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Abstract
We consider the problem of compressed sensing and of (real-valued) phase retrieval with random
measurement matrix. We derive sharp asymptotics for the information-theoretically optimal perfor-
mance and for the best known polynomial algorithm for an ensemble of generative priors consisting
of fully connected deep neural networks with random weight matrices and arbitrary activations. We
compare the performance to sparse separable priors and conclude that in all cases analysed genera-
tive priors have a smaller statistical-to-algorithmic gap than sparse priors, giving theoretical support
to previous experimental observations that generative priors might be advantageous in terms of al-
gorithmic performance. In particular, while sparsity does not allow to perform compressive phase
retrieval efficiently close to its information-theoretic limit, it is found that under the random gener-
ative prior compressed phase retrieval becomes tractable.
Keywords: Phase retrieval, Compressed Sensing, Generative Models, Bayesian Inference

1. Introduction

Over the past decade the study of compressed sensing has lead to significant developments in the
field of signal processing, with novel sub-Nyquist sampling strategies and a veritable explosion of
work in sparse representation. A central observation is that sparsity allows one to measure the signal
with fewer observations than its dimension Donoho (2006); Candes and Tao (2006). The success
of neural networks in the recent years suggests another powerful and generic way of representing
signals with multi-layer generative priors, such as those used in generative adversarial networks
(GANs) Goodfellow et al. (2014). It is therefore natural to replace sparsity by generative neural
network models in compressed sensing and other inverse problems, a strategy that was successfully
explored in a number of papers, e.g. Tramel et al. (2016a,b); Bora et al. (2017); Manoel et al. (2017);
Hand and Voroninski (2018); Fletcher et al. (2018); Hand et al. (2018); Mixon and Villar (2018);
Aubin et al. (2019). While this direction of research seems to have many promising applications, a
systematic theory of what can be efficiently achieved still falls short of the one developed over the
past decade for sparse signal processing. Our aim is therefore to dialogue with the broad program of
studying how generative models can help solving inverse problems using the toolbox of statistical
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physics. In this manuscript, we build on a line of work allowing for theoretical analysis in the case
the measurement and the weight matrices of the prior are random Manoel et al. (2017); Reeves
(2017); Fletcher et al. (2018); Gabrié et al. (2018); Aubin et al. (2019).

We employ tools originally developed in the context of statistical physics to derive precise
asymptotics for the information-theoretically optimal thresholds for signal recovery and for the
performance of the best known polynomial algorithm in two such inverse problems: (real-valued)
phase retrieval and compressed sensing. These two problems of interest can be framed as a gener-
alised linear estimation. Given a set of observations y ∈ Rn generated from a fixed (but unknown)
signal x? ∈ Rd as

y = ϕ (Ax?) , (1)

the goal is to reconstruct x? from the knowledge of y, ϕ and A ∈ Rn×d. Compressed sensing and
phase retrieval are particular instances of this problem, corresponding to ϕ(x) = x and ϕ(x) = |x|
respectively. Two key questions in these inverse problems are a) how many observations n are
required for theoretically reconstructing the signal x?, and b) how this can be done in practice -
i.e. to find an efficient algorithm for reconstruction. Signal structure plays an important role in the
answer to both these questions, and have been the subject of intense investigation in the literature.
A typical situation is to consider signals admitting a low-dimensional representation, such as sparse
signals, for which k − d of the d components of x∗ are exactly zero, see e.g. Candes et al. (2015);
Netrapalli et al. (2013).

In this manuscript, we consider instead structured signals drawn from a generative model x? =
G(z), where z ∈ Rk is a low-dimensional latent representation of x?. In particular, we will focus in
generative multi-layer neural networks, and in order to provide a sharp asymptotic theory, we will
restrict the analysis to an ensamble of random networks with known random weights:

x? = G (z) = σ(L)
(

W(L)σ(L−1)
(

W(L−1) · · ·σ(1)
(

W(1)z
)
· · ·
))

, (2)

where σ(l) : R → R, 1 ≤ l ≤ L are component-wise non-linearities. As aforementioned, we take
A ∈ Rn×d and W(l) ∈ Rkl×kl−1 to have i.i.d. Gaussian entries with zero means and variances 1/d
and 1/kl−1 respectively, and focus on the high-dimensional regime defined by taking n, d, kl →∞
while keeping the measurement rate α = n/d and the layer-wise aspect ratios βl = kl+1/kl con-
stant. We stress that in this regime the depth L is of order one when compared to the width of the
generative network, which scales with the input dimension d. With this observation in mind, we
adopt the standard terminology in machine learning of denoting networks with L > 1 as deep. To
provide a comparison with previous results for sparse signals, it is useful to define the total com-
pression factor ρ = k/d. We note, however, that the comparison between generative and sparse
priors herein is not based on a quantitative comparison between the reconstruction estimation er-
rors. Indeed, since data is generated differently in both cases, such a comparison would make
little sense. Instead, we compare qualitative properties of the phase diagrams, taking as a surro-
gate for algorithmic hardness the size of the statistical-to-algorithmic gap in these two different
reconstruction problems. Our results hold for latent variables drawn from an arbitrary separable
distribution z ∼ Pz , and for arbitrary activations σ(l), although for concreteness we present results
for z ∼ N (0, Ik) and σ(l) ∈ {linear,ReLU}, as it is commonly the case in practice with GANs.

Previous results on sparsity: Sparsity is probably the most widely studied type of signal struc-
ture in linear estimation and phase retrieval. It is thus instructive to recall the main results for sparse
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signal reconstruction in these inverse problems in the high-dimensional regime with random mea-
surement matrices studied in this manuscript. Optimal statistical and algorithmic thresholds have
been established non-rigorously using the replica-method in a series of works Wu and Verdú (2012);
Krzakala et al. (2012a); Reeves and Gastpar (2012); Zdeborová and Krzakala (2016). Later the in-
formation theoretic results, as well as the corresponding minimum mean squared error (MMSE),
has been rigorously proven in Barbier et al. (2016); Reeves and Pfister (2016); Barbier et al. (2019).
So far, the best known polynomial time algorithm in this context is the Approximate Message Pass-
ing (AMP) algorithm, the new avatar of the mean-field approach pioneered in statistical mechanics
Mézard et al. (1987), that has been introduced in Donoho et al. (2009); Rangan (2011); Krzakala
et al. (2012a); Schniter and Rangan (2014); Metzler et al. (2017) for these problems, and can be rig-
orously analysed Bayati and Montanari (2011). For both (noiseless) compressed sensing and phase
retrieval, the information theoretic limit for a perfect signal recovery is given by α > αIT = ρs,
with ρs being the fraction of non-zero components of the signal x?.

The ability of AMP to exactly reconstruct the signal, however, is different. A non-trivial line
αsparse
alg (ρs) > αIT appears below which AMP fails. No polynomial algorithm achieving better

performance for these problems is known. Strikingly, as discussed in Barbier et al. (2019), the be-
haviour of the sparse linear estimation and phase retrieval is drastically different: while αsparse

alg (ρs)
is going to zero as ρs → 0 for sparse linear estimation hence allowing for compressed sensing, it
is not the case for the phase retrieval, for which αsparse

alg → 1/2 as ρs → 0. As a consequence,
no efficient approach to real-valued compressed phase retrieval with small but order one ρs in the
high-dimensional limit is known.

Summary of results: In this work, we replace the sparse prior by the multi-layer generative model
introduced in eq. (2). Our main contribution is specifying the interplay between the number of
measurements needed for exact reconstruction of the signal, parametrised by α, and its latent di-
mension k. Of particular interest is the comparison between a sparse and separable signal (having
a fraction ρs of non-zero components) and the structured generative model above, parametrised by
ρ = k/d. While the number of unknown latent variables is the same in both cases if ρ = ρs, the
upshot is that generative models offer algorithmic advantages over sparsity. More precisely:

(a) We analyse the minimum mean square error (MMSE) of the optimal Bayesian estimator for
the compressed sensing and phase retrieval problems with generative priors of arbitrary depth,
choice of activation and prior distribution for the latent variable. We derive sufficient condi-
tions for the existence of an undetectable phase in which better-than-random estimation of x?
is impossible, and characterise in full generality the threshold αc beyond which partial signal
recovery becomes statistically possible.

(b) Fixing our attention on the natural choices of activations σ ∈ {linear,ReLU}, we establish
the threshold αIT above which perfect signal reconstruction is theoretically possible. This
threshold can be intuitively understood with a simple counting argument.

(c) We analyse the performance of the associated Approximate Message Passing algorithm Ma-
noel et al. (2017), conjectured to be the best known polynomial time algorithm in this setting.
This allows us to establish the algorithmic threshold αalg below which no known algorithm is
able to perfectly reconstruct x?.

As expected, the thresholds {αc, αIT, αalg} are functions of the compression factor ρ, the number
of layers L, the aspect ratios {βl}Ll=1 and the activation functions. In particular, for a fixed archi-
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tecture we find that the algorithmic gap ∆alg = αalg − αIT is drastically reduced with the depth
L of the generative model, beating the algorithmic hindrance identified in Barbier et al. (2019) for
compressive phase retrieval with sparse encoding.

2. Information theoretical analysis

2.1. Performance of the Bayes-optimal estimator

In our analysis we assume that the model generating the observations y ∈ Rn is known. Therefore,
the optimal estimator minimising the mean-squared-error in our setting is given by the Bayesian
estimator

x̂opt = argmin
x̂
||x̂− x?||22 = EP (x|y) [x] . (3)

The posterior distribution of the signal given the observations is in general given by:

P (x|y) =
1

Z(y)
Px(x)

n∏
µ=1

δ

yµ − ϕ
 d∑
j=1

Aµ
j xj

 , (4)

where the normalisation Z(y) is known as the partition function, and ϕ is the nonlinearity defining
the estimation problem, e.g. ϕ(x) = |x| for phase retrieval and ϕ(x) = x for linear estimation. We
note that the presented approach generalizes straightforwardly to account for the presence of noise,
but we focus in this paper on the analysis of the noiseless case. For the generative model in eq. (2),
the prior distribution Px reads

Px(x) =

∫
Rk

dz Pz(z)

L∏
l=1

∫
Rkl

dh(l) P
(l)
out

(
h(l+1)

∣∣∣W(l)h(l)
)
, (5)

where for notational convenience we denoted x ≡ h(L+1), z ≡ h(1) and defined the likelihoods P (l)
out

parametrising the output distribution of each layer given its input. As before, this Bayesian treatment
also accounts for stochastic activation functions, even though we focus here on deterministic ones.

Although exact sampling from the posterior is intractable in the high-dimensional regime, it is
still possible to track the behaviour of the minimum-mean-squared-error estimator as a function of
the model parameters. Our main results are based on the line of works comparing, on one hand,
the information-theoretically best possible reconstruction, analysing the ideal Bayesian inference
decoder, regardless of the computation cost, and on the other, the best reconstruction using the most
efficient known polynomial algorithm - the approximate message passing.

Our analysis builds upon the statistical physics inspired multi-layer formalism introduced in
Manoel et al. (2017), who showed using the cavity and replica methods that the minimum mean-
squared-error achieved by the Bayes-optimal estimator defined in eq. (3) can be written, in the limit
of n, d→∞ and α = n/d = Θ(1) for a generic prior distribution Px as

mmse(α) = lim
d→∞

1

d
E||x̂opt − x?||22 = ρx − q?x (6)
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where ρx is the second moment of Px and the scalar parameter q?x ∈ [0, ρx] is the solution of the
following free energy extremisation problem

Φ = − lim
d→∞

1

d
Ey logZ(y) = extr

qx,q̂x

{
1

2
q̂xqx − αΨy (qx)−Ψx(q̂x)

}
, (7)

with the so-called potentials (Ψy,Ψx) given by

Ψy(t) = Eξ
[∫

dy Zy
(
y;
√
tξ, t

)
logZy

(
y;
√
tξ, t

)]
,

Ψx(r) = lim
d→∞

1

d
Eξ
[
Zx(
√
rξ, r) logZx(

√
rξ, r)

]
,

(8)

where ξ ∼ N (0, 1) and Zy, Zx are the normalisations of the auxiliary distributions

Qy (x; y, ω, V ) =
1

Zy(y;ω, V )

e−
1
2V

(x−ω)2

√
2πV

δ (y − ϕ(x)) , (9)

Qx (x;B,A) =
Px(x)

Zx(B,A)

d∏
j=1

e−
A
2
x2j+Bxj .

Note that this expression is valid for arbitrary distribution Px, as long as the limit in Ψx is well-
defined. In particular, it reduces to the known result in Krzakala et al. (2012b); Barbier et al.
(2019) when Px factorises. In principle, for correlated Px such as in the generative model of eq. (5)
computing Ψx is itself a hard problem. However, we can see eq. (5) as a chain of generalised linear
models. In the limit where kl →∞ with ρ = k/d = Θ(1), L = Θ(1) and βl = kl+1/kl = Θ(1) we
can apply the observation above iteratively, layer-wise, up to the input layer for which Pz factorises
- and is easy to compute. This yields Manoel et al. (2017)

Φ = extr
qx,q̂x,{ql,q̂l}

{
−1

2
q̂xqx −

ρ

2

L∑
l=1

βlqlq̂l + αΨy (qx)

+ρ
L∑
l=2

βlΨ
(l)
out (q̂l, ql−1) + Ψ

(L+1)
out (q̂x, qL) + ρΨz (q̂z)

}
, (10)

where we have introduced the additional potentials (Ψout,Ψz)

Ψ
(l)
out(r, s) = Eξ,η

[
Z(l)

out(
√
rξ, r,

√
sξ, ρl−1 − s) logZ(l)

out(
√
rξ, r,

√
sξ, ρl−1 − s)

]
,

Ψz(t) = Eξ
[
Zz(
√
tξ, t) logZz(

√
tξ, t)

]
,

(11)

defined in terms of the following auxiliary distributions

Q
(l)
out(x, z;B,A, ω, V ) =

e−
A
2
x2+Bx

Zout(B,A, ω, V )

e−
1
2V

(z−ω)2

√
2πV

P
(l)
out(x|z) ,

Qz (z;B,A) =
e−

A
2
z2+Bz

Zz(B,A)
Pz(z) ,

(12)
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and with ρl the second moment of the hidden variable h(l).
These predictions, that have also been derived with different heuristics in Reeves (2017), were

rigorously proven for two-layers in Gabrié et al. (2018), while deeper architectures requires addi-
tional assumptions on the concentration of the free energies to be under a rigorous control. Eq. (10)
thus reduces the asymptotics of the high-dimensional estimation problem to a low-dimensional ex-
tremisation problem over the 2(L+ 1) variables (qx, q̂x, {ql, q̂l}Ll=1), allowing for a mathematically
sound and rigorous investigation. These parameters are also known as the overlaps, since they
parametrise the overlap between the Bayes-optimal estimator and ground-truth signal at each layer.
Solving eq. (7) provides two important statistical thresholds: the weak recovery threshold αc above
which better-than-random (i.e. mmse < ρx) reconstruction becomes theoretically possible and
the perfect reconstruction threshold, above which perfect signal recovery (i.e. when mmse = 0)
becomes possible.

Interestingly, the free energy eq. (10) also provides information about the algorithmic hardness
of the problem. The above extremisation problem is closely related the state evolution of the AMP
algorithm for this problem, as derived in Manoel et al. (2017), and generalized in Fletcher et al.
(2018). It is conjectured to provide the best polynomial time algorithm for the estimation of x? in
our considered setting. Specifically, the algorithm reaches a mean-squared error that corresponds
to the local extremiser reached by gradient descent in the function (10) starting with uninformative
initial conditions.

While so far we summarised results that follow from previous works, these results were up to our
knowledge not systematically evaluated and analysed for the linear estimation and phase retrieval
with generative priors. This analysis and its consequences is the object of the rest of this paper and
constitutes the original contributions of this work.

2.2. Weak recovery threshold

Solutions for the extremisation in eq. (10) can be found by solving the fixed point equations, ob-
tained by taking the gradient of eq. (10) with respect of the parameters (qx, q̂x, {ql, q̂l}Ll=1):

q̂x = αΛy (qx)

q̂L = βLΛout (q̂x, qL)

q̂L−1 = βL−1Λout (q̂L, qL−1)
...

q̂l = βlΛout (q̂l+1, ql)
...

q̂z = β1Λout (q̂2, qz)



qx = Λx (q̂x, qL)

qL = Λx (q̂L, qL−1)
...

ql = Λx (q̂l, ql−1)
...

qz = Λz (q̂z)

(13)

where Λy(t) = 2 ∂tΨy(t), Λz(t) = 2 ∂tΨz(t), Λx(t) = 2 ∂rΨout(r, s), Λout(t) = 2 ∂sΨout(r, s).
The weak recovery threshold αc is defined as the value above which one can estimate x? better

than a random draw from the prior Px. In terms of the mmse it is defined as

αc = argmax
α≥0

{mmse(α) = ρx}. (14)

From eq. (6), it is clear that an uninformative solution mmse = ρx of eq. (10) corresponds to a fixed
point qx = 0. For both the phase retrieval and linear estimation, evaluating the right-hand side of
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eqs. (13) at qx = 0 we can see that q̂?x = 0 is a fixed point if σ is an odd function and if

EPz [z] = 0, and E
Q

(l),0
out

[x] = 0 , (15)

where Q(l),0
out (x, z) = Q

(l)
out(x, z; 0, 0, 0, ρl−1). These conditions reflect the intuition that if the

prior Pz or the likelihoods P (l)
out are biased towards certain values, this knowledge helps the statisti-

cian estimating better than a random guess. If these conditions are satisfied, then αc can be obtained
as the point for which the fixed point qx = 0 becomes unstable. The stability condition is determined
by the eigenvalues of the Jacobian of eqs. (13) around the fixed point (q?x, q̂

?
x, {q?l , q̂?l }Ll=1) = 0.

More precisely, the fixed point becomes unstable as soon as one eigenvalue of the Jacobian is big-
ger than one. Expanding the update functions around the fixed point and using the conditions in
eq. (15),

Λy(t) =
t�1

1

ρ2x

∫
dy Zy(y; 0, ρx)

(
EQ0

y
[ρx − x2]

)2
t+O

(
t3/2
)
,

Λ(l)
x (r, s) =

r,s�1

(
E
Q

(l),0
out

[x2]
)2

r +
1

ρ2l−1

(
E
Q

(l),0
out

[xz]
)2
s+O

(
r3/2, s3/2

)
, (16)

Λ
(l)
out(r, s) =

r,s�1

(
E
Q

(l),0
out

[xz]
)2
r +

1

ρ2l−1

(
E
Q

(l),0
out

[z2]− ρl−1
)2
s+O

(
r3/2, s3/2

)
,

Λz(t) =
t�1

(
EPz [z2]

)2
t+O

(
t3/2
)
.

For a generative prior with depth L, the Jacobian is a cumbersome sparse (L+ 1)× (L+ 1) matrix,
with all the entries given by the six partial derivatives above. For the sake of conciseness we only
write it here for L = 1:

0
(
EQ0

out

[
x2
])2

1
ρ2z

(
EQ0

out
[xz]

)2
0

α
ρ2x

∫
dy Z0

y

(
EQ0

y

[
ρx − x2

])2
0 0 0

0 0 0
(
EPz

[
z2
])2

0 β
(
EQ0

out
[xz]

)2
β
ρ2z

(
EQ0

out

[
z2
]
− ρz

)2
0

 .

(17)

Note that this holds for any choice of P (l)
out and latent space distribution Pz , as long as conditions

eq. (15) hold. For the phase retrieval with a linear generative model for instance P (l)(x|z) =
δ(x− z), we find αc = 1

2
1

1+ρ−1 . For a linear network of depth L this generalises to

αc =
1

2

(
1 +

L∑
l=1

l−1∏
k=0

βL−k

)−1
. (18)

The linear estimation problem has exactly the same threshold, but without the global 1/2 factor.
Since ρ, βl ≥ 0, it is clear that αc is decreasing in the depth L of the network. This analytical
formula is verified by numerically solving eqs. (13), see Figs. 3 and 4. For other choices of activation
satisfying condition (15) (e.g. the sign function), we always find that depth helps in the weak
recovery of the signal.
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2.3. Perfect recovery threshold

We now turn our attention to the perfect recovery threshold, above which perfect signal reconstruc-
tion becomes statistically possible. Formally, it can be defined as

αIT = argmin
α≥0

{mmse(α) = 0}, (19)

and corresponds to the global minimum of the free energy in eq. (10). Numerically, the perfect
recovery threshold is found by solving the fixed point equations (13) from an informed initialisation
qx ≈ ρx, corresponding to mmse ≈ 0 according to eq. (6). The resulting fixed point is then checked
to be a minimiser of the free energy eq. (10). Different from αc, it cannot be computed analytically
for an arbitrary architecture. However, for the compressed sensing and phase retrieval problems
with σ ∈ {linear,ReLU} generative priors, αIT can be analytically computed by generalising a
simple argument based on the invertibility of the linear system of equations at each layer, originally
used in the usual compressive sensing Candes and Tao (2006); Tao (2009).

First, consider the linear estimation problem with a deep linear generative prior, i.e. y = Ax? ∈
Rn with x? = W(L) . . .W(1)z ∈ Rd and A, {W(l)}Ll=1 i.i.d. Gaussian matrices, that are full rank
with high probability. For n > d, the system y = Ax? is overdetermined as there are more equa-
tions than unknowns. Hence the information theoretical threshold has to verify αIT = nIT

d ≤ 1.

For L = 0 (i.e. x? is Gaussian i.i.d.), we have exactly α(0)
IT = 1 as the prior does not give any

additional information for solving the linear system. For L ≥ 1 though, at each level l ∈ [1 : L],
we need to solve successively h(l) ∈ Rkl in the linear system y = AW(L) · · ·W(l)h(l). Again as
AW(L) · · ·W(l) ∈ Rn×kl , if n > kl the system is over-constrained. Hence the information theoreti-

cal threshold for this equation is such that ∀l ∈ [1 : L], n
(l)
IT ≤ kl ⇔ α

(l)
IT ≤

l∏
k=1

1
βL−k+1

. And note

that ρ ≡
L∏
k=1

1
βL−k+1

. Hence, the information theoretical threshold is obtained by taking the smallest

of the above values α(l)
IT :

αIT = min
l∈[0:L]

α
(l)
IT = min

1,

{
l∏

k=1

1

βL−k+1

}L−1
l=1

, ρ

 . (20)

This result generalises to the real-valued phase retrieval problem. First, we note that by the data
processing inequality taking y = |Ax?| cannot increase the information about x?, and therefore the
transition in phase retrieval cannot be better than for compressed sensing. Secondly, an inefficient
algorithm exists that achieve the same performance as compressed sensing for the real valued phase
retrieval: one just needs to try all the possible 2m assignments for the sign, and then solve the
corresponding compressed sensing problem. This strategy that will work as soon as the compressed
sensing problem is solvable. Eq. (20) is thus valid for the real phase retrieval problem as well.

One can finally generalise this analysis for a non-linear generative prior with ReLU activation
at each layer, i.e. x? = relu

(
W(L)relu

(
· · ·W(1)z

)
· · ·
)

. Noting that on average x has half of zero

entries and half of i.i.d. Gaussian entries, the system can be reorganised and simplified y = Ãx̃, with
x̃ ∈ Rd/2 the extracted vector of x with on average d/2 strictly positive entries and the corresponding
reduced matrix Ã ∈ Rn×d/2, is over-constrained for n > d/2 and hence the information theoretical
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threshold verifies αIT = nIT
d ≤

1
2 . Noting that this observation remains valid for generative layers,

we will have on average at each layer an input vector h(l) with half of zero entries and half of
Gaussian distributed entries - except at the very first layer for which the input z ∈ Rk is dense.
Repeating the above arguments yields the following perfect recovery threshold

αIT = min

1

2
,

{
1

2

l∏
k=1

1

βL−k+1

}L−1
l=1

, ρ

 . (21)

for both the linear estimation and phase retrieval problems. Both these results are consistent with
the solution of the saddle-point eqs. (13) with a informed initialisation, see Figs. 4-6.

2.4. Algorithmic threshold

The discussion so far focused on the statistical limitations for signal recovery, regardless of the cost
of the reconstruction procedure. In practice, however, one is concerned with the algorithmic costs
for reconstruction. In the high-dimensional regime we are interested, where the number of obser-
vations scale with the number of parameters in the model, only (low)-polynomial time algorithms
are manageable in practice. Remarkably, the formula in eq. (10) also provides useful informa-
tion about the algorithmic hindrances for the inverse problems under consideration. Indeed, with
a corresponding choice of iteration schedule and initialisation, the fixed point equations eq. (10)
are identical to the state evolution describing the asymptotic performance of an associated Approx-
imate Message Passing (AMP) algorithm Manoel et al. (2017); Fletcher et al. (2018). Moreover,
the AMP aforementioned is the best known polynomial time algorithm for the estimation problem
under consideration, and it is conjectured to be the optimal polynomial algorithm in this setting.

The AMP state evolution corresponds to initialising the overlap parameters (qx, ql) ≈ 0 and
updating, at each time step t the hat variables q̂tx = αΛy(q

t
x) before the overlaps qt+1

x = Λx(q̂tx, q
t
L),

etc. In Fig. 1 we illustrate this equivalence by comparing the MSE obtained by iterating eqs. (13)
with the averaged MSE obtained by actually running the AMP algorithm from Manoel et al. (2017)
for a specific architecture and implemented with the tramp python package Baker et al. (2020).
In particular even though the AMP state evolution is not yet rigorously proven, we see a strong
agreement of our analytical results with AMP simulations.

Note that, by construction, the performance of the Bayes-optimal estimator corresponds to the
global minimum of the scalar potential in eq. (10). If this potential is convex, eqs. (13) will converge
to the global minimum, and the asymptotic performance of the associated AMP algorithm will be
optimal. However, if the potential has also a local minimum, initialising the fixed point equations
will converge to the different minima depending on the initialisation. In this case, the MSE asso-
ciated to the AMP algorithm (corresponding to the local minimum) differs from the Bayes-optimal
one (by construction the global minimum). In the later setting, we define the algorithmic threshold
as the threshold above which AMP is able to perfectly reconstruct the signal - or equivalently for
which mmse = 0 when eqs. (13) are iterated from qt=0

x = qt=0
l = ε � 1. Note that by definition

αIT < αalg, and we refer to ∆alg = αalg − αIT as the algorithmic gap. See Fig. 2 for an illustration
of the evolution of the free energy landscape for increasing α.

Studying the existence of an algorithmic gap for the linear estimation and phase retrieval prob-
lems, and how it depends on the architecture and depth of the generative prior, is the subject of the
next section.
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Figure 1: Mean squared error obtained by running the AMP algorithm (dots) from Manoel et al.
(2017) and implemented with the tramp package Baker et al. (2020), for d = 2.103 av-
eraged on 10 samples, compared to the MSE obtained from the state evolution eqs. (13)
with uninformative initialisation qx = ql ≈ 0 (solid line) for the phase retrieval prob-
lem with linear (left) and relu (right) generative prior networks. Different curves cor-
respond to different depths L, with fixed ρ = 2 and layer-wise aspect ratios βl = 1.
The dashed vertical line corresponds to αIT. To illustrate for instance in the linear case
(left), (αL=0

c , αL=1
c , αL=2

c ) = (1/3, 1/4, 1/5), αIT = 1 and (αL=0
alg , αL=1

alg , αL=2
alg ) =

(1.056, 1.026, 1.011).

3. Phase diagrams

In this section we summarise the previous discussions in plots in the (ρ, α)-plane, hereafter named
phase diagrams. Phase diagrams quantify the quality of signal reconstruction for a fixed architecture
(β1, . . . , βL−1)

1 as a function of the compression ρ. Moreover, it allows a direct visual comparison
between the phase diagram for a sparse Gaussian prior and the multi-layer generative prior. For
both the phase retrieval and compressed sensing problems we distinguish the following regions of
parameters limited by the thresholds of sec. 2:

• Undetectable region where the best achievable error is as bad as a random guess from the
prior as if no measurement y were available. Corresponds to α < αc.

• Weak recovery region where the optimal reconstruction error is better than the one of a random
guess from the prior, but exact reconstruction cannot be achieved. Corresponds to αc < α <
αIT.

• Hard region where exact reconstruction can be achieved information-theoretically, but no
efficient algorithm achieving it is known. Corresponds to αIT < α < αalg

1. Note that βL is fixed from the knowledge of (ρ, β1, . . . , βL−1).
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• The so-called easy region where the aforementioned AMP algorithm for this problem achieves
exact reconstruction of the signal. Corresponds to α > αalg.

As already explained, we locate the corresponding phase transitions in the following manner: for
the weak recovery threshold αc, we notice that the fixed point corresponding to an error as bad as
a random guess corresponds to the values of the order parameters qx, ql = 0. This is an extremiser
of the free energy (7) when the prior Pz has zero mean and the non-linearity ϕ is an even function.
This condition is satisfied for both the linear estimation and the phase retrieval problem with linear
generative priors that leads to zero-mean distributions on the components of the signal, but is not
achieved for a generative prior with ReLU activation, since it biases estimation. In case this uninfor-
mative fixed point exists, we investigate its stability under the state evolution of the AMP algorithm,
thus defining the threshold αc. For α < αc the fixed point is stable, implying the algorithm is not
able to find an estimator better than random guess. In contrast, for α > αc the AMP algorithm
provides an estimator better than random guess. For phase retrieval with linear generative model
in the setting of the present paper, this analysis leads to the threshold derived in eq. (18). If there
exists a region where the performance of the AMP algorithm and the information-theoretic one do
not agree we call it the hard region. The hard region is delimited by threshold αIT and αalg.

The statistical and algorithmic thresholds defined above admit an alternative and instructive
description in terms of free energy landscape, see Fig. 2. Consider a fixed ρ: for small α the free
energy eq. (10) has a single global minimum with small overlap (high MSE) with the ground truth
solution x?, referred as the uninformative fixed point. At a value αsp, known as the first spinodal
transition, a second local minimum appears with higher overlap (smaller MSE) with the ground
truth, referred as informative fixed point. The later fixed point becomes a global minimum of the
free energy at αIT > αsp, while the uninformative fixed point becomes a local minimum. A second
spinodal transition occurs at αalg when the informed fixed point becomes unstable. Numerically,
the informed and uninformative fixed points can be reached by iterating the saddle-point equations
from different initial conditions. When the two are present, the informed fixed point can be reached
by iterating from qx ≈ ρx, which corresponds to a minimum overlap with the ground truth x?, and
the uninformative fixed point from qx ≈ 0, corresponding to no initial overlap with the signal. In
the noiseless linear estimation and phase retrieval studied here we observe αIT = αsp.

3.1. Single-layer generative prior

First, we consider the case where the signal is generated from a single-layer generative prior, x? =
σ(Wz) with z ∼ N (0, Ik). We analyse both the compressed sensing and the phase retrieval problem,
for σ ∈ {linear,ReLU}. In this case the only free parameters of the model are (ρ, α), and therefore
the phase diagram fully characterises the recovery in these inverse problems. The aim is to compare
with the phase diagram of a sparse prior with density ρs = ρ of nonzero components.

Fig. 3 depicts the compressed sensing problem with linear (left) and ReLU (right) generative
priors. We depict the phase transitions defined above. On the left hand side we compare to the
algorithmic phase transition known from Krzakala et al. (2012a) for sparse separable prior with
fraction 1− ρ of zero entries and ρ of Gaussian entries of zero mean presenting an algorithmically
hard phase for ρ < α < αsparse

alg (ρ).
In the case of compressed sensing with linear generative prior we do not observe any hard phase

and exact recovery is possible for α ≥ min(ρ, 1) due to invertibility (or the lack of there-of) of
the matrix product AW. With ReLU generative prior we have αIT = min(ρ, 1/2) and the hard
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αsp αIT αalg

Weak recovery Hard Easy

Figure 2: Illustration of the free energy landscape as a function of the overlap with the ground
truth solution, when one increases α. For small α < αsp, there exists a unique global
minimum, whose overlap with the solution is small (high MSE). At α = αsp, a local
minimum (orange dot) with higher overlap (small MSE) appears. By definition, the global
minimum corresponds to the MMSE of the problem, which is the MSE attained by the
Bayes-optimal estimator (green dot). For α < αIT the accessible solution, i.e the global
minimum (green dot) has a high MSE while a better solution exists but has a higher free
energy (weak recovery phase). At α = αIT the two minima are global and have the same
free energy. Between αIT < α < αalg (hard phase), the local minimum with higher MSE
corresponds to the performance of the AMP estimator (red dot). Above αalg only the
small MSE minima survive and the AMP estimator is able to achieve the Bayes-optimal
performance (easy phase).

phase exists and has interesting properties: The ρ → ∞ limit corresponds to the separable prior,
and thus in this limit αalg(ρ → ∞) = αsparse

alg (ρs = 1/2). Curiously we observe αalg > αIT for
all ρ ∈ (0,∞) except at ρ = 1/2. Moreover the size of the hard phase is very small for ρ < 1/2
when compared to the one for compressed sensing with separable priors, suggesting that exploring
structure in terms of generative models might be algorithmically advantageous over sparsity.

Fig. 4 depicts the phase diagram for the phase retrieval problem with linear (left) and ReLU
(right) generative priors. The information-theoretic transition is the same as the one for compressed
sensing, while numerical inspection shows that αPR

alg > αCS
alg for all ρ 6= 0, 1/2, 1. In the left hand

side we depict also the algorithmic transition corresponding to the sparse separable prior with non-
zero components being Gaussian of zero mean, αsparse

alg (ρs), as taken from Barbier et al. (2019).
Crucially, in that case the algorithmic transition to exact recovery does not fall bellow α = 1/2
even for very small (yet finite) ρs, thus effectively disabling the possibility to sense compressively.
In contrast, with both the linear and ReLU generative priors we observe αalg(ρ → 0) → 0. More
specifically, the theory for the linear prior implies that αalg/ρ(ρ→ 0)→ αsparse

alg (ρs = 1) ≈ 1.128
with the hard phase being largely reduced. Again the hard phase disappears entirely for ρ = 1 for
the linear model and ρ = 1/2 for ReLU.

3.2. Multi-layer generative prior

From the discussion above, we conclude that generative priors are algorithmically advantageous
over sparse priors, allowing compressive sensing for the phase retrieval problem. We now inves-
tigate how the role of depth of the prior in this discussion. As before, we analyse both the linear
estimation and phase retrieval problems, fixing σ(l) ≡ σ ∈ {linear,ReLU} at every layer 1 ≤ l ≤ L.
Different from the L = 1 case discussed above, for L > 1 we have other L − 1 free parameters
characterising the layer-wise compression factors (β1, . . . , βL−1).
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Figure 3: Phase diagrams for the compressed sensing problem with (left) linear generative prior
and (right) ReLU generative prior, in the plane (ρ, α). The αIT (red line) represents the
information theoretic transition for perfect reconstruction and αalg (green line) the algo-
rithmic transition to perfect reconstruction. In the left part we depict for comparison the
algorithmic phase transition for sparse separable prior αsparse

alg (dashed-dotted green line).
The inset in the right part depicts the difference ∆alg = αalg − αIT. Colored areas corre-
spond respectively to the weak recovery (orange), hard (yellow) and easy (green) phases.
The behaviour of the free energy landscape for increasing α and fixed ρ is illustrated in
Fig. 2.
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Figure 4: The same as Fig. 3 for the phase retrieval problem with (left) linear generative prior
and (right) ReLU generative prior. A major result is that while with sparse separable
priors (green dashed-dotted line) compressed phase retrieval is algorithmically hard for
α < 1/2, with generative priors compressed phase retrieval is tractable down to vanishing
α (green line). In the left part we depict additionally the weak recovery transition αc =
ρ/[2(1 + ρ)] (dark red line). It splits the no-exact-recovery phase into the undetectable
(dark red) and the weak-recovery region (orange).

First, we fix βl and investigate the role played by depth. Fig. 5 depicts the phase diagrams
for compressed sensing (left) and phase retrieval (right) with ReLU activation with varying depth,
and a fixed architecture βl = 3 for 1 ≤ l ≤ L and note that all these curves share the same
αIT = min(0.5, ρ). It is clear that depth improves even more the small gap already observed for
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a single-layer generative prior. The algorithmic advantage of multi-layer generative priors in the
phase retrieval problem has been previously observed in a similar setting in Hand et al. (2018).

Next, we investigate the role played by the layer-wise compression factor βl. Fig. 6 depicts the
phase diagrams for the compressed sensing (left) and phase retrieval (right) with ReLU activation
for fixed depth L = 2, and varying β ≡ β1. According to the result in eq. (20), we have αIT =
min (1/2, ρ, 1/2β). It is interesting to note that there is a trade-off between compression β < 2
and the algorithmic gap, in the following sense. For ρ < 0.5 fixed, αIT decreases with decreasing
β � 1: compression helps perfect recovery. However, the algorithmic gap ∆alg becomes wider for
fixed ρ < 0.5 and decreasing β � 1.

These observations also hold for a linear generative model. In Fig. 7 we have a closer look by
plotting the algorithmic gap ∆alg ≡ αalg − αIT in the phase retrieval problem. On the left, we fix
L = 4 and plot the gap for increasing values of β ≡ βl, leading to increasing ∆alg. On the right, we
fix β = 2 and vary the depth, observing a monotonically decreasing ∆alg.
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Figure 5: Phase diagrams for the compressed sensing (left) and phase retrieval (right) problems
for different depths of the prior, with ReLU activation and fixed layer-wise compression
βl = 3. Dashed lines represent the algorithmic threshold αalg and solid lines the perfect
recovery threshold αIT. We note that the algorithmic gap ∆alg (shown in insets) decreases
with the network depth L.

4. Conclusion and perspectives

In this manuscript we analysed how generative priors from an ensemble of random multi-layer
neural networks impact signal reconstruction in the high-dimensional limit of two important inverse
problems: real-valued phase retrieval and linear estimation. More specifically, we characterised the
phase diagrams describing the interplay between number of measurements needed at a given signal
compression ρ, for a range of shallow and multi-layer architectures for the generative prior. We
observed that although present, the algorithmic gap significantly decreases with depth in the studied
architectures. This is particularly striking when compared with sparse priors at ρ� 1, for which the
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Figure 6: Phase diagrams for the compressed sensing (left) and phase retrieval (right) problems
with L = 2 and ReLU activation for different values of the layer-wise compression fac-
tor β1. Dashed lines represent the algorithmic threshold αalg and solid lines the perfect
recovery threshold αIT. We note that for a given ρ < 0.5, αIT is decreasing with β � 1.
However, the algorithmic gap ∆alg (shown in the inset) grows for decreasing β. Note that
for β1 ≥ 2 the hard phase is hardly visible at ρ = 0.5, even though it disappears only in
the large width limit, for both compressed sensing and phase retrieval settings.
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Figure 7: Algorithmic gap ∆alg = αalg − αIT for small ρ and linear activation, as a function of
(left) the compression β ≡ βl for fixed depth L = 4 and of (right) depth for a fixed
compression β = 2.
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algorithmic gap is considerably wider. In practice, this means generative models given by random
multi-layer neural networks allow for efficient compressive sensing in these problems.

In this work we have only considered independent random weight matrices for both the estima-
tion layer and for the generative model. Ideally, one would like to introduce correlations in a setting
closer to reality to show that the smaller computation-to-statistical gap also appears in real-life tasks.
The hurdle is that in those cases one does not know what is the theoretically optimal performance
nor what are the optimal polynomial algorithms, so that one cannot evaluate the computation-to-
statistical empirically in those cases. Yet another tractable case is the study of random rotationally
invariant or unitary sensing matrices, as in Kabashima (2008); Fletcher et al. (2018); Barbier et al.
(2018); Dudeja et al. (2019). In a different direction, it would be interesting to observe the phe-
nomenology from this work in an experimental setting, for instance using a generative model, such
as GANs or VAEs, trained on a real dataset to improve the performance of approximate message
passing algorithms in a practical task.
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