with 𝑄 = −2.13 MeV) are also shown in Figure 8. Because the recoil energies of 
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discrete reactions are special cases included in the general case 𝐸𝑅(𝜇, 𝐸′) , the 

relativistic corrections are within the range determined by Eqs. (9) and (10) and 

illustrated in Figure 3 and Figure 4 (probably with a higher maximum secondary energy 

𝐸𝑚𝑎𝑥,𝑑
′  to cover the range of 𝐸′ for all discrete reactions).  

The relativistic correction is almost 1% (10% resp.) for 20 MeV (200 MeV resp.) 

neutron-induced (n,n’) and (n,p) reactions, while that of (n,𝛼) reactions is from -0.6% 

to 0.5% (from -6% to 5% resp.). It has been observed that for a specific discrete reaction 

type, the relativistic correction is not sensitive to the excitation energy. In fact, at low 

incident energy, the relativistic correction is quite small. At high incident energy where 

the relativistic correction is significant, compared with the total energy, the Q-value is 

negligible. Again, we notice that the relativistic corrections for discrete reactions 

depend on target nuclei, while the 2-D plots are representative of the corresponding 

reaction types by a factor of the ratio of residual masses (except that the maximum 

secondary energy depends on nucleus). 

3.2 Relativistic effect on damage energy 

Due to the electronic ionization and excitation, the damage energy should be studied 

for atomic displacement damage. Figure 10 (Figure 9 resp.) shows the relativistic 

damage energies and the corresponding relativistic corrections for 200 MeV neutron-

induced (n,p) and (n,𝛼) reactions (200 MeV 𝛼 induced (𝛼,n) reaction resp.) of 56Fe. 

Due to the small differences between different partition functions shown in Figure 2, 

all numerical results about the damage energy and DPA are based on Robinson’s fitting 

[26]. Because the damage energy is an increasing function of PKA energy, the 

maximum and the minimum damage energies are at the same positions as recoil 

energies. However, due to the decrease in the partition function with PKA energy (c.f. 

Section 2.2 and Figure 2), the distributions of damage energy are flatter than those of 

recoil energy. A direct consequence is the smaller relativistic correction on damage 

energy than that on recoil energy. 

 

Figure 9. Damage energy within special relativity (left, in MeV) for 200 MeV 𝛼 

induced (𝛼,n) reaction of 56Fe and the corresponding ratio of relativistic to classic 

mechanical results (right) 
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For reactions where 𝑚′ is evidently smaller than 𝑚, such as (𝛼,n) reaction, the 

minimum ratios of recoil energy 𝐸𝑅/𝐸𝑅,𝑐 (as shown in Figure 5) and those of damage 

energy 𝐸𝑎/𝐸𝑎,𝑐 (as shown in Figure 9) are at 𝜇 = 1 and 𝐸′ = 𝐸𝑚𝑎𝑥
′ . Therefore, the 

precise value of 𝐸𝑚𝑎𝑥
′  should be determined for computing the lower boundary of 

relativistic correction. For secondary energy lower than the incident energy, the 

relativistic correction decreases with increasing mass of the incident particle (e.g. 

comparison between Figure 9 and Figure 10(b)). 

Because the damage energy depends on the atomic number and atomic mass, the 

relative corrections for 56Fe are different to those of other isotopes. In addition, as 

shown in Figure 2, since the partition function depends greatly on PKA energy, for a 

specific PKA, same relative relativistic correction on PKA energy cannot necessarily 

have the same relative correction on damage energy. 

 

(a) (n,p) 

  

(b) (n,𝛼) 

Figure 10. Damage energy within special relativity (left, in MeV) and the ratio of 

relativistic to classic mechanical results (right) for proton emission reaction (a) and 𝛼 

emission reaction (b) of 56Fe with 200 MeV incident neutrons 
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3.3 Relativistic effect on DPA 

Sections 3.1 and 3.2 point out that infinite value and zero value are possible for the 

ratio of relativistic PKA energy or damage energy in comparison to the classic 

mechanical one due to different secondary energies at which the classic mechanical and 

relativistic recoil energies are null. However, due to the threshold of atomic 

displacement, these kinds of corrections have limited influence on displacement 

damage. To evaluate the relativistic effect on displacement damage, the standard NRT-

DPA metric [7] and the MD corrected ARC-DPA formula [8] are used. 

  

(a) (n,p) 

   

(b) (n,𝛼) 

Figure 11. Difference of relativistic and classic mechanical NRT-DPA for 20 MeV 

(left) and 200 MeV (right) incident neutrons for proton emission reaction (a) and 𝛼 

emission reaction (b) of 56Fe 

 

In the NRT-DPA model, DPA is proportional to damage energy when 𝐸𝑎 > 2.5𝐸𝑑, 

so the 2-D plot of NRT-DPA is quite similar to that of damage energy shown in Figure 
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9 and Figure 10. Figure 11 (Figure 12 resp.) shows the relativistic corrections on 

absolute DPA number for the 20 MeV and 200 MeV neutron-induced (n,p) and (n,𝛼) 

reactions (200 MeV 𝛼 induced (𝛼,n) reaction resp.) in terms of the NRT-DPA metric. 

Table II summarizes the maximum and minimum differences in DPA between 

relativistic and classic mechanical calculations for (n,n’), (n,p), (n, 𝛼 ), and ( 𝛼 ,n) 

reactions with 20 MeV and 200 MeV incident energies. 

 

Table II. Maximum and minimum differences in DPA based on NRT and ARC models 

for 56Fe by introducing the relativistic effect. The relative corrections are in Table III. 

E (MeV) Reaction Max-NRT Min-NRT Max-ARC Min-ARC 

20 MeV 

(n,n’) 19.87 1.38 5.74 0.44 

(n,p) 20.65 0.50 5.96 0.17 

(n,𝛼) 13.69 -8.76 b 3.97 -2.56 

(𝛼,n)a 12.98 -7.14 3.74 -2.07 

200 MeV 

(n,n’) 350.9 1.48 101.4 0.60 

(n,p) 344.2 0.99 99.5 0.43 

(n,𝛼) 413.4 -357.6 120.0 -103.9 

(𝛼,n)a 54.71 -125.0 15.74 -36.0 
a 𝐸𝑚𝑎𝑥

′ = 𝐸 is used to compute the maximum and minimum difference of DPA 
b Values in italics depend on the maximum secondary energy 

 

For (n,n’) and (n,p) reactions, as the examples shown in Figure 11, the minimum 

differences are at 𝐸′ = 𝐸𝑚𝑎𝑥
′ . On the other hand, Figure 10 shows that the minimum 

damage energies are also found at 𝐸′ = 𝐸𝑚𝑎𝑥
′ . Because the relativistic corrections are 

always positive and the minima correspond to the minimum damage energies, the value 

of 𝐸𝑚𝑎𝑥
′  is not so important for evaluating the relativistic effect on damage 

calculations for these two reactions. 

 

Figure 12. Difference of relativistic and classic mechanical NRT-DPA for 20 MeV 

(left) and 200 MeV (right) 𝛼 induced (𝛼,n) reaction of 56Fe 

 

However, because of the negative relativistic corrections for the (n,𝛼) and (𝛼,n) 



16 
 

reactions, the minimum differences are actually the maximum negative corrections for 

these reactions. It is the reason why the minimum differences are pointed out in Table 

II. Figure 11 shows that the minimum differences are found at 𝐸′ = 𝐸𝑚𝑎𝑥
′  for the 20 

MeV neutron (n,𝛼) reaction, while Figure 12 shows that the minima are at 𝐸′ = 𝐸𝑚𝑎𝑥
′  

for the (𝛼,n) reaction with 𝛼 energy up to 200 MeV. Therefore, the minima in Table II 

in italics depends on 𝐸𝑚𝑎𝑥
′ . If we change the 𝐸𝑚𝑎𝑥

′  of continuum reactions by the 

maximum Q-value (i.e. without considering excitation), these values would be smaller 

(larger in absolute values). However, because the recoil energies of discrete reactions 

are strictly included in 𝐸𝑅(𝐸′, 𝜇) in the range up to 𝐸𝑚𝑎𝑥,𝑑
′ , the minimum differences 

are lower than the real minima if 𝐸𝑚𝑎𝑥,𝑑
′  is used. 

The maximum relativistic corrections are quite close for (n,n’) and (n,p) reactions 

because of the very close masses for neutron and proton (𝑚𝑝/𝑚𝑛 = 0.99917) and 56Fe 

and 56Mn (𝑚56Mn/𝑚56Fe = 1.00008). The relativistic effect on the number of DPA is 

smaller for the (n,𝛼) reaction than (n,n’) and (n,p) reactions for 20 MeV neutrons, but 

larger for 200 MeV neutrons. Due to the much larger mass of 𝛼 than that of neutron, 

the relativistic correction of (𝛼,n) reaction induced DPA number is quite smaller than 

that of the neutron-induced reaction, especially for 200 MeV incident energy. 

3.4 Summary of relativistic corrections 

To globally evaluate the relativistic effect on atomic displacement, Table III 

summarizes the maximum ratios of relativistic quantities to the classic mechanical ones 

for recoil energy, damage energy, and the NRT metric-based DPA number. It is 

noticeable that the ratios of NRT-DPA given in Table III are exactly the same as the 

ratios based on ARC-DPA because the high PKA energies lead to the constant efficiency 

𝜉 = 𝑐𝑎𝑟𝑐. As explained in Section 3.1, the infinity for recoil energy and damage energy 

of the (n,𝛼) reaction is due to the null classic mechanical recoil energy. As for DPA, if 

there is one point at which the classic mechanical damage energy is below the threshold 

energy while the relativistic one is above, the ratio is infinite. 

 

Table III. Maximum ratio of relativistic quantities to the classical ones 

E (MeV) Reaction Recoil energy Damage energyb NRT-DPAb 

20 MeV (n,n’) 1.028 1.027 1.027 

 (n,p) 1.029 1.028 1.028 

 (n,𝛼) ∞ ∞ ∞ 

 (𝛼,n)a 1.005 1.002 1.002 

200 MeV (n,n’) 1.325 1.314 1.314 

 (n,p) 1.314 1.301 1.301 

 (n,𝛼) ∞ ∞ ∞ 

 (𝛼,n)a 1.053 1.006 1.006 
a 𝐸𝑚𝑎𝑥

′ = 𝐸 is used to compute the maximum and minimum difference of DPA 
b For 56Fe target 

 

For incident neutron energy lower than 20 MeV, the relativistic corrections are 
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within 3%. Except for the small region in which the relativistic effect is obviously more 

important than other regions (e.g. Figure 3), the relativistic corrections are about 1% in 

the damage calculation for the (n,n’) and (n,p) reactions. For 200 MeV neutron, the 

maximum corrections are more than 30% (and about 10% on average). Consequently, 

the computation of PKA spectra and damage cross sections for neutron energy up to 

200 MeV (and higher for spallation neutron sources) should be based on the relativistic 

kinematics.  

For a given incident energy, the relativistic effect is less important for incident 

particles with higher masses. As summarized in Table III, the maximum relativistic 

correction of 200 MeV 𝛼-induced neutron emission reaction is only 5% on PKA energy 

and lower on damage energy. In contrast, the relativistic effect is always taken into 

account for electron, positron and photon-induced damage calculations [31]. 

4. Conclusions  

The relativistic effect is not considered in traditional codes for PKA energy 

calculations with an external incident particle. The present work investigates the 

relativistic effect for general two-body reaction kinematics. The relativistic effect is 

further examined in atomic displacement damage calculations using the damage energy 

and two DPA formulae. For reactions where the mass of the emitted particle 𝑚′ is 

different to that of incident particle 𝑚 , both positive and negative relativistic 

corrections are possible on recoil energy as on atomic displacement damage. For 𝑚′ >

𝑚, due to the possible null recoil energy, the ratios of relativistic quantities, including 

recoil energy, damage energy, and DPA, in comparison to the classic mechanical ones 

can be infinite and null. For 𝑚′ = 𝑚, the relativistic correction is always positive. 

For a given incident energy, because the relativistic effect decreases with mass, the 

relativistic correction is generally less for heavier incident particles. For example, the 

relativistic correction on PKA energy is less than 5% for 200 MeV 𝛼-induced (𝛼,n) 

reaction with secondary energy lower than incident energy, while that of the 200 MeV 

neutron-induced (n,n’), (n,p) and (n,𝛼) reactions can be higher than 30%. In the case of 
56Fe target, the relativistic corrections are within 0.6% for the 200 MeV (𝛼,n) reaction.  

The relativistic corrections are about 1% (the maximum is within 3%) for 20 MeV 

neutron-induced scattering and proton production reactions. However, the relativistic 

corrections can be more than 30% (about 10% on average) higher than the classic 

mechanical ones for 200 MeV neutron-induced (n,n’) and (n,p) reactions. For discrete 

(n,n’) and (n,p) reactions of 56Fe, the relativistic corrections are respectively 1% and 

10% for 20 MeV and 200 MeV incident energy. Although the relativistic corrections 

can be null and infinite for the continuum (n,𝛼) reaction, the corresponding corrections 

on PKA energies range from -0.6% to 0.5% (from -6% to 5% resp.) for 20 MeV (200 

MeV resp.) neutron-induced discrete (n,𝛼) reactions of 56Fe target.  

In comparison with classic mechanical kinematical calculations, the broadening of 

the PKA spectra for a specific reaction at a given incident energy is quasi-inversely 

proportional to the PKA mass. For 56Fe target, about 10 keV (1500 keV resp.) broader 

PKA energy is found for 20 MeV (200 MeV resp.) neutron-induced reactions by 
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considering the relativistic effect. Consequently, the range of PKA energies for damage 

calculations should be extended. In addition, for incident neutron energy above several 

tens MeV, which is the case for the IFMIF [16] and spallation neutron sources, the 

relativistic effect should be taken into account for atomic displacement damage 

calculations. 
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