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ABSTRACT Broadly cross-reactive neutralizing antibodies (bNabs) represent powerful tools to combat human immunodeficiency
virus type 1 (HIV-1) infection. Here, we examined whether HIV-1-specific bNabs are capable of cross-neutralizing distantly related
simian immunodeficiency viruses (SIVs) infecting central (Pan troglodytes troglodytes) (SIVcpzPtt) and eastern (Pan troglodytes
schweinfurthii) (SIVcpzPts) chimpanzees (n � 11) as well as western gorillas (Gorilla gorilla gorilla) (SIVgor) (n � 1). We found that
bNabs directed against the CD4 binding site (n � 10), peptidoglycans at the base of variable loop 3 (V3) (n � 5), and epitopes at the
interface of surface (gp120) and membrane-bound (gp41) envelope glycoproteins (n � 5) failed to neutralize SIVcpz and SIVgor
strains. In addition, apex V2-directed bNabs (n � 3) as well as llama-derived (heavy chain only) antibodies (n � 6) recognizing both
the CD4 binding site and gp41 epitopes were either completely inactive or neutralized only a fraction of SIVcpzPtt strains. In contrast,
one antibody targeting the membrane-proximal external region (MPER) of gp41 (10E8), functional CD4 and CCR5 receptor mimetics
(eCD4-Ig, eCD4-Igmim2, CD4-218.3-E51, and CD4-218.3-E51-mim2), as well as mono- and bispecific anti-human CD4 (iMab and
LM52) and CCR5 (PRO140, PRO140-10E8) receptor antibodies neutralized >90% of SIVcpz and SIVgor strains with low-nanomolar
(0.13 to 8.4 nM) potency. Importantly, the latter antibodies blocked virus entry not only in TZM-bl cells but also in Cf2Th cells express-
ing chimpanzee CD4 and CCR5 and neutralized SIVcpz in chimpanzee CD4� T cells, with 50% inhibitory concentrations (IC50s) rang-
ing from 3.6 to 40.5 nM. These findings provide new insight into the protective capacity of anti-HIV-1 bNabs and identify candidates
for further development to combat SIVcpz infection.

IMPORTANCE SIVcpz is widespread in wild-living chimpanzees and can cause AIDS-like immunopathology and clinical disease.
HIV-1 infection of humans can be controlled by antiretroviral therapy; however, treatment of wild-living African apes with cur-
rent drug regimens is not feasible. Nonetheless, it may be possible to curb the spread of SIVcpz in select ape communities using
vectored immunoprophylaxis and/or therapy. Here, we show that antibodies and antibody-like inhibitors developed to combat
HIV-1 infection in humans are capable of neutralizing genetically diverse SIVcpz and SIVgor strains with considerable breadth
and potency, including in primary chimpanzee CD4� T cells. These reagents provide an important first step toward translating
intervention strategies currently developed to treat and prevent AIDS in humans to SIV-infected apes.

Received 17 March 2015 Accepted 19 March 2015 Published 21 April 2015

Citation Barbian HJ, Decker JM, Bibollet-Ruche F, Galimidi RP, West AP, Jr, Learn GH, Parrish NF, Iyer SS, Li Y, Pace CS, Song R, Huang Y, Denny TN, Mouquet H, Martin L, Acharya
P, Zhang B, Kwong PD, Mascola JR, Verrips CT, Strokappe NM, Rutten L, McCoy LE, Weiss RA, Brown CS, Jackson R, Silvestri G, Connors M, Burton DR, Shaw GM, Nussenzweig MC,
Bjorkman PJ, Ho DD, Farzan M, Hahn BH. 2015. Neutralization properties of simian immunodeficiency viruses infecting chimpanzees and gorillas. mBio 6(2):e00296-15.
doi:10.1128/mBio.00296-15.

Editor Stephen P. Goff, Columbia University

Copyright © 2015 Barbian et al. This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-ShareAlike 3.0 Unported
license, which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original author and source are credited.

Address correspondence to Beatrice H. Hahn, bhahn@upenn.edu.

This article is a direct contribution from a Fellow of the American Academy of Microbiology.

RESEARCH ARTICLE crossmark

March/April 2015 Volume 6 Issue 2 e00296-15 ® mbio.asm.org 1

 on A
pril 26, 2020 by guest

http://m
bio.asm

.org/
D

ow
nloaded from

 

http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://crossmark.crossref.org/dialog/?doi=10.1128/mBio.00296-15&domain=pdf&date_stamp=2015-4-21
mbio.asm.org
http://mbio.asm.org/


Simian immunodeficiency virus of chimpanzees (Pan troglo-
dytes) (SIVcpz) is the precursor of human immunodeficiency

virus type 1 (HIV-1), the causative agent of the AIDS pandemic
(1). Like HIV-1 in humans, SIVcpz is pathogenic in chimpanzees
and can cause substantial morbidity and mortality in its natural
host (2, 3). Long-term observational health studies in Gombe Na-
tional Park, Tanzania, revealed that SIVcpz-infected chimpanzees
have a 10- to 16-fold increased risk of death compared to unin-
fected chimpanzees and that infected females are less likely to give
birth and have a much higher infant mortality rate than unin-
fected females (2). Necropsy studies showed that SIVcpz-infected
chimpanzees can develop severe CD4� T lymphocyte depletion
and a histopathology consistent with end-stage AIDS (2, 4). Most
importantly, the Gombe community with the highest SIVcpz
prevalence rate suffered a catastrophic population decline (3).
Thus, SIVcpz infection has a substantial negative impact on the
health, reproduction, and life span of wild-living chimpanzees.

Chimpanzees acquired SIVcpz by cross-species transmission
and recombination of SIVs that infect monkeys (5). Although
only the central (P. t. troglodytes) and eastern (P. t. schweinfurthii)
subspecies are naturally infected, SIVcpz is widespread through-
out their habitats in west-central and eastern Africa, with overall
prevalence rates of 6% and 14%, respectively (6–11). Transmis-
sion of SIVcpz occurs by sexual routes, from infected mothers to
their infants as well as between chimpanzee communities through
the migration of infected females (2, 3). Thus, SIVcpz has the
potential to disperse over long distances and penetrate uninfected
chimpanzee populations (7, 10, 12). SIVcpz is also the source of
SIVgor, which emerged in western lowland gorillas (Gorilla gorilla
gorilla) following the cross-species transmission of an SIVcpz
strain from sympatric P. t. troglodytes apes (SIVcpzPtt) (13). Al-
though less prevalent than SIVcpz, SIVgor has been identified at
several locations throughout southern Cameroon, with some go-
rilla troops exhibiting high infection rates (14–16). Given its re-
cent emergence from SIVcpz, SIVgor may share some of the same
pathogenic properties. Thus, SIVcpz, and possibly also SIVgor,
contributes to the infectious disease burden of wild apes, which
are already highly endangered due to extensive habitat destruction
and relentless poaching (7, 10, 16–19).

Historically, chimpanzees have been used as an animal model
to test new therapies and vaccines for humans, including AIDS
vaccines (20–23), a practice that is no longer considered ethical
(24). However, the opposite has not been explored, i.e., whether
treatment and prevention strategies developed for HIV-1-infected
humans could benefit SIVcpz-infected chimpanzees. As chimpan-
zee and gorilla populations are dwindling in the wild, primatolo-
gists and conservation groups have become increasingly inter-
ested in exploring novel avenues to curb the spread of ape
pathogens (19, 25). In this context, broad and potent neutralizing
antibodies (bNabs) may be of utility (26–29). Although immuno-
gens capable of eliciting such antibodies do not yet exist, several
studies have shown that bNabs can prevent the acquisition and/or
suppress the replication of HIV-1 and simian-human immunode-
ficiency viruses (SHIVs) in humanized mice and rhesus macaques,
respectively (30–37). For example, antibody-mediated immuno-
therapy was effective in reducing systemic viral loads and improv-
ing immune responses in chronically SHIV-infected rhesus ma-
caques (36, 37). Administration of bNabs as purified proteins or
transgenes also prevented virus infection in animal models (30–
34, 38). Since antibody infusions in wild settings are not feasible,

delivery through recombinant vectors, such as adeno-associated
virus (AAV), may represent an alternative. AAV has an outstand-
ing safety record in humans as well as other animal species (39–
42). Moreover, a single administration by dart or an equivalent
has the potential to induce long-lasting antibody expression (30,
31, 38, 43). Recombinant AAV (rAAV) vectors could also be used
to deliver cocktails of potent neutralizing antibodies, which may
be able to reduce systemic viral loads.

First-generation bNabs failed to control HIV-1 replication
when administered to infected patients, suggesting that they were
of little or no clinical value (44, 45). However, recent advances in
HIV-1-specific B cell isolation and antibody cloning techniques
have led to the discovery of a large number of additional bNabs
(46–48), many of which neutralize HIV-1 with much improved
breadth and potency (27–29, 49–52). All bNabs target structurally
conserved regions on the HIV-1 envelope (Env) spike, including
(i) the CD4 binding site (CD4bs), (ii) peptidoglycans surrounding
N160 at the trimer apex in variable loops 1 and 2 (V1/V2), (iii) a
high-mannose patch surrounding N332 at the base of variable
region 3 (V3), (iv) the membrane-proximal external region
(MPER), and (v) glycan-associated epitopes at the interface of
exterior (gp120) and membrane-bound (gp41) Env glycoproteins
(46, 47, 53–56). In addition, antibodies directed against the host
receptors CD4 and CCR5 (57–60), as well as immunoadhesins
containing domains 1 and 2 (D1/D2) of human CD4 (61–63),
have been shown to have substantial anti-HIV-1 activity. While
these reagents inhibit a large number of pandemic (group M)
HIV-1 strains (64), their capacity to neutralize related lentiviruses
from chimpanzees and gorillas has not been examined. Here, we
used a panel of SIVcpz and SIVgor infectious molecular clones
(IMCs) to show that some but not all anti-HIV-1 bNabs and im-
munoadhesins are capable of neutralizing these viruses. Since the
Env proteins of SIVcpz and SIVgor strains are nearly twice as
divergent as those of the various HIV-1 group M subtypes, these
data yield new insight into the breadth and protective efficacy of
anti-HIV-1 antibodies.

RESULTS
Plasma samples from long-term HIV-1- and SIVcpz-infected
chimpanzees lack neutralization breadth. Almost 50% of HIV-
1-positive humans develop some degree of heterologous neutral-
ization breadth within 2 to 4 years postinfection (65), indicating
that the human immune system is capable of targeting conserved
epitopes in the HIV-1 envelope (Env) glycoprotein. To determine
whether this is also true for chronically infected apes, we tested
plasma samples from eight chimpanzees, who had been inocu-
lated with HIV-1 and/or SIVcpz 17 to 30 years earlier as part of
vaccine and/or pathogenesis studies (Table 1). Although three of
these chimpanzees (Marc, Bucky, and Josie) had undetectable
plasma virus at the time of sampling, they had high-titer antibod-
ies that reacted with HIV-1 Gag, Pol, and/or Env proteins on
Western immunoblots, suggesting that they were once produc-
tively infected (see Fig. S1 in the supplemental material). The re-
maining five chimpanzees were viremic, with plasma viral loads
ranging from 337 to �1,000,000 RNA copies/ml (Table 1).
Among the animals with the highest viral loads, Tika (�200,000
RNA copies/ml) was infected with HIV-1/NC, a pathogenic
chimpanzee-adapted strain of HIV-1 (22, 66). In contrast, Debbie
(�20,000 RNA copies/ml) and Cotton (�1,000,000 RNA copies/
ml) were infected with SIVcpzANT (20), an SIVcpzPts strain orig-

Barbian et al.

2 ® mbio.asm.org March/April 2015 Volume 6 Issue 2 e00296-15

 on A
pril 26, 2020 by guest

http://m
bio.asm

.org/
D

ow
nloaded from

 

mbio.asm.org
http://mbio.asm.org/


inally isolated from a wild-caught chimpanzee from the Demo-
cratic Republic of the Congo (67). Although Cotton was also
exposed to HIV-1/LAV (Table 1), reverse transcriptase PCR (RT-
PCR) analysis identified SIVcpzANT as the only replicating virus
in his plasma. Thus, the latter two animals represent rare examples
of captive chimpanzees with chronic SIVcpz infection.

To screen available plasma samples for neutralization breadth,
we generated a panel of infectious molecular clones (IMCs) of
SIVcpz and SIVgor strains by amplifying viral consensus se-
quences from fecal samples of wild apes (Fig. 1A). Members of
both the SIVcpzPtt lineage and SIVcpzPts lineage were included,
which differed in up to 48% of their Env protein sequence. (Three
previously reported strains of HIV-1 were used as controls.) All
IMCs, except for the T cell line-adapted, CXCR4-tropic HIV-1
SG3 strain, used CCR5 as the coreceptor and replicated efficiently
in primary human and chimpanzee CD4� T cells (6, 7, 11, 15,
68–70). Upon testing of the available plasma samples in the
TZM-bl neutralization assay, we found that seven of eight chim-
panzees, including the two SIVcpzANT-infected individuals, had
activity against the easy-to-neutralize (tier 1) HIV-1 SG3 strain
(Fig. 1B). All chimpanzee plasma samples, except for one (Tika),
also neutralized SIVcpzGAB1, with IC50 titers exceeding 1:1,000
in three animals. Since SIVcpzGAB1 was cloned from a viral iso-
late that was extensively propagated in human peripheral blood
mononuclear cells (PBMCs) (68), it likely also represents an easy-
to-neutralize (tier 1) chimpanzee virus. In contrast, little cross-
reactivity was observed against the remaining primary (tier 2)
HIV-1 and SIVcpz strains, with most plasma samples containing
very low-level (�1:50) or no neutralizing activity (Fig. 1B). Lon-
gitudinal plasma samples were available for two chimpanzees, one
of whom (Cotton) showed no neutralization breadth after more
than 12 years of infection. The second animal (Debbie) developed
antibodies that neutralized all SVcpz strains but with very low
titers (�1:70). Thus, despite the long duration of their infection
(Table 1), none of the chronically infected chimpanzees, including
the two SIVcpzANT-infected animals, developed appreciable
neutralization potency against heterologous HIV-1, SIVcpz, and
SIVgor strains (Fig. 1B).

Anti-HIV-1 CD4 binding site bNabs fail to neutralize SIVcpz
and SIVgor strains. Since all primate lentiviruses identified to
date can use the human CD4 receptor to gain entry into target cells
(7, 15, 70, 71) and since the CD4 molecules from humans, chim-
panzees, and gorillas are closely related (72), we asked whether
CD4 binding site (CD4bs) antibodies from HIV-1-infected hu-
mans could cross-neutralize SIVcpz and SIVgor strains. Testing
VRC01 (29), VCR03 (29), VRC-PG04 (51), VRC-CH30 (51),
VRC-CH31 (51), F105 (73), b13 (74), 45-46G54W (75), 45-46m2
(76), and 45-46m7 (76) in the TZM-bl assay, we found that most
of these antibodies neutralized the three HIV-1 Env controls po-
tently, with IC50s ranging from 0.004 to 1.2 �g/ml. (A monoclonal
antibody directed against herpes simplex virus glycoprotein D
served as a negative control.) The two exceptions were F105 and
b13, which are known to have only limited neutralization breadth
and potency (77). In contrast, none of these CD4bs antibodies
neutralized any SIVcpz or SIVgor strain at concentrations of up to
10 �g/ml (Fig. 2A). This was the case despite the fact that the panel
included some of the most potent CD4bs bNabs, such as 45-
46G54W, which is known to neutralize highly diverse HIV-1 strains,
with IC50s of �0.05 �g/ml (75).

To examine the reasons for this resistance, we compared viral
Env sequences for conservation of previously identified CD4 and
VRC01 contact residues (78, 79). Not surprisingly, most amino
acid residues required for CD4 binding were relatively well con-
served, but this was not the case for many VRC01 contact residues
(Fig. 2B). For example, residues 461 to 467 in variable loop 5 (V5),
which are known to be critical for VRC01 binding (78), were pres-
ent in all HIV-1 strains but exhibited considerable length varia-
tions in SIVcpz and SIVgor strains (Fig. 2B). Although the CD4
binding site of SIVcpz and SIVgor strains must be conserved to
maintain function, amino acid diversity in neighboring Env re-
gions likely causes clashes with anti-HIV-1 CD4bs antibodies.

Glycan-dependent variable loop bNabs lack neutralization
breadth against SIVcpz and SIVgor. In addition to the CD4 bind-
ing site, HIV-1 envelope glycoproteins contain conserved pepti-
doglycans in variable loops V1 and V2 and at the base of V3, which
represent targets for broadly cross-reactive neutralizing antibod-

TABLE 1 Clinical history of the chimpanzees studied

Ape Code
Date of birth
(mo/day/yr) Virus strain

Yr
infected

Duration of
infection (yr)

Plasma
sampling
date(s)
(mo/day/yr)

CD4� T cell
count
(cells/�l)a

Viral load
(RNA
copies/ml)

SIVcpz-
ANT
infectionc

Virus-
specific
antibodiesd

HIV
vaccine
history Reference

Marc C487 9/6/81 HIV-1/LAV 1984 30 11/8/11 1,154 �50 � None 21
Artica C544 2/13/79 HIV-1/LAV 1986 28 11/10/11 1,153 4,794 � None 23
Joye C542 2/13/79 HIV-1/LAV 1986 28 11/10/11 2,529 337 NDe LAV env 23
Tika C534 10/3/78 HIV-1/NC 1997 17 11/10/11 4 244,324 � None 22
Debbie X0284 9/23/85 SIVcpzANT 1996 18 1/21/10 NA ND ND ND None 20

10/26/10 NA 26,397 � �
6/28/11 NA ND ND ND

Cotton X0115 4/10/77 HIV-1/IIIB NAf �18 5/21/02 NA 77,142 ND ND NA 20
SIVcpzANT 1996 9/25/12 229 1,440,622 � �

11/25/14 220b 861,000 ND ND
Bucky NA NA NA NA NA 11/10/11 1,016 �50 � NA NA
Josie NA 5/18/81 NA NA NA 11/10/11 516 �50 � NA NA
a CD4� T cell counts were performed using blood collected in September 2010 unless otherwise noted.
b The CD4� T cell count was performed using blood collected in November 2014.
c �, SIVcpzANT-specific amplification and sequence confirmation.
d �, antibody reactivity determined using Western blot analysis (see Fig. S1 in the supplemental material).
e ND, not done.
f NA, not available.
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ies (46, 47). To examine the ability of these anti-HIV-1 bNabs to
neutralize SIVcpz and SIVgor strains, we tested apex V2-directed
antibodies PG9 (27), PG16 (27), and PGT145 (28) as well as the
V3-directed antibodies 10-1074 (52), PGT121 (28), PGT128 (28),
PGT135 (28), and 2G12 (80) in the TZM-bl neutralization assay.
Like the CD4bs bNabs, the glycan V3-associated bNabs failed to
cross-neutralize SIVcpz and SIVgor strains at concentrations of
10 �g/ml, except for PGT128, which neutralized a single SIVcpz-

Ptt (EK505) virus, with an IC50 of 0.02 �g/ml (0.13 nM) (Fig. 3A).
The apex V2-directed quaternary bNabs PG9 (27), PG16 (27), and
PGT145 (28) were considerably more cross-reactive and potently
neutralized four of six SIVcpzPtt strains (GAB1, EK505, MB897,
and MT145) (Fig. 3A). However, SIVgor and SIVcpzPts strains
were either poorly sensitive or completely resistant to neutraliza-
tion by the same bNabs.

Quaternary and glycan V3 bNabs neutralize by engaging the
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FIG 2 Neutralizing capacity of CD4 binding site (CD4bs) antibodies. (A) The ability of CD4bs monoclonal antibodies (listed on the right) to neutralize HIV-1,
SIVcpz, and SIVgor strains (listed on the bottom) is shown. Numbers indicate IC50s (in micrograms per milliliter) in TZM-bl cells, averaged from three different
experiments, with a heat map indicating the relative neutralization potency. The highest antibody concentration was 10 �g/ml. A herpesvirus antibody
(anti-HSV-gD) was used as a negative control. (B) Conservation of HIV-1, SIVcpz, and SIVgor strains in the CD4 binding region. An alignment of Env protein
sequences (left) in regions surrounding the CD4 binding site is shown. CD4 and VRC01 contact resides (indicated in the HXB2 reference strain) are highlighted
in orange and green, respectively. A logo plot above the alignment denotes the conservation of each amino acid, with the height of each letter indicating the
proportion of the sequences that contain the residue at that site. Dots indicate identity to the HXB2 reference sequence, and dashes represent gaps introduced to
improve the alignment.
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glycan shield, and removal of key glycans can abrogate this neu-
tralization (28, 81). For example, 10-1074, PGT121, PGT128,
PGT135, and 2G12 all bind a high-mannose patch that is centered
around the conserved N332 glycan, while PG9, PG16, and
PGT145 contact the N156 and N160 glycans and insert between
them to interact with glycan-obscured protein regions (27, 28, 52,
81). Examining SIVcpz and SIVgor Env sequences for NXS/T se-
quons, we found various degrees of conservation of these and
other relevant N-linked glycosylation sites (Fig. 3B). For example,
N332 was conserved in all three HIV-1 Envs but absent from all
SIVcpz and SIVgor Envs, potentially explaining the lack of cross-
neutralization of 10-1074, PGT121, PGT128, PGT135, and 2G12.
However, SIVcpzEK505 was potently neutralized by PGT128
(Fig. 3A), despite the absence of the N332 glycan. (EK505 is also
the only strain with a deletion at position 337.) Moreover, all
SIVcpz and SIVgor strains encode an NXS/T sequon at position
334, which could potentially compensate for the absence of N332
(82). Thus, the lack of N332 is unlikely to be the sole reason for the
inability of glycan V3-directed bNabs to cross-neutralize SIVcpz
and SIVgor. In contrast, the core epitopes of PG9, PG16, and
PGT145 were surprisingly well conserved among ape viruses
(Fig. 3B, left panel), with many SIVcpz and SIVgor Envs contain-

ing the essential N156 and N160 glycans as well as a lysine-rich
(KKKQ) motif in strand C of V1/V2 (83, 84). Given this degree of
conservation, it is not surprising that SIVcpzPtt strains GAB1,
EK505, MB897, and MT145 were exquisitely sensitive to neutral-
ization by PG9, PG16, and PGT145 (Fig. 3A). However, an intact
core epitope was not always associated with neutralization suscep-
tibility. Despite the presence of both N156 and N160 and the con-
served lysine motif, TAN1, TAN2, and TAN13 were completely
resistant to PG9, PG16, and PGT145 neutralization. Since these
viruses encoded V1 loops that were almost twice as long as those of
susceptible SIVcpzPtt strains and since such insertions have been
shown to confer neutralization escape to HIV-1 (85, 86), it is likely
that this explains the resistance of SIVcpzPts strains to apex V2-
directed bNabs.

HIV-1 bNabs directed against the interface of gp120 and
gp41 fail to cross-neutralize SIVcpz and SIVgor. The most re-
cently discovered class of anti-HIV-1 bNabs targets glycan-
associated epitopes at the interface of gp120 and gp41 (53–56).
Testing several representatives of this bNab group, including
8ANC195 (54), 35022 (53), PGT151 (56), PGT152 (56), and
PGT158 (56), we found that none had cross-neutralization poten-
tial (Fig. 4A). With the exception of 35O22, which neutralized a
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FIG 3 Neutralizing capacity of high-mannose-patch- and apex V2-directed antibodies. (A) The ability of peptidoglycan-associated monoclonal antibodies
(listed on the right) to neutralize HIV-1, SIVcpz, and SIVgor strains (bottom) is shown. Numbers indicate IC50s (in micrograms per milliliter) in TZM-bl cells,
averaged from three different experiments, with a heat map indicating the relative neutralization potency. Colored circles to the right of each antibody indicate
the N-linked glycans that are important for their neutralizing activity (orange, N156; purple, N160; pink, N301; green, N332; red, N386; yellow, N392) (27, 28,
52, 81). The highest antibody concentration used was 10 �g/ml. (B) Conservation of glycans associated with bNab activity. An alignment of HIV-1, SIVcpz, and
SIVgor Env protein sequences is shown, with predicted N-linked glycans (NXS/T) highlighted in red. Four residues comprising a lysine-rich motif in the V1/V2
strand (C), which together with glycans N156 and N160 form the core epitope for PG9, PG16, and PGT145, are highlighted in purple. N-linked glycans known
to influence bNab binding are highlighted above the alignment, with HXB2 numbering in black. The positions of variable loops (V1/V2, V3, and V4) are shown
in gray below the alignment.
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single SIVcpz strain (LB715) at an IC50 of 0.5 �g/ml (3.3 nM), all
other antibodies failed to block SIVcpz and SIVgor infection at
concentrations of up to 10 �g/ml (Fig. 4A). Since these bNabs are
also dependent on the presence of key glycans, we examined the
extent of sequence conservation in the corresponding Env regions
(Fig. 4B). For example, 8ANC195 requires N-linked glycosylation
sites at positions 234 and 276 (54), both of which are highly vari-
able in SIVcpz and SIVgor strains (Fig. 4B). Similarly, 35O22 uti-
lizes N-linked glycosylation sites at positions 88, 230, 241, and 625
(Fig. 4B), one of which (N230) is absent from all SIVcpz and
SIVgor strains. Thus, the absence of key N-linked glycosylation
sites may be one reason for the lack of cross-neutralizing capacity
of this class of bNabs. However, variation in other Env regions
must also be involved, since the glycosylation site contacts for
PGT151 (N611 and N637) were conserved in all viruses, yet this
monoclonal antibody also failed to cross-neutralize.

Camelid antibodies have limited cross-neutralization breadth.
Members of the Camelidae family produce antibodies that
lack light chains and thus comprise much smaller (heavy-chain-
only) antibodies with long complementarity-determining regions
(CDRs). It has thus been proposed that these single-chain anti-
bodies may be better equipped to bind to small occluded sites on
the HIV/SIV Env trimer than full-size antibodies (87). Indeed,

several camelid single-domain antibodies derived by immuniza-
tion with HIV-1 antigens have been shown to potently neutralize
genetically divergent strains of HIV-1 (76, 88, 89). To examine
whether this cross-reactivity extends to SIVcpz and SIVgor, we
tested a panel of llama-derived antibodies, including single-
domain antibodies JM4 (90), J3 (76), 3E3 (91), 2E7 (88), and
11F1F (92), as well as the bivalent antibody Bi-2H10, which con-
tains two molecules of 2H10 joined by a glycine-serine linker (93).
Of these, JM4 recognizes a region in gp120 that overlaps both the
CD4 and CCR5 binding sites, J3 and 3E3 target the CD4 binding
site, 2E7 and 11F1F recognize epitopes in the ectodomain of gp41
(76, 88, 90, 92), and 2H10 targets the membrane proximal exter-
nal region (MPER) (93). Interestingly, J3 and 3E3 were able to
neutralize a limited number of SIVcpzPtt strains at IC50s of
�5 �g/ml (�13 nM) (Fig. 5A), thus exhibiting greater activity
than conventional CD4bs antibodies, which were completely in-
active (Fig. 2A). This was also true for the anti-gp41 antibodies
2E7 and 11F1F, which neutralized four SIVcpzPtt strains and one
SIVcpzPts strain at IC50s of �10 �g/ml (�40 nM). However, this
breadth did not extend to the more divergent SIVcpzPts and
SIVgor viruses, and the bivalent MPER antibody Bi-2H10 was
unable to neutralize any SIVcpz and SIVgor strains (Fig. 5A).

Since the epitopes of 2H10, 2E7, 11F1F, and JM4 have been

FIG 4 Neutralizing capacity of antibodies targeting the interface of HIV-1 gp120 and gp41 regions. (A) The ability of glycan-associated antibodies (right) to neutralize
HIV-1, SIVcpz, and SIVgor strains (bottom) is shown. Numbers indicate IC50s (in micrograms per milliliter) from TZM-bl cells, averaged from three different
experiments, with a heat map indicating the relative neutralization potency. Colored shapes to the right of each antibody indicate the N-linked glycans that are associated
with antibody neutralizing activity. Antibody 8ANC195 contacts N234 (green circle) and N276 (green square), 35O22 utilizes N88 (blue circle), N230 (blue square),
N241 (blue triangle), and N625 (blue square), and PGT151 requires N611 (pink circle) and N637 (pink square) for optimal neutralization (53–56). The highest antibody
concentration used was 10 �g/ml. (B) Conservation of glycans associated with antibody neutralizing activity. An alignment of HIV-1, SIVcpz, and SIVgor Env protein
sequences is shown, with predicted N-linked glycans (NXS/T) highlighted in red. N-linked glycans known to influence bNab binding are highlighted above the
alignment, with HXB2 numbering in black. The positions of various Env regions are shown in gray below the alignment.
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FIG 5 Neutralizing capacity of camelid antibodies. (A) The ability of llama-derived (heavy-chain-only) antibodies (listed on the right) to neutralize HIV-1,
SIVcpz, and SIVgor strains (bottom) is shown. Numbers indicate IC50s (in micrograms per milliliter) from TZM-bl cells, averaged from three different
experiments, with a heat map indicating the relative neutralization potency. The highest antibody concentration used was 10 �g/ml. (B to D) Conservation of
antibody binding epitopes shown in panel A. Alignments of HIV-1, SIVcpz, and SIVgor Env protein sequences are depicted, with residues identical to the HXB2
reference shown in gray. Logo plots denote the conservation of individual amino acids within each epitope, with the height of each letter indicating the proportion
of sequences that contain the residue at that site. The letter “X” indicates residues within the 2H10 epitope that do not impact neutralization. JM4 contact residues
are indicated on top of the alignment. Sequences are numbered according to the HXB2 reference.
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mapped, we examined the corresponding amino acid sequences in
SIVcpz and SIVgor strains (Fig. 5B to D). This analysis showed
that none was particularly highly conserved among the ape vi-
ruses. All SIVcpz and SIVgor strains differed by one or more sub-
stitutions in the 2H10 epitope (Fig. 5B). The partially overlapping
2E7 and 11F1F epitopes were also variable in ape viruses, with all
SIVcpz and SIVgor sequences differing from the HIV-1 consensus
(Fig. 5C). Finally, there was considerable variation in the JM4
epitope (Fig. 5D), with contact residues I326, V372, and M434
conserved in HIV-1 but mutated in most (V372) or all (I326 and
M434) SIVcpz and SIVgor strains. Thus, epitope variation may
explain at least some of the neutralization resistance of SIVcpz and
SIVgor strains. However, in contrast to conventional CD4bs
and most glycan-dependent antibodies, llama-derived antibodies

neutralized a subset of SIVcpzPtt strains, possibly because of their
smaller size.

HIV-1 MPER bNabs neutralize SIVcpz and SIVgor strains.
Antibodies targeting the MPER of gp41 represent still another
class of potent anti-HIV-1 bNabs (49, 50). Among those, 4E10 and
10E8 exhibit the greatest breadth, having been shown to neutralize
98% of a large panel (n � 181) of HIV-1 pseudoviruses (49, 50).
To examine their ability to cross-neutralize ape viruses, we tested
4E10 and 10E8 against our panel of SIVcpz and SIVgor strains. In
contrast to all other anti-HIV-1 bNabs, 4E10 neutralized 9 of 12
SIVcpz and SIVgor strains, with a mean IC50 of 2.7 �g/ml
(18.1 nM), while 10E8 neutralized all ape viruses, with a mean IC50

of 0.7 �g/ml (4.4 nM) (Fig. 6A). An amino acid alignment of the
epitopes of these antibodies revealed considerable sequence con-

FIG 6 Neutralizing capacity of MPER antibodies. (A) The ability of two MPER antibodies (listed on the right) to neutralize a panel of HIV-1, SIVcpz, and SIVgor
strains (bottom) is shown. Numbers indicate IC50s (in micrograms per milliliter) from TZM-bl cells, averaged from three different experiments, with a heat map
indicating the relative neutralization potency. The highest antibody concentration used was 10 �g/ml. (B) Conservation of 4E10 and 10E8 epitopes. An alignment
of HIV-1, SIVcpz, and SIVgor Env protein sequences is depicted, with dots indicating identity to the HXB2 reference sequence. A logo plot denotes the
conservation of individual amino acids, with the height of each letter indicating the proportion of sequences that contain the residue at that site. Contact residues
of 4E10 (blue) and 10E8 (red) are highlighted above the alignment.
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servation (Fig. 6B), likely explaining their remarkable breadth
compared to all other anti-HIV-1 bNabs.

Anti-CD4 and CCR5 receptor antibodies potently neutralize
SIVcpz and SIVgor strains. Since CD4 and CCR5 protein se-
quences are highly conserved between humans and apes (72, 94),
we asked whether antibodies raised against the human receptors
could block SIVcpz and SIVgor infection. Both anti-CD4 and
anti-CCR5 antibodies were examined, including ibalizumab
(iMab) and PRO140, which have previously been shown to be safe
in human clinical trials (95–97). Using TZM-bl cells, which ex-
press human CD4 and CCR5, we found that both the anti-CD4

antibody iMab (96, 98, 99) and its improved version, LM52 (59),
neutralized most or all ape viruses, with geometric mean IC50s of
0.41 �g/ml (2.8 nM) and 0.12 �g/ml (0.8 nM), respectively
(Fig. 7A). PRO140, which targets the CCR5 coreceptor (57),
also neutralized all SIVcpz and SIVgor strains, with an IC50 of
0.34 �g/ml (2.3 nM) (Fig. 7A). Finally, bispecific versions of iMab,
LM52 and PRO140, in which these antibodies were linked to
single-chain variable fragments (scFv) of PG9, PG16, PGT128,
and 10E8 (60), were potent inhibitors, especially when the fusion
partner was also an effective neutralizer. For example, the bispe-
cific PG9-iMab and PG16-iMab antibodies neutralized the PG9/
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FIG 7 Neutralizing capacity of anti-host receptor antibodies (A) The ability of monospecific anti-human CD4 (iMab and LM52) and anti-CCR5 (PRO140)
antibodies as well as their bispecific derivatives (PG9-iMab, PG16-iMab, LM52-PGT128, and PRO140-10E8) (listed on the right) to neutralize a panel of HIV-1,
SIVcpz, and SIVgor strains (bottom) is shown. Numbers indicate IC50s (in micrograms per milliliter) from TZM-bl cells, averaged from three different
experiments, with a heat map indicating the relative neutralization potency. The geometric mean IC50 is shown for each antibody. (Only values for SIVcpz and
SIVgor strains that were below 10 �g/ml were included in the calculation.) (B) Correlation of TZM-bl- and Cf2Th-hu-derived neutralization data. Three bNabs
(10E8, PG16, and eCD4-Igmim2) were used to neutralize a subset of HIV-1 and SIVcpz strains (YU-2, GAB1, EK505, MT145, and TAN13) in TZM-bl and Cf2Th
cells expressing human CD4 and CCR5 receptors (Cf2Th-hu). IC50s from TZM-bl (x axis) and Cf2Th-hu (y axis) cells were plotted and analyzed using the
Spearman correlation test. (C) Correlation of Cf2Th-hu and Cf2Th-ch neutralization data. The same three bNabs shown in panel B were used to neutralize the
same subset of HIV-1 and SIVcpz strains in Cf2Th cells expressing human (Cf2Th-hu) and chimpanzee (Cf2Th-ch) CD4 and CCR5 receptors. IC50s from
Cf2Th-hu (x axis) and Cf2Th-ch (y axis) cells were plotted and analyzed using the Spearman correlation. (D) The ability of antireceptor antibodies (listed on the
right) to neutralize a subset of HIV-1 and SIVcpz strains (bottom) in Cf2Th cells expressing either human (left panel) or chimpanzee (right panel) CD4 and CCR5
receptors is shown. Numbers indicate IC50s (in micrograms per milliliter) averaged from three different experiments, with heat maps indicating relative
neutralizing potencies. The geometric mean IC50 is shown for each antibody. (Only values from SIVcpz strains were included.)
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PG16-sensitive GAB1 and EK505 strains with 2 orders of magni-
tude greater potency than iMab alone, but this enhancement was
not observed for viruses that were resistant to PG9 and PG16
(Fig. 3A and 7A). By far the most potent antireceptor antibody was
PRO140-10E8, which neutralized SIVcpz and SIVgor strains, with
a mean IC50 of 0.03 �g/ml (0.13 nM) (Fig. 7A).

To determine whether the anti-human receptor antibodies
would block virus entry in cells expressing chimpanzee CD4 and
CCR5, we developed a neutralization assay that utilized tran-
siently transfected Cf2Th cells. This canine thymus cell line lacks
CD4 and CCR5 but expresses a tat-inducible luciferase reporter.
Cf2Th cells were cotransfected with either human (Cf2Th-hu) or
chimpanzee (Cf2Th-ch) CD4 and CCR5 expression plasmids and
then validated by testing the neutralizing activity of anti-gp120
bNabs (n � 3), which should not be affected by entry molecules,
against a subset of HIV-1 (YU2) and SIVcpz (GAB1, EK505,
MT145, and TAN13) strains (Fig. 7B and C). The results showed
that IC50s from Cf2Th-hu cells were highly correlated with those
from TZM-bl cultures (Fig. 7B), and this was also true for IC50s
from Cf2Th-hu and Cf2Th-ch cells (Fig. 7C). Having validated the
Cf2Th-ch cell assay, we next examined the neutralizing capacity of
the antireceptor antibodies using a subset of SIVcpz strains
(Fig. 7D). Both mono- and bispecific antibodies blocked these
viruses in chimpanzee CD4- and CCR5-expressing cells, with
mean IC50s ranging from 0.30 �g/ml (PRO140) to 0.02 �g/ml
(LM52-PGT128). Thus, several anti-human receptor antibodies
that potently neutralized SIVcpz strains in cells expressing human
CD4 and CCR5 also neutralized these viruses in cells expressing
chimpanzee CD4 and CCR5.

CD4-containing antibodies and immunoadhesins potently
neutralize SIVcpz and SIVgor strains. Soluble CD4 (sCD4), as well
as immunoadhesins that contain the first two immunoglobulin-like do-
mains (D1 and D2) of CD4 linked to antibody constant regions,
are known to have broad anti-HIV-1 activity in vitro and in vivo
(61, 62, 100). To examine their breadth and potency against ape
viruses, we tested several members of this inhibitor class. Soluble
CD4 (101) and the more bioavailable CD4-Ig (102), in which the
D1/D2 domains of CD4 are linked to an IgG Fc region (Fig. 8A),
neutralized nearly all ape viruses, with mean IC50s of 2.0 �g/ml
(47.7 nM) and 2.1 �g/ml (23.1 nM), respectively (Fig. 8B). The
tetravalent PRO542, in which D1/D2 domains are linked to both
the constant heavy (CH) and light (CL) chains of IgG1 (Fig. 8A),
was slightly more potent and neutralized 10 of 12 ape viruses, with
a mean IC50 of 1.1 �g/ml (5.2 nM) (Fig. 8B). Finally, CD4-218.3-
E51, a CD4-induced (CD4i) neutralizing antibody (E51) linked to
D1/D2 via the VH chain (Fig. 8A), neutralized all SIVcpz and
SIVgor strains, with a geometric mean IC50 of 1.68 �g/ml (8.4 nM)
(Fig. 8B). Interestingly, other E51-based constructs that differed
in the length or amino acid composition of their linkers (CD4-
GS7-E51 [62], CD4-L1-E51, CD4-L14-E51, and CD4-L17-E51)
were much less broadly acting and/or potent (Fig. 8B), and this
was also true for a construct in which the D1/D2 domains were
linked to an anti-herpes simplex virus antibody (CD4-anti-
HSV-gD).

Some HIV-1 bNabs use tyrosine sulfation of their complementarity-
determining regions (CDRs) to mimic CCR5 sulfation and thereby
inhibit virus entry (103). Sulfopeptides derived from such anti-
bodies, including a 15-amino-acid tyrosine-sulfated peptide de-
rived from the CD4i antibody E51, have been shown to reproduce
this effect (104). When linked to an antibody Fc domain, this

peptide (CCR5mim) was able to block infection of diverse HIV-1
strains (105). However, its neutralization capacity was most im-
proved when fused to the carboxy terminus of CD4-Ig (Fig. 8A).
In fact, this enhanced CD4-Ig (eCD4-Ig) not only neutralized a
diverse panel of HIV-1 strains but also neutralized SIV of macques
(SIVmac) and HIV-2 isolates, with IC50s of �0.05 �g/ml (63).
Using TZM-bl cells, we found that eCD4-Ig neutralized SIVcpz
and SIVgor strains also more potently than CD4-Ig, with a mean
IC50 of 0.46 �g/ml (4.8 nM). However, this 5-fold enhancement
was modest compared to the 20- to 200-fold enhancement ob-
served for HIV-1 strains (63). Moreover, the use of CCR5mim
peptide variants previously shown to bind HIV-1 Envs with
greater affinity did not improve neutralization: eCD4-Igmim2 (63)
was slightly less potent than eCD4-Ig (IC50 of 0.62 �g/ml), and
eCD4-IgQ40A,mim2 (63) failed to neutralize two SIVcpzPts strains
(Fig. 8B). Addition of CCR5mim2 to the carboxy terminus of
CD4-218.3-E51 (CD4-218.3-E51-mim2) resulted in a 2-fold-
increased neutralization potency, while addition of the fusion-
inhibiting peptide T-20 (106) (CD4�218.3-E51-T20) had very
little effect (Fig. 8B). Thus, as previously shown for HIV-1, HIV-2,
and SIVmac (63), addition of entry-inhibiting peptides to the car-
boxy terminus of D1/D2-containing antibody constructs en-
hanced their ability to neutralize SIVcpz and SIVgor strains, al-
though the magnitude of this enhancement was much less
pronounced.

Neutralization of SIVcpz in primary chimpanzee CD4� T
cells. TZM-bl and CF2Th-ch cells identified a number of antiviral
and antireceptor bNabs that neutralized ape viruses with both
breadth and potency. To confirm this phenotype in a physiologi-
cally more relevant culture system, we tested these antibodies in
primary chimpanzee lymphocytes. Chimpanzee CD4� T cells
were isolated from the blood of three animals, activated using
autologous macrophages, and used to test the neutralizing capac-
ity of immunoadhesins (CD4-Ig, eCD4-Ig, and eCD4-Igmim2), the
MPER antibody 10E8, CD4-CD4i constructs (CD4-218.3-E51,
CD4-218.3-E51-mim2, and CD4-218.3-E51-T20), and antirecep-
tor antibodies (iMab, LM52, PRO140, and PRO140-10E8) (see
Fig. S2A in the supplemental material). Since chimpanzee blood
samples were limited, we were able to test only a single SIVcpz
strain (MT145), which was selected based on its ability to replicate
efficiently in CD4� T cells from multiple chimpanzee donors (71).
Using serial antibody dilutions (see Fig. S2A), we found that
MT145 was most potently neutralized by iMab, LM52, and
PRO140-10E8, with mean IC50s of 0.64 (4.3 nM), 0.68 (4.5 nM),
and 0.75 �g/ml (3.6 nM), respectively (Table 2). Immunoad-
hesins were roughly 10-fold less potent, with mean IC50s ranging
from 3.7 �g/ml (38.3 nM) for eCD4-Ig to 6 �g/ml (65.4 nM) for
CD4-Ig. As expected, the CD4bs antibody VRC01 had no inhibi-
tory activity (Table 2; see Fig. S2A). Thus, all antibody constructs
that had broad and potent anti-SIVcpz activity in the TZM-bl
assay also inhibited SIVcpz infection in chimpanzee CD4� T cells
(see Fig. S2B), although the observed IC50s were 10- to 100-fold
higher in the primary T cell cultures that permitted multiple
rounds of replication (see Fig. S2B).

DISCUSSION

In this study, we examined whether antibodies and immunoad-
hesins known to potently neutralize diverse strains of HIV-1 can
cross-neutralize related lentiviruses naturally infecting chimpan-
zees and gorillas to assess their utility for antibody-based strategies
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to combat ape SIV infections. We found that the great majority of
HIV-1-specific bNabs, including those directed against highly
conserved Env epitopes, such as the CD4 binding site, failed to
neutralize SIVcpz and SIVgor strains. However, one antibody di-
rected against the MPER region (10E8) as well as bispecific CD4
and CCR5 receptor mimetics (eCD4-Ig, eCD4-Igmim2, CD4-
218.3-E51, and CD4-218.3-E51-mim2) neutralized 100% of ape
viruses with low-nanomolar potency (Fig. 9; see Table S1 in the
supplemental material). Anti-host receptor antibodies (iMab and
PRO140) were also effective neutralizers, especially when fused to
the antigen binding regions of potent bNabs, such as 10E8 (Fig. 9;
see Table S1). These data indicate that pandemic HIV-1 shares an
extremely limited number of cross-reactive epitopes with its im-
mediate ape precursors. However, the sites of vulnerability that
were identified represent attractive targets across the entire HIV-
1/SIVcpz/SIVgor clade and may be of utility to combat other
HIV-1 lineages, including group O viruses, which are estimated to
have infected ~100,000 people in west-central Africa (16).

Neutralizing antibody responses in long-term HIV-1- and
SIVcpz-infected chimpanzees. Since ape-derived monoclonal
antibodies may be more appropriate for vector-mediated anti-
body gene delivery than human bNabs, we tested plasma samples
from eight long-term HIV-1- and SIVcpz-infected chimpanzees
for evidence of neutralization breadth (Table 1). Although all an-
imals tested had high-titer Env binding antibodies (see Fig. S1 in
the supplemental material), their plasma samples neutralized
only the easy-to-neutralize (tier 1) HIV-1 SG3 and SIVcpzGAB1
strains (Fig. 1B). Four animals had very low (Joye) or undetectable
(Marc, Bucky, and Josie) plasma viral loads, suggesting insuffi-
cient antigenic stimulation as a reason for the lack of bNab devel-
opment (Table 1). In addition, one animal (Tika) had severe
CD4� T cell depletion and thus may have suffered from immune
exhaustion (Table 1). However, two chimpanzees (Debbie and
Cotton) had plasma viral titers exceeding 20,000 RNA copies/ml,
suggesting sustained productive infection for almost two decades
(Table 1). Both were experimentally infected with SIVcpzANT, a

FIG 8 Neutralizing capacity of human CD4 D1/D2 domain containing immunoadhesins. (A) Schematic representation of six constructs. Human CD4 D1 and
D2 domains are shown in green, immunoglobulin (IgG) Fc and constant heavy- and light-chain (CH/CL) regions are shown in black, E51 variable heavy and light
(VH/VL) regions are shown in blue, CCR5 mimetic peptides are shown in yellow, and the T-20 fusion inhibitor is shown in red. (B) The ability of human CD4
containing antibody-like constructs (listed on the right) to neutralize a panel of HIV-1, SIVcpz, and SIVgor strains (bottom) is shown. Numbers indicate IC50s
(in micrograms per milliliter) from TZM-bl cells, averaged from three different experiments, with a heat map indicating the relative neutralization potency. The
highest antibody concentration used was 10 �g/ml. The geometric mean IC50 is shown for each construct. (Only values for SIVcpz and SIVgor strains that were
below 10 �g/ml were included in the calculation.)
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naturally occurring SIVcpzPts strain that was administered by
mucosal routes using plasma and/or peripheral blood mononu-
clear cells from a third chimpanzee (20). Despite this “near-
natural” infection history, only one of these animals (Debbie) ex-
hibited cross-reactive neutralizing activity, albeit with very low
titers (�1:70) (Fig. 1B). Since the kinetics of bNab development
may vary in chimpanzees and humans, it will be important to
follow this individual to examine whether neutralizing titers will
increase and to map the corresponding antibody specificities. It
may also be informative to molecularly clone the SIVcpzANT env
gene and study autologous neutralization responses and associ-
ated virus escape in Cotton and Debbie. Since very few apes and
humans can be studied decades after their infection in the absence
of antiretroviral therapy, this may provide an opportunity to un-
cover common pathways, as well as roadblocks, to bNab develop-
ment (107–109).

HIV-1sharesaverylimitednumberofcross-reactiveepitopeswith
SIVcpz and SIVgor strains. The envelope glycoprotein of HIV-1
group M viruses contains five regions of vulnerability that are
targeted by broadly cross-reactive neutralizing antibodies. All of
these, except for the MPER region, contain conformational
epitopes that span heavily glycosylated and/or structurally flexible
protein domains. Since even the most cross-reactive CD4bs bNabs
bind an area that extends beyond the CD4 binding pocket (110), it
is possible that variation in adjacent Env regions obstructs anti-
body binding and neutralization (77). SIVcpz and SIVgor Envs
vary extensively in regions surrounding the CD4 binding site
(Fig. 2B), thus providing a possible explanation for their resistance
to CD4bs bNabs (Fig. 2 and 5). In addition, the SIVcpz/SIVgor
Env spike may be more compact, such that CD4bs bNab epitopes,
although present, are less exposed. The fact that some camelid
(heavy-chain-only) CD4bs bNabs neutralize a subset of SIVcpz
strains is consistent with these hypotheses. Ape viruses also vary in
Env regions that are targeted by apex and high-mannose-patch
bNabs, which are typically associated with key N-linked glycosyl-
ation sites (Fig. 3 and 4). Although apex V2-directed antibodies
neutralized a large fraction (�60%) of SIVcpzPtt strains, these
bNabs lacked activity against SIVgor and SIVcpzPts viruses, most
likely because of substitutions within the core epitope and/or ex-
ceedingly long V1 loops. Nonetheless, antibodies directed against

the MPER region neutralized even the most divergent ape viruses
(Fig. 6). 4E10 neutralized all SIVcpzPtt strains, with a mean IC50 of
2.7 �g/ml (18.1 nM), but lacked activity against SIVgor and some
SIVcpzPts strains. In contrast, 10E8 neutralized all 12 SIVcpz and
SIVgor strains, with an IC50 of 0.7 �g/ml (4.4 nM). The latter
finding may be of interest for “neutralization fingerprinting”
studies (111), since inclusion of SIVgor and select SIVcpzPts Envs
into existing pseudovirus panels should permit the differentiation
of 4E10-like and 10E8-like bNab specificities in polyclonal patient
plasma samples.

Antireceptor antibodies circumvent SIVcpz and SIVgor Env
diversity. Antibodies raised against human CD4 and CCR5 recep-
tors are known to inhibit HIV-1 in vitro (112) as well as reduce
viral loads in infected patients in vivo (96). Here, we show that
these antibodies also neutralize SIVcpz and SIVgor strains in cells
expressing human as well as chimpanzee CD4 and CCR5 recep-
tors (Fig. 7). For example, iMab, which blocks HIV-1 infection by
binding to the second domain (D2) of human CD4 (113), neutral-
ized nearly all ape viruses with low-nanomolar potency in TZM-bl
as well as primary chimpanzee CD4� T cells (Table 2; see Table S1
in the supplemental material). This was also true for LM52, a
derivative of iMab with increased neutralization breadth (59), as
well as PRO140, which binds a complex epitope spanning multi-
ple extracellular CCR5 domains (114), both of which neutralized
all ape viruses in all cell types tested (Table 2; see Table S1). Thus,
antireceptor antibodies neutralized even the most divergent ape
viruses with remarkable potency, including in physiologically rel-
evant target cells (Fig. 7; see Fig. S2 in the supplemental material).

Although iMab achieved a 1-log reduction in virus titers in
chronically HIV-1-infected humans (96, 112), a second anti-CD4
antibody (2D5) afforded only partial protection in rhesus ma-
caques challenged with a simian/human immunodeficiency virus
(SHIV) (115). Because antireceptor antibodies have to block all
susceptible target cells, they may require antibody concentrations
at the site of virus entry that are difficult to achieve in vivo (115).
We thus tested bispecific constructs, in which iMab, LM52, and
PRO140 were linked to the antigen binding domains of potent
anti-HIV-1 bNabs. Indeed, PG9-iMab, PG16-iMab, and LM52-
PGT128 were able to outperform iMab and LM52 (Fig. 7; see
Table S1 in the supplemental material) but only when used to

TABLE 2 Neutralization potency in primary chimpanzee CD4� T cells

Antibody

IC50 fora:

HIV-1 SG3 SIVcpz MT145

�g/ml nM �g/ml nM

CD4-Ig 0.02 � 0.02 0.22 � 0.22 6.02 � 3.5 65.4 � 38.0
CD4-218.3-E51 0.04 � 0.04 0.20 � 0.20 3.74 � 1.4 18.7 � 7.0
eCD4-Ig �0.01 � 0.0 �0.10 � 0.0 3.68 � 1.1 38.3 � 11.5
eCD4-Igmim2 �0.01b �0.10 � 0.0 5.86b 61.0b

CD4-218.3-E51-mim2 �0.01 � 0.0 �0.05 � 0.0 3.93 � 1.5 19.7 � 7.5
CD4-218.3-E51-T20 �0.01 � 0.0 �0.05 � 0.0 4.90 � 4.4 24.5 � 22.0
VRC01 0.03 � 0.03 0.20 � 0.20 �10 � 0.0 �66.7 � 0.0
10E8 ND ND 6.07 � 1.82 40.5 � 12.1
iMab ND ND 0.64 � 0.41 4.3 � 2.7
LM52 ND ND 0.68 � 0.18 4.5 � 1.2
PRO140 ND ND 2.33 � 1.99 15.5 � 13.3
PRO140-10E8 ND ND 0.75 � 0.68 3.6 � 3.2
a Shown are average values from 3 donors � standard deviations, except as noted. ND, not done.
b Not applicable (only performed for 1 donor).
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neutralize the few ape viruses that were sensitive to PG9, PG16,
and PGT128 (Fig. 3). However, the bispecific PRO140-10E8 neu-
tralized all SIVcpz and SIVgor strains with up to 20-fold increased
potency, regardless of whether TZM-bl, Cf2Th-ch, or primary
chimpanzee CD4� T cells were used as target cells (Fig. 7 and 9 and
Table 2; see Fig S2 and Table S1 in the supplemental material). Of
all antireceptor antibodies tested, PRO140-10E8 was by far the
most potent, neutralizing 100% of ape viruses, with IC50s ranging
from 0.03 �g/ml (0.13 nM) in TZM-bl cells to 0.75 �g/ml
(3.6 nM) in chimpanzee CD4� T cells (Fig. 9). These findings are
consistent with the idea that bispecific antireceptor antibodies ex-
hibit enhanced neutralizing capacity because they concentrate
anti-Env bNabs at the site of virus entry (60). It will be important
to test PRO140-10E8 in the SHIV/macaque model to determine
whether its in vitro potency will translate into in vivo protection.

Bispecific receptor mimetics confer broad anti-SIVcpz and
anti-SIVgor activity. Several studies have shown that CD4-
containing immunoadhesins exhibit considerable anti-HIV-1 ac-
tivity and even protect a subset of macaques from SIVmac infec-
tion (63, 116). Among these, constructs that use receptor mimicry
to simultaneously engage both the CD4 and CCR5 binding sites

are the most potent (62). These include CD4-CD4i reagents, in
which the D1/D2 region of CD4 is linked to the heavy-chain vari-
able region of a CD4-induced (CD4i) antibody, as well as CD4-Ig-
based reagents that contain short CCR5-mimetic sulfopeptides on
their C terminus (Fig. 8A). Although both CD4-CD4i and
eCD4-Ig constructs neutralized human and ape viruses with
nanomolar potency (see Table S1 in the supplemental material),
we were particularly interested in eCD4-Ig, because of its smaller
size as well as extensive in vitro and in vivo characterization. Recent
studies demonstrated that eCD4-Ig not only neutralizes difficult-
to-neutralize (tier 2 and 3) strains of HIV-1 but also inhibits
HIV-2 and SIVmac viruses, with IC50s of less than 0.01 �g/ml
(0.1 nM). Moreover, a rhesus macaque-adapted form of eCD4-Ig
(rh-eCD4-Ig) was able to protect monkeys from multiple low-
dose intravenous SHIV challenges when expressed from a recom-
binant AAV vector (63). Given these findings, we expected
eCD4-Ig to neutralize ape viruses with similar breadth and po-
tency. However, this was only partially the case. Although
eCD4-Ig neutralized 100% of SIVcpz and SIVgor strains, the IC50s
were ~50-fold higher than those previously reported for HIV-1,
HIV-2, and SIVmac strains (63). Moreover, this potency was not
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FIG 9 Breadth and potency of antibodies and antibody-like constructs with anti-SIVcpz and anti-SIVgor neutralizing activity. For each bNab, the percentage
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improved when modified versions of eCD4-Ig (eCD4-Igmim2 and
eCD4-IgQ40Amim2) were used (63), which exhibit enhanced anti-
HIV-1 activity (Fig. 8B; see Table S1). Overall, eCD4-Ig neutral-
ized SIVcpz and SIVgor strains only 5-fold more potently than
CD4-Ig, compared to a 20- to 200-fold improvement for HIV-1
strains (63). Thus, eCD4-Ig neutralized ape viruses with the de-
sired breadth but not with the desired potency.

Although a crystal structure of eCD4-Ig in complex with the
HIV-1 Env is not available, modeling suggests that eCD4-Ig binds
the HIV-1 Env trimer in a “claw-like” fashion, with two sulfopep-
tides and one CD4 moiety engaging two protomers within the
same Env spike (63). Cross-linking of spike protomers has re-
cently been shown to increase neutralization potency of antibody-
like molecules by more than 100-fold (117). It is thus tempting to
speculate that the architecture of the SIVcpz/SIVgor envelope
spike differs from that of HIV-1, HIV-2, and SIVmac strains in
such a way that one or more of the eCD4-Ig interaction sites are
altered or occluded. It is also possible that the human CD4i
antibody-derived E51 peptide does not properly mimic the bind-
ing of the chimpanzee and gorilla CCR5 coreceptors, which differ
from human and macaque CCR5 molecules in one or two amino
acids near the N terminus (94). It should be noted that replacing
the human CD4 D1/D2 domain with the corresponding chimpan-
zee CD4 D1/D2 region in eCD4-Ig did not increase its potency
against ape viruses (data not shown). Moreover, while SIVcpz and
SIVgor Envs tend to have longer V1/V2 loops and more associated
glycans than HIV-1 strains, this is also true for SIVmac and HIV-2
strains. Thus, V1/V2 loop length cannot explain the difference in
eCD4-Ig neutralization susceptibility of ape viruses. Since there
are no SIVcpz/SIVgor specific bNabs whose Fab fragments could
be used for intraspike cross-linking, it will be important to deter-
mine whether the ape virus neutralizing capacity of eCD4-Ig can
be improved by altering the length and/or flexibility of the IgG Fc
hinge region and/or by improving the binding of the CCR5 mi-
metic peptide.

Vectored antibody gene transfer to combat ape pathogens.
Wild ape populations will go extinct unless there is a comprehen-
sive approach to their conservation, which— under certain cir-
cumstances—may have to include medical interventions (19, 25).
We have shown in the past that SIVcpz infection can have a sub-
stantial negative impact on the health, reproductive success, and
longevity of chimpanzees in Gombe (2, 3). Because infected chim-
panzees in Gombe are individually known, it would be possible to
use vectored antibody gene transfer to administer a cocktail of
neutralizing antibodies. This may not only benefit the infected
chimpanzees but may also reduce their ability to transmit SIVcpz,
which in an isolated population such as Gombe could lead to virus
extinction. Vectored antibody gene delivery, alone or in combina-
tion with long-acting antiretrovirals (118, 119), could also be used
to treat SIVcpz-infected chimpanzees in African sanctuaries (120)
and/or to vaccinate orphaned chimpanzees prior to releasing
them into the wild (121). Finally, vectored antibody gene delivery
may be effective against other pathogens, such as anthrax and
Ebola virus (122, 123). Obviously, delivered antibodies must be
sufficiently potent and expression levels must be sufficiently high
to be effective in vivo, but this seems achievable. As shown re-
cently, AAV-delivered rh-eCD4-Ig protected macaques from re-
peated low-dose intravenous SHIV challenge at serum concentra-
tions as low as 17 �g/ml (63). Moreover, AAV-rh-eCD4-Ig was
much less immunogenic than other antibody-based AAV con-

structs, and functional rh-eCD4-Ig was stably expressed for
40 weeks at concentrations ranging between 17 and 77 �g/ml (63).
Obviously, efforts to treat and/or vaccinate wild ape communities
would only be contemplated if their survival was in serious jeop-
ardy and if the safety and efficacy of the particular intervention
were first demonstrated in captivity. However, given the increas-
ing threat of infectious diseases to ape survival, there is an urgent
need to explore new ways to curb the spread of pathogens in wild
populations. Although further improvements will be necessary,
the finding of several antibody-like constructs that are capable of
neutralizing SIVcpz and SIVgor strains with nanomolar potency
suggests that this goal is achievable.

MATERIALS AND METHODS
IMCs. Full-length infectious molecular clones (IMCs) of HIV-1 strains
SG3 (124), YU2 (125), and JRCSF (126), SIVcpzPtt strains EK505 (71),
GAB1 (68), GAB2 (69), MB897 (71), and MT145 (71), SIVcpzPts strains
BF1167 (7), TAN1 (70), TAN2 (70), and TAN3 (70), and the SIVgor strain
CP2139 (15) have previously been reported. To generate additional IMCs,
consensus SIVcpzPtt (LB715) and SIVcpzPts (TAN13) sequences were
generated from two additional fecal samples (70). Briefly, partially over-
lapping subgenomic fragments were amplified from fecal RNA, gel puri-
fied, and sequenced directly. Chromatograms were examined for posi-
tions of base mixtures, and ambiguous sites were resolved as previously
reported (70). The resulting proviral consensus sequences were synthe-
sized in 3 nonoverlapping fragments (Blue Heron Biotechnology) and
ligated using internal restriction enzyme enzymes. In addition, NotI and
MluI restriction enzyme sites were added to the 5= and 3= termini to enable
directional cloning into a modified (low-copy-number) pBR322 vector
(15). Since full-length SIVcpz and SIVgor molecular clones are notori-
ously unstable, plasmids were grown in MAX Efficiency Stbl2 competent
cells (Invitrogen) at 30°C and harvested before reaching saturating den-
sity, and each IMC was completely sequenced prior to biological analyses
to confirm its integrity. The newly derived SIVcpz clones LB715 and
TAN13 have been submitted to the National Institutes of Health Research
and Reference Program (Rockville, MD), and their nucleotide sequences
are available at GenBank.

Phylogenetic analysis. Amino acid sequences inferred from env genes
of HIV-1 (YU2, GenBank accession no. M93258; JRCSF, accession no.
M38429; and SG3, accession no. L02317), SIVgor (CP2139.287, accession
no. FJ424866), and SIVcpz (LB715, accession no. KP861923; MB897, ac-
cession no. EF535994; GAB2, accession no. AF382828; MT145, acces-
sion no. DQ373066; EK505, accession no. DQ373065; GAB1, accession
no. X52154; TAN2, accession no. DQ374657; TAN3, accession no.
DQ374658; TAN1, accession no. EF394356; TAN13, accession no.
JQ768416; BF1167, accession no. JQ866001) strains were aligned using
ClustalW (127), with regions that could not be unambiguously aligned
excluded from the analysis. PhyML (version 3) was used to estimate the
phylogeny based on a WAG � I � G � F model of amino acid replace-
ment chosen using ProtTest (version 2.4) and a second-order Akaike in-
formation criterion (AIC) framework (128–130). Ten random-addition-
order trees and a neighbor-joining tree were likelihood optimized using
subtree pruning-regrafting (SPR) searches. Bayesian posterior probabili-
ties were estimated with MrBayes using a mixed prior model (131).

Chimpanzee plasma. Plasma samples were obtained from eight chim-
panzees that had been experimentally infected with HIV-1 and/or
SIVcpzANT decades earlier as part of AIDS pathogenesis and/or vaccine
studies (Table 1). Samples were obtained from seven of these chimpanzees
at the National Chimpanzee Sanctuary Chimp Haven in Keithville, LA,
while samples were obtained from the remaining animal (Debbie) at the
Southwest National Primate Research Center (SNPRC) in San Antonio,
Texas. For Marc (21), Joye (23), Tika (22), Artica (23), Debbie (20), and
Cotton (20), detailed infection histories and clinical follow-up studies
have been reported; however, such information was not available for the
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remaining two animals. Blood samples were collected for veterinary pur-
poses in the context of health examinations. Plasma samples from seven
animals were analyzed for the presence of virus-specific antibodies using
an enhanced chemiluminescent Western blot assay as previously de-
scribed (9). Plasma samples were also tested for viral loads: for HIV-
1-infected chimpanzees, this was done using the COBAS AmpliPrep/
COBAS TaqMan HIV-1 test, v2.0 (Roche). For SIVcpzANT-infected
chimpanzees, a previously reported quantitative PCR (qPCR) de-
signed to detect both HIV-1 and SIVcpz vRNA was used (132). In
addition, SIVcpzANT viremia was confirmed by amplifying and se-
quencing a virus-specific 1.3-kb gag-pol fragment from plasma viral
RNA (Table 1). Sample collection was approved by the respective In-
stitutional Animal Care and Use Committees.

Virus stocks. HIV-1, SIVcpz, and SIVgor infectious molecular clones
(8 �g) were transfected into 293T cells, and culture supernatants were
harvested 72 h later. Viral stocks were tested for infectivity using TZM-bl
cells, a HeLa-derived line that constitutively expresses CD4, CCR5, and
CXCR4 receptors and contains integrated luciferase and �-galactosidase
reporter genes under the control of an HIV-1 long terminal repeat (LTR)
(133). TZM-bl cells (8,300 cells per well) were seeded in 96-well plates
overnight and incubated with 10-fold serial dilutions of transfection
stocks for 48 h to allow single round infection, and infectious units (IU)
were determined by counting the number of �-galactosidase-expressing
cells.

TZM-bl cell-based neutralization assay. The neutralizing capacity of
chimpanzee plasma, anti-HIV-1 monoclonal antibodies, and immunoad-
hesins was assessed using the TZM-bl assay as previously described (134,
135). Briefly, 96-well plates were seeded with TZM-bl cells (8,300 cells per
well) overnight in Dulbecco’s modified Eagle’s medium (DMEM) con-
taining 10% fetal bovine serum (FBS). Serial (5-fold) dilutions of
chimpanzee plasma (1:20, 1:100, 1:500, 1:2,500, and 1:12,500) or anti-
HIV-1 monoclonal antibodies and immunoadhesins (10, 2, 0.4, 0.08, and
0.016 �g/ml) were incubated with 4,800 infectious units (IU) of
transfection-derived virus in a total volume of 100 �l in the presence of
DEAE-dextran (40 �g/ml) for 1 h at 37°C, and this mixture was then
added to TZM-bl cells in 96-well plates. After 48 h, TZM-bl cells were
analyzed for luciferase expression using a Synergy H4 Hybrid microplate
reader (Bio-Tek) with Gen5 version 1.11 software. To test the neutraliza-
tion capacity of anti-CD4 and anti-CCR5 receptor antibodies, 5-fold se-
rial dilutions (10, 2, 0.4, 0.08, and 0.016 �g/ml) were incubated with
TZM-bl cells in a volume of 50 �l for 1 h at 37°C, followed by the addition
of virus (4,800 IU in 50 �l) in the presence of DEAE-dextran (40 �g/ml)
and further incubation for 48 h at 37°C. Controls included untreated cells
and virus pretreated with normal human plasma or no antibody. Relative
infectivity was calculated by dividing the number of luciferase units at
each plasma and antibody/immunoadhesin dilution with values obtained
for wells that contained normal human plasma or no antibody. Half-
maximal inhibitory concentrations (IC50s) were determined by linear re-
gression. All monoclonal antibodies were tested in duplicate on three
independent occasions. Since available amounts of chimpanzee plasma
were limited, samples were tested only once in duplicate.

Cf2Th cell-based neutralization assay. To test the neutralization ca-
pacity of anti-host receptor antibodies, we transiently transfected Cf2Th
cells with plasmids expressing the chimpanzee CD4 and CCR5 genes.
These canine thymus-derived cells do not naturally express CD4 or CCR5
but contain a firefly luciferase reporter gene stably integrated under the
control of an HIV-1 long terminal repeat (LTR) (2, 3, 136). To generate a
chimpanzee CD4 expression plasmid, we extracted RNA from chimpan-
zee peripheral blood mononuclear cells (PBMCs) and used RT-PCR to
generate a cDNA clone of the entire CD4 coding region. Since the chim-
panzee CD4 gene is polymorphic (72), we selected one allele that is most
predominant in chimpanzees from Gombe National Park. Using site-
directed mutagenesis, we then “humanized” this cDNA clone by changing
3 amino acids to match the (nonpolymorphic) human CD4 protein
(T34I, V55A, and G88E). To generate a chimpanzee CCR5 expression

plasmid, we first amplified the human CCR5 gene from PBMC RNA and
then introduced a single (chimpanzee-specific) amino acid substitution
(N13D) by site-directed mutagenesis. These expression plasmids were
then used to transfect Cf2Th cells in 10-cm dishes at 50% confluence to
generate cells that expressed either chimpanzee or human CCR5 and
CD4 receptors. Twenty-four hours posttransfection, Cf2Th cells were
trypsinized and plated in 96-well plates at a concentration of 6,000 cells
per well in DMEM containing 3.5% FBS. Transfected cells were cultured
overnight, incubated with serial (5-fold) dilutions (10, 2, 0.4, 0.08, and
0.016 �g/ml) of mono- and bispecific anti-CD4 (iMab, LM52, PG9-iMab,
PG16-iMab, and LM52-PGT128) and anti-CCR5 (PRO-140 and PRO-
140-10E8) antibodies in a volume of 50 �l DMEM for 1 h, and then
infected with 50 �l of virus stock (5,000 IU) in the absence of DEAE-
dextran, which is toxic to Cf2Th cells. After 48 h, Cf2Th cells were lysed
and analyzed for luciferase expression using a Synergy H4 Hybrid micro-
plate reader (Bio-Tek) with Gen5 version 1.11 software. Relative infectiv-
ity was calculated by dividing the luciferase units of wells containing an-
tibodies by the luciferase units of wells lacking antibodies. Half-maximal
inhibitory concentrations (IC50s) were determined by linear regression.
HIV-1 SG3, which requires CXCR4 for entry, was used as a negative con-
trol. All monoclonal antibodies were tested in triplicate, and the average
from 3 replicates is reported.

CD4 T cell-based neutralization assay. Leftover blood samples from
health examinations of uninfected chimpanzees housed at the Yerkes Re-
gional Primate Center were shipped at room temperature (137), and pe-
ripheral blood mononuclear cells (PBMCS) were isolated by gradient
centrifugation using Ficoll-Paque Plus (GE Healthcase Life Sciences).
Chimpanzee CD4� T cells were enriched using nonhuman primate CD4
microbeads (MACS Miltenyi Biotec) and magnetic cell sorting (Militenyi
Biotec), stimulated with staphylococcal enterotoxin B (Sigma-Aldridge)
for 12 to 15 h (3 �g/ml), and subsequently cocultivated with autologous
monocyte-derived macrophages for optimal activation. After 5 to 6 days,
CD4� T cells were removed from the macrophage feeder layer, placed into
DMEM with 10% FBS, and incubated with 30 U/ml interleukin-2 (IL-2).
To test the neutralizing capacity of anti-HIV-1 monoclonal antibodies
and immunoadhesins, serial dilutions (10, 3.3, 1.1, 0.36, and 0 �g/ml)
were incubated with SIVcpzMT145 and HIV-1 SG3 viral stocks
(10,000 IU) for 1 h at 37°C, and the mixture was then added to 5 � 105

activated chimpanzee CD4� T cells in a total of 500 �l DMEM containing
10% FBS and 30 U/ml IL-2. The CD4bs antibody VRC01 and uninfected
cells were used as negative controls. To test the neutralizing capacity of
antireceptor antibodies, serial dilutions (10, 3.3, 1.1, and 0.36 �g/ml) were
first incubated with 5 � 105 activated chimpanzee CD4� T cells for 1 h at
37°C and then exposed to 10,000 IU of virus stocks. After an overnight
incubation, cells were washed three times with PBS to remove antibody
and non-cell-associated virus, suspended in DMEM with 10% FBS and
30 U/ml IL-2, and plated in triplicate in 96-well plates. Supernatant
(50 �l) was harvested every 48 h, starting at day 3 postinfection, and
replaced with fresh media. To monitor viral replication, supernatants
were tested for reverse transcriptase (RT) activity using a colorimetric
assay (Roche). Neutralization was calculated by dividing the infectivity
(RT activity) of wells with antibody dilutions by that of the untreated
control wells. IC50s were calculated by linear regression. All monoclonal
antibodies were tested in CD4� T cells from three different chimpanzee
donors.

Statistical analyses. Statistical analyses were performed using Prism
version 5.0d software (GraphPad), and correlations were assessed using
Spearman tests. Geometric mean IC50s were calculated using Microsoft
Excel version 14.3.9 software.

Accession numbers. The nucleotide sequences of SIVcpz strains
LB715 and TAN13 as well as the chimpanzee CD4 and CCR5 genes used
for transfection are available under GenBank accession no. KP861923,
JQ768416, KP235488, and KP235489, respectively.
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