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Abstract

Compressed sensing allows the acquisition of compressible signals with a small number of measurements.
In experimental settings, the sensing process corresponding to the hardware implementation is not always
perfectly known and may require a calibration. To this end, blind calibration proposes to perform at the
same time the calibration and the compressed sensing. Schülke and collaborators suggested an approach
based on approximate message passing for blind calibration (cal-AMP) in [1, 2]. Here, their algorithm is
extended from the already proposed offline case to the online case, for which the calibration is refined step
by step as new measured samples are received. We show that the performance of both the offline and
the online algorithms can be theoretically studied via the State Evolution (SE) formalism. Finally, the
efficiency of cal-AMP and the consistency of the theoretical predictions are confirmed through numerical
simulations.

1 Introduction
The efficient acquisition of sparse signals has been made possible by Compressed Sensing (CS) [3]. This
technique has now many applications: in medical imaging [4, 5] for instance, where short acquisition times
are preferable, or in imaging devices where measurements are costly [6]. For practical applications, correct
calibration of potential unknowns coming from the measurement hardware is a central issue. If complementary
pairs of measurement-signal are available a priori, a supervised procedure of calibration can be imagined.
We assume it is not the case and focus on blind calibration. In blind calibration, calibration is conducted in
parallel to the sparse signal recovery of the compressed sensing. This method does not require the availability
of calibration samples before the reconstruction and is thus particularly appealing. Here we consider formally
the case where the exact measurement process is known up to a set of variables, referred to as calibration
variables.

Gribonval and co-authors discussed in a series of articles [7, 8] a decalibration example where unknown
gains multiply each sensor. More precisely, they considered for each signal x ∈ RN an observation y ∈ RM ,
produced as

y = SW x (1)

with W ∈ RM×N a known measurement matrix and S an unknown square diagonal matrix of calibration
variables. The examined problem is to reconstruct both the corresponding signals x and the calibration matrix
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S, provided several observations y. In [7, 8], the authors showed that this question can be exactly expressed
as a convex optimization problem, and thus be solved using off-the-shelf algorithms. In subsequent papers
[1, 2], Schülke and collaborators used instead an Approximate Message Passing (AMP) approach, famously
introduced in compressed sensing by [9]. Their calibration-AMP algorithm (cal-AMP) was proposed for
Bayesian blind calibration, with both the calibration variables on the sensors and the elements of the signals
reconstructed simultaneously. Remarkably, cal-AMP is not restricted to the case where the distortion of the
measurements is a multiplication by a gain and is applicable in other settings. The derivation of the algorithm
relies on the extension of AMP resolution technics to the Generalized Linear Model (GLM), for which
linear mixing is followed by a generic probabilistic sensing process, corresponding to the Generalized-AMP
(GAMP) algorithm [10, 11]. Authors of [1, 2] demonstrated their approach through empirical numerical
simulations, and found that considering relatively few measured samples at a time could already allow for a
good calibration.

An ensuing question is whether the calibration could be performed online, that is when different observations
are received successively instead of being treated at once. In learning applications, it is sometimes advantageous
for speed concerns to only treat a subset of training examples at a time. Sometimes also, the size of the
current data sets may exceed the available memory. Methods implementing a step-by-step learning, as the
data arrives, are referred to as online, streaming or mini-batch learning, as opposed to offline or batch learning.
For instance, in deep learning, Stochastic Gradient Descent is the most popular training algorithm [12]. From
the theoretical point of view, the restriction to the fully online case, where a single data point is used at a
time, offers interesting possibilities of analysis, as demonstrated in different machine learning problems by
[13, 14, 15]. Here we will consider the Bayesian online learning of the calibration variables.

In the present paper, we revisit and extend cal-AMP with the following contributions

• We re-derive the message passing equations from a more general formulation than [1, 2]. This strategy
allows us to theoretically analyze the algorithm through a State Evolution, as first done for regular
AMP in [9]. This analysis was not straightforward and remained an open problem for [2]. These
contributions are presented in Section 2.

• In Section 2.4, we write the free energy, or equivalently the mutual information, of the problem thanks
to the general formulation and the natural connection to committee machines [16]. We conjecture our
results to be rigorously exact and discuss the missing ingredients to turn our formula into a full theorem.

• Along the lines of [17], we also consider the online version of the problem in Section 3. We propose an
online cal-AMP algorithm allowing for the Bayesian adjustment of the calibration as new observations
arrive. The corresponding State Evolution analysis is presented as well.

• We validate numerically the performance of the algorithms and their consistency with the theoretical
analyses, on the example of gain calibration, in Section 4. In particular, the algorithm remains fast and
remarkably efficient going from the offline to the online setting.

Finally, we wish to clarify notations: vector variables are underlined as x, matrix variables are doubly
underlined as W and the symbol ∝ omits the normalization factor of probability distributions.
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2 Cal-AMP revisited

2.1 Model of calibrated generalized linear estimation
We consider P observations y

(k)
∈ RM gathered in a matrix Y ∈ RM×P , generated by the following teacher

model

s0 ∼ ps0(s0) (2)

∀ k = 1, · · · , P, x0,(k) ∼ px0
(x0,(k)) =

N∏
i=1

px0
(x0,i,(k)) (3)

y
(k)
∼ psout,0(y

(k)
|Wx0,(k), s0) =

M∏
µ=1

psout,0(y(k),µ|Wx0,(k), s0,µ) . (4)

The x0,(k) ∈ RN are P unknown signals, gathered in a matrix X
0
∈ RN×P , linearly mixed by a known weight

(or measurement) matrix W , and pushed through a noisy channel denoted psout,0. The channel is not perfectly
known and depends on the realization of calibration variables s0 ∈ RM (which, in the special case of a linear
model (1), is the diagonal of S). We are interested in the estimation of the unknown signals and calibration
variables. The priors and the channel of the teacher model are not necessarily available and we assume the
following, a priori different, student model,

p(X, s|Y ,W ) =
1

Z(Y ,W )
px(X)ps(s)p

s
out(Y |WX, s) (5)

=
1

Z(Y ,W )

N∏
i=1

px(xi)

M∏
µ=1

ps(sµ)psout(yµ|w
>
µX, sµ), (6)

with xi ∈ RP , and y
µ
∈ RP . The corresponding factor graph is drawn on Figure 1b. Note that the distribution

could be further factorized over the index k of the P observations. The corresponding message passing was
derived in [1, 2]. Here we adopt instead the level of factorization above and derive the AMP algorithm on
vector variables in RP . Thus cal-AMP can be seen as a special case of GAMP on vector variables as we will
see in the next section. This point of view is key to obtain the State Evolution analysis of the calibration
problem.

2.2 Cal-AMP as a special case of GAMP
In our derivation calibration-AMP (cal-AMP) is interpreted as a special case of Generalized Approximate
Message Passing (GAMP) [11], where (a) the algorithm acts simultaneously on the vector variables and
(b) the channel includes a marginalization over the calibration variables. For this first variation, the AMP
algorithm on vector variables was already derived by [16], to treat committee machines (two-layers neural
networks [18]) without calibration. We shall recall here the main steps of the derivation, see [19] for a recent
methodological introductory review to message passing algorithms and mean-field approximations in learning
problems.

2.2.1 AMP for reconstruction of multiple samples

The systematic procedure to write AMP for a given joint probability distribution consists in first writing
BP on the factor graph, second project the messages on a parametrized family of functions to obtain the
corresponding relaxed-BP and third close the equations on a reduced set of parameters by keeping only
leading terms in the thermodynamic limit.
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(b) .

Figure 1: (a) Factor graph of the Generalized Linear Model (GLM) on vector variables corresponding to the
joint distribution (7). (b) Factor graph for the GLM on vector variables with not perfectly known channel
including calibration variables, corresponding to the joint distribution (6).

For the generic GLM, without the calibration variable, the posterior measure we are interested in is

p(X|Y ,W ) =
1

Z(Y ,W )

N∏
i=1

p(xi)

M∏
µ=1

pout(yµ|w
>
µX/

√
N), xi ∈ RP , y

µ
∈ RP , (7)

where the known entries of matrix W are drawn i.i.d from a standard normal distribution (the scaling
in 1/

√
N is from now on made explicit). The corresponding factor graph is given on Figure 1a. We are

considering the simultaneous reconstruction of P signals x0,(k) ∈ RN and therefore write the message passing
on the variables xi ∈ RP . The major difference with the fully factorized version on scalar variables of [1, 2]
is that we will consider covariance matrices between variables coming from the P observations instead of
assuming complete independence.

Belief propagation (BP) We start with BP on the factor graph of Figure 1a. For all pairs of indices
i− µ, we define the update equations of messages

m̃
(t)
µ→i(xi) =

1

Zµ→i

∫ ∏
i′ 6=i

dxi′ pout

y
µ
|
∑
j

Wµj√
N
xj

∏
i′ 6=i

m
(t)
i′→µ(xi′) (8)

m
(t+1)
i→µ (xi) =

1

Zi→µ
px(xi)

∏
µ′ 6=µ

m̃
(t)
µ′→i(xi), (9)

where Zµ→i and Zi→µ are normalizations that allow to interpret messages as probability distributions. To
improve readability, we drop the time indices in the following derivation, and only recover them in the final
algorithm.

Relaxed BP (r-BP) The second step of the derivation consists in developing messages up to order O(1/N)
as we take the thermodynamic limit N → +∞ (at fixed α = M/N). At this order, we will find that it is
consistent to consider the messages to be approximately Gaussian, i.e. characterized by their means and
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covariances. Thus we define

x̂i→µ =

∫
dx x mi→µ(x) (10)

Cx
i→µ =

∫
dx xxT mi→µ(x) (11)

and

ωµ→i =
∑
i′ 6=i

Wµi′√
N
x̂i′→µ (12)

V
µ→i =

∑
i′ 6=i

W 2
µi′

N
Cx

i′→µ, (13)

where ωµ→i and V µ→i are related to the intermediate variable zµ = w>µX.

Expansion of m̃µ→i - We define the Fourier transform p̂out of pout(yµ|zµ) with respect to its argument
zµ = w>µX,

p̂out(yµ|ξµ) =

∫
dzµ pout(yµ|zµ) e

−iξ>
µ
zµ . (14)

Using reciprocally the Fourier representation of pout(yµ|zµ),

pout(yµ|zµ) =
1

(2π)M

∫
dξ
µ
p̂out(yµ|ξµ) e

iξ>
µ
zµ , (15)

we decouple the integrals over the different xi′ in (8),

m̃µ→i(xi) ∝
∫

dξ
µ
p̂out

(
y
µ
|ξ
µ

)
e
i
Wµi√
N
ξ>
µ
xi
∏
i′ 6=i

∫
dxi′ mi′→µ(xi′)e

i
W
µi′√
N
ξ>
µ
xi′ (16)

∝
∫

dξ
µ
p̂out

(
y
µ
|ξ
µ

)
e
iξ>

(
Wµi√
N
xi+ωµ→i

)
− 1

2 ξ
>V −1

µ→i
ξ
, (17)

where developing the exponentials of the product in (8) allows to express the integrals over the xi′ as a
function of the definitions (12)-(13), before re-exponentiating to obtain the final result (17). Now reversing
the Fourier transform and performing the integral over ξ, we can further rewrite

m̃µ→i(xi) ∝
∫

dzµ pout

(
y
µ
|zµ
)
e
− 1

2

(
zµ−

Wµi√
N
xi−ωµ→i

)>
V −1

µ→i

(
zµ−

Wµi√
N
xi−ωµ→i

)
(18)

∝
∫

dzµ Pout(zµ;ωµ→i, V µ→i)e
(zµ−ωµ→i)

>
V −1

µ→i

Wµi√
N
xi−

W2
µi

2N x>i V
−1

µ→i
xi , (19)

where we are led to introduce the output update functions,

Pout(zµ;ωµ→i, V µ→i) = pout

(
y
µ
|zµ
)
N (zµ;ωµ→i, V µ→i) , (20)

Zout(yµ, ωµ→i, V µ→i) =

∫
dzµ pout

(
y
µ
|zµ
)
N (zµ;ωµ→i, V µ→i) , (21)

gout(yµ, ωµ→i, V µ→i) =
1

Zout

∂Zout

∂ω
and ∂ωgout =

∂gout

∂ω
, (22)
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with N (z;ω, V ) the multivariate Gaussian distribution of mean ω and covariance V . Further expansion of
the exponential in (19) to order O(1/N) leads to the Gaussian parametrization

m̃µ→i(xi) ∝ 1 +
Wµi√
N
goutxi +

Wµi
2

2N
xi
T (goutgout

T + ∂ωgout)xi (23)

∝ eBµ→i
T xi− 1

2xi
TA

µ→i
xi , (24)

with

Bµ→i =
Wµi√
N
gout(yµ, ωµ→i, V µ→i) (25)

A
µ→i = −Wµi

2

N
∂ωgout(yµ, ωµ→i, V µ→i). (26)

Consistency with mi→µ - Inserting the Gaussian approximation of m̃µ→i in the definition of mi→µ,
we get the parametrization

mi→µ(xi) ∝ px(xi)
∏
µ′ 6=µ

e
Bµ′→i

T xi− 1
2xi

TA
µ′→i

xi ∝ px(xi)e
− 1

2 (xi−λi→µ)Tσ−1

i→µ
(xi−λi→µ) (27)

with

λi→µ = σ
i→µ

∑
µ′ 6=µ

Bµ′→i

 (28)

σ
i→µ =

∑
µ′ 6=µ

A
µ′→i

−1 . (29)

Closing the equations - Ensuring the consistency with the definitions (10)-(11) of mean and covariance
of mi→µ we finally close our set of equations by defining the input update functions,

Zx =

∫
dx px(x)e−

1
2 (x−λ)>σ−1(x−λ) (30)

fx
1
(λ, σ) =

1

Zx
∫

dx x px(x)e−
1
2 (x−λ)>σ−1(x−λ) (31)

fx
2
(λ, σ) =

1

Zx
∫

dx xx> px(x)e−
1
2 (x−λ)>σ−1(x−λ) − fx

1
(λ, σ)fx

1
(λ, σ)>, (32)

so that

x̂i→µ = fx
1
(λi→µ, σi→µ) (33)

Cx
i→µ = fx

2
(λi→µ, σi→µ). (34)

The closed set of equations (12), (13), (25) (26), (28), (29), (33) and (34), with restored time indices,
defines the r-BP algorithm. At convergence of the iterations, we obtain the approximated marginals

mi(xi) =
1

Zxi
px(xi)e

− 1
2 (x−λi)>σ−1

i
(x−λi) (35)

6



with

λi = σ
i

(
M∑
µ=1

Bµ→i

)
(36)

σ
i

=

(
M∑
µ

A
µ→i

)−1
. (37)

While BP requires to track the iterations of M ×N messages (distributions) over vectors in RP , r-BP
only requires to track O(M ×N × P ) variables, which is a great simplification. Nonetheless, r-BP is scarcely
used as such. The computational cost can be readily further reduced with little more approximation. In
the thermodynamic limit, the messages are closely related to the marginals as the contribution of the
missing message between (9) and (35) is negligible to a certain extent. Careful book keeping of the order of
contributions of the different terms leads to a set of closed equations on parameters of the marginals, i.e.
O(N) variables, corresponding to the GAMP algorithm.

Approximate message passing Given the scaling of the weights in O(1/
√
N), the r-BP algorithm

simplifies in the thermodynamic limit. We define the pairs of marginal parameters ωµ, V µ and x̂i, Cxi
similarly to the parameters λi and σi defined above. The expansion of the original message parameters λi→µ,
σ
i→µ, ωµ→i, V µ→i, x̂i→µ and Cx

i→µ around these new parameters leads to the final closed set of equations
corresponding to the approximate message passing. In fine, we obtained the vectorized AMP for the GLM
presented in Algorithm 1.

Note that, similarly to GAMP, relaxing the Gaussian assumption on the weight matrix entries to
any distribution with finite second moment yields the same algorithm using the Central Limit Theorem.
Furthermore, the algorithmic procedure should also generalize to a wider class of random matrices allowing
for correlations between entries: the ensemble of orthogonally invariant matrices. In the singular value
decomposition of such weight matrices W = U S V > ∈ RM×N the orthogonal basis matrices U and V are
drawn uniformly at random from respectively O(M) and O(N), while the diagonal matrix of singular values
S has an arbitrary spectrum. For the GLM, without calibration variables, the signal is recovered in such
cases by the (Generalized) Vector-Approximate Message Passing (G-VAMP) algorithm [20, 21], inspired from
prior works in statistical physics [22, 23, 24, 25, 26] and statistical inference [27, 28].

2.2.2 Treatment of calibration variables

Heuristic derivation To deal with calibration variables, we need to consider the factor graph of Figure 1b.
Here belief propagation must involve a set of messages related to the variables sµ. This new algorithm can
easily be deduced from the GAMP algorithm derived above by noticing that the posterior distribution on X
in the presence of the calibration variable s is a special case of the GLM on vector variables with the effective
channel

pout(yµ|wµ
>X) =

∫
dsµ p

s
out(yµ|wµ

>X, sµ)ps(sµ). (46)

Thus Algorithm 1 can reconstruct X using output functions (20)-(22) which include a marginalization over s:

Zout(yµ, ωµ, V µ) =

∫
dzµ

∫
dsµ p

s
out

(
y
µ
|zµ, sµ

)
ps(sµ)N (zµ;ωµ, V µ). (47)

The estimator of a variable computed by (sum-product) AMP is always the mean of an approximate posterior
marginal distribution. For the calibration variable, the AMP posterior is already displayed in the above Zout,

ms
µ(sµ) =

1

Zout

∫
dzµ p

s
out

(
y
µ
|zµ, sµ

)
ps(sµ)N (zµ;ωµ, V µ). (48)
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Algorithm 1 Generalized Approximate Message Passing (GAMP) for vectors

Input: matrix Y ∈ RM×P and matrix W ∈ RM×N :
Initialize: x̂i, Cxi, σi ∀i and goutµ, ∂ωgoutµ ∀µ
repeat
1) Estimate mean and variance of zµ given current x̂i

V (t)

µ
=

N∑
i=1

W 2
µi

N
Cx

i

(t) (38)

ω(t)
µ =

N∑
i=1

Wµi√
N
x̂
(t)
i −

N∑
i=1

W 2
µi

N
(σ(t)
i

)−1Cx(t)
i
σ
i
gout

(t−1)
µ

(39)

2) Estimate mean and variance of the gap between optimal zµ and ωµ given y
µ

∂ωgout
(t)

µ
= ∂ωgout(yµ, ω

(t)
µ , V (t)

µ
) (40)

gout
(t)
µ

= gout(yµ, ω
(t)
µ , V (t)

µ
) (41)

3) Estimate mean and variance of xi given current optimal zµ

σ(t)
i

=

(
−

M∑
µ=1

W 2
µi

N
∂ωgout

(t)

µ

)−1
(42)

λ
(t)
i = x̂

(t)
i + σ(t)

i

(
M∑
µ=1

Wµi√
N
gout

(t)
µ

)
(43)

4) Estimate of mean and variance of xi augmented of the information about the prior
Cx

i

(t+1) = fx
2
(λ

(t)
i , σ(t)

i
) (44)

x̂
(t+1)
i = fx

1
(λ

(t)
i , σ(t)

i
) (45)

until convergence

As a result, we can compute the estimate and uncertainty on the calibration variable, at convergence of
Algorithm 1, as

ŝµ = fs1 (y
µ
, ωµ, V µ) =

1

Zout

∫
dsµ sµ

∫
dzµ p

s
out

(
y
µ
|zµ, sµ

)
ps(sµ)N (zµ;ωµ, V µ) (49)

Csµ = fs2 (y
µ
, ωµ, V µ) =

1

Zout

∫
dsµ s

2
µ

∫
dzµ p

s
out

(
y
µ
|zµ, sµ

)
ps(sµ)N (zµ;ωµ, V µ)− ŝ2µ. (50)

Relation to original cal-AMP derivation In [1, 2], the cal-AMP algorithm was derived from the belief
propagation equations on the scalar variables of the fully factorized distribution (over N , M and P ). It
is equivalent to Algorithm 1 if the covariance matrices V

µ
, ∂ωgout

µ
, σ

i
, Cx

i
are assumed to be diagonal.

However, we recall that BP is only exact on a tree, where the incoming messages at each node are truly
independent. On the dense factor graph of the GLM on scalar variables, this is approximately exact in
the thermodynamic limit due to the random mixing and small scaling of the weight matrix W . Here, by
considering the reconstruction of P samples at the same time, sharing given realizations of the calibration
variable s, as well as the measurement matrix W , additional correlations may arise. Writing the message
passing on the vector variables in RP allows not to neglect them and therefore improve the final algorithm.
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2.3 State Evolution for cal-AMP
In the large size limit, where N → +∞ at fixed α = M/N , the performance of the AMP algorithm can be
characterized by a set of simpler equations corresponding to a quenched average over the disorder (here the
realizations of X

0
, s0, Y and W ), referred to as State Evolution (SE) [9]. Remarkably, the SE equations are

equivalent to the saddle point equations of the replica free energy associated with the problem under the
Replica Symmetric (RS) ansatz [29]. In [16], the teacher-student matched setting of the GLM on vectors
is examined through the replica approach and the Bayes optimal State Evolution equations are obtained
through this second strategy. In the following we present the alternative derivation of the State Evolution
equations from the message passing without assuming a priori matched teacher and student models. Our
starting point are the r-BP equations. Finally, we also introduce new State Evolution equations following the
reconstruction of calibration variables.

2.3.1 State Evolution derivation for mismatched prior and channel

Definition of the overlaps The key quantities to track the dynamic of iterations and the fixed point(s)
of AMP are the overlaps. Here, they are the P × P matrices

q =
1

N

N∑
i=1

x̂ix̂
T
i , m =

1

N

N∑
i=1

x̂ix0,i
T , q

0
=

1

N

N∑
i=1

x0,ix0,i
T . (51)

Output parameters Under independent statistics of the entries of W and under the assumption of
independent incoming messages, the variable ωµ→i defined in (12) is a sum of independent variables and
follows a Gaussian distribution by the Central Limit Theorem. Its first and second moments are

EW
[
ωµ→i

]
=

1√
N

∑
i′ 6=i

EW [Wµi] x̂i′→µ = 0 , (52)

EW
[
ωµ→iω

T
µ→i

]
=

1

N

∑
i′ 6=i

EW
[
W 2
µi

]
x̂i′→µx̂

T
i′→µ (53)

=
1

N

N∑
i=1

x̂i→µx̂
T
i→µ +O (1/N) (54)

=
1

N

N∑
i=1

x̂ix̂
T
i − ∂λfx1σiBµ→ix̂

T
i −

(
∂λf

x

1
σ
i
Bµ→ix̂

T
i

)T
+O (1/N) (55)

=
1

N

N∑
i=1

x̂ix̂
T
i +O

(
1/
√
N
)

(56)

where we used the fact that Bµ→i defined in (25) is of order O(1/
√
N). Similarly, the variable zµ→i =∑

i′ 6=i
Wµi′√
N
xi′ is Gaussian with first and second moments

EW
[
zµ→i

]
=

1√
N

∑
i′ 6=i

EW [Wµi]x0,i′ = 0 , (57)

EW
[
zµ→iz

T
µ→i

]
=

1

N

N∑
i=1

x0,ix0,i
T +O

(
1/
√
N
)
. (58)

9



Furthermore, the covariance between ωµ→i and zµ→i is

EW
[
zµ→iω

T
µ→i

]
=

1

N

∑
i′ 6=i

EW
[
W 2
µi

]
x0,i′ x̂

T
i′→µ (59)

=
1

N

N∑
i=1

x0,i′ x̂
T
i→µ +O (1/N) (60)

=
1

N

N∑
i=1

x0,i′ x̂
T
i − x0,i′∂λfx1σiB

T
µ→i +O (1/N) (61)

=
1

N

N∑
i=1

x0,i′ x̂
T
i +O

(
1/
√
N
)
. (62)

Hence we find that for all µ-s and all i-s, ωµ→i and zµ→i are approximately jointly Gaussian in the

thermodynamic limit following a unique distribution N
(
zµ→i, ωµ→i; 0, Q

)
with the block covariance matrix

Q =

 q0 m

m> q

 . (63)

For the variance message V
µ→i, defined in (13), we have

EW
[
V
µ→i

]
=
∑
i′ 6=i

EW
[
Wµi

N

2]
Cx

i′→µ (64)

=

N∑
i=1

1

N
Cx

i→µ +O (1/N) (65)

=

N∑
i=1

1

N
Cx

i
+O

(
1/
√
N
)
, (66)

where using the developments of λi→µ and σ
i→µ (28)-(29) and the scaling of Bµ→i in O(1/

√
N) we replaced

Cx
i→µ = fx

2
(λi→µ, σi→µ) = fx

2
(λi, σi)− ∂λf

x

2
σ
i
BTµ→i = fx

2
(λi, σi) +O

(
1/
√
N
)
. (67)

Futhermore, we can check that under our assumptions

lim
N→+∞

EW
[
V 2

µ→i − EW
[
V
µ→i

]2]
= 0, (68)

where the square is taken element-wise, meaning that all V
µ→i concentrate on their mean in the thermodynamic

limit, which is identical for all of them:

V =

N∑
i=1

1

N
Cx

i
. (69)

Input parameters Here we use the re-parametrization trick to express y
µ
as a function g0(·) taking the

calibration variable sµ and a noise εµ ∼ pε(εµ) as inputs: y
µ

= g0(w>µX0
, s0,µ, εµ). Following (26)-(25) and

10



(35),

σ−1
i
λi =

M∑
µ=1

Wµi√
N
gout

(
y
µ
, ωµ→i, V µ→i

)
(70)

=

M∑
µ=1

Wµi√
N
gout

g0
∑
i′ 6=i

Wµi′√
N
x0,i′ +

Wµi√
N
x0,i, s0,µ, εµ

 , ωµ→i, V µ→i

 (71)

=

M∑
µ=1

Wµi√
N
gout

g0
∑
i′ 6=i

Wµi′√
N
x0,i′ , s0,µ, εµ

 , ωµ→i, V µ→i


+

M∑
µ=1

W 2
µi

N
∂zgout

(
g0
(
zµ→i, s0,µ, εµ

)
, ωµ→i, V µ→i

)
x0,i. (72)

The first term is again a sum of independent random variables, given the Wµi are i.i.d. with zero mean and
the messages of type µ→ i are assumed independent. The second term has non-zero mean and can be shown
to concentrate. Recalling that all V

µ→i also concentrate on V , we obtain that σ−1
i
λi effectively follows the

Gaussian distribution (IP is the P × P identity)

σ−1
i
λi ∼ N

(
σ−1
i
λi; αm̂x0,i,

√
αq̂IP

)
(73)

with

q̂ =

∫
dε pε(ε)ds0 ps0(s0)

∫
dω dz N (z, ω; 0, Q)gout(g0 (z, s0, ε) , ω, V )× (74)

gout(g0 (z, s0, ε) , ω, V )T ,

m̂ =

∫
dε pε(ε)ds0 ps0(s0)

∫
dω dz N (z, ω; 0, Q)∂zgout(g0 (z, s0, ε) , ω, V ). (75)

The inverse variance σ−1
i

can be shown to concentrate on its mean

σ−1
i

=

M∑
µ=1

Wµi
2

N
∂ωgout(yµ, ωµ→i, V µ→i) ' αχ̂ , (76)

χ̂ = −
∫

dε pε(ε)ds0 ps0(s0)

∫
dε dz N (z, ω; 0, Q)∂ωgout(g0 (z, s0, ε) , ω, V ) . (77)

Closing the equations The statistics of the input parameters λi and σ
i
must be consistent with the

overlap matrices given

V =
1

N

N∑
i=1

Cx
i

= Eλ,σ
[
fx
2
(λ, σ)

]
, (78)

q =
1

N

N∑
i=1

x̂ix̂
>
i = Eλ,σ

[
fx
1
(λ, σ)fx

1
(λ, σ)>

]
, (79)

m =
1

N

N∑
i=1

x̂ix0,i
> = Eλ,σ

[
fx
1
(λ, σ)x0,i

>
]
, (80)

11



which gives upon expressing the computation of the expectations (here Dξ is the P -dimensional multivariate
standard Gaussian distribution with 0 mean and identity covariance)

V =

∫
dx0 px0(x0)

∫
Dξ fx

2

(
(αχ̂)−1

(√
αq̂ξ + αm̂x0

)
; (αχ̂)−1

)
, (81)

m =

∫
dx0 px0

(x0)

∫
Dξ fx

1

(
(αχ̂)−1

(√
αq̂ξ + αm̂x0

)
; (αχ̂)−1

)
x0
> , (82)

q =

∫
dx0 px0

(x0)

∫
Dξ fx

1

(
(αχ̂)−1

(√
αq̂ξ + αm̂x0

)
; (αχ̂)−1

)
×

fx
1

(
(αχ̂)−1

(√
αq̂ξ + αm̂x0

)
; (αχ̂)−1

)>
. (83)

The State Evolution analysis of the GLM with vector variables, that allows to track the vectorial version of
GAMP given by Algorithm 1, finally consists in iterating alternatively the equations (74), (75), (77), and the
equations (81), (82) (83) until convergence.

Reconstruction of the calibration variable In parallel, the reconstruction of s0 can be followed by
introducing the scalar overlaps

r =
1

M

M∑
µ=1

ŝ2µ, ν =
1

M

M∑
µ=1

ŝµs0,µ, r0 =
1

M

M∑
µ=1

s20,µ. (84)

Recalling the definition of the estimator ŝ(·) = fs
1
(·) given by (49) and taking the steps of the derivation

above, one finds that the calibration overlaps can be computed using the SE variables introduced above,

r =

∫
dε pε(ε)ds0 ps0(s0)

∫
dω dz N (z, ω; 0, Q) ŝ

(
g0 (z, s0, ε) , ω, V

)2
, (85)

ν =

∫
dε pε(ε)ds0 ps0(s0)

∫
dω dz N (z, ω; 0, Q) ŝ

(
g0 (z, s0, ε) , ω, V

)
s0. (86)

Performance analysis The mean squared error (MSE) on the reconstruction of X by the AMP algorithm
is then predicted by

MSE(X) = q − 2m+ q0, (87)

where the scalar values used here correspond to the (unique) value of the diagonal elements of the corresponding
overlap matrices. This MSE can be computed throughout the iterations of State Evolution. Similarly, the
MSE in the reconstruction of the calibration variable can be computed as

MSE(s) = r − 2ν + r0, (88)

throughout the iterations. Remarkably, the State Evolution MSEs follow precisely the MSE of the cal-AMP
predictors along the iterations of the algorithm provided the procedures are initialized consistently. A random
initialization of x̂i and ŝ in cal-AMP corresponds to an initialization of zero overlap m = 0, ν = 0, with
variance of the priors q = q0, r = r0, in the State Evolution.

2.3.2 Bayes optimal State Evolution

The SE equations can be greatly simplified in the Bayes optimal setting where the statistical model used by
the student (priors px and ps, and channel pout) matches the teacher model. In this case, the true unknown
signal X

0
is in some sense statistically equivalent to the estimate X̂ coming from the posterior. More precisely

12



one can prove the Nishimori identities [30, 31, 32] (or [33] for a concise demonstration and discussion) implying
that

q = m, V = q
0
−m, q̂ = m̂ = χ̂ and r = ν. (89)

As a result the State Evolution reduces to a set of three equations

r =

∫
dε pε(ε)ds0 ps0(s0)

∫
dω dz N (z, ω; 0, Q) ŝ

(
g0 (z, s0, ε) , ω, q

0
−m

)2
, (90)

m =

∫
dx0 px0(x0)

∫
Dξ fx

1

(
(αm̂)−1

(√
αm̂ξ + αm̂x0

)
; (αm̂)−1

)
x0
> , (91)

m̂ =

∫
dε pε(ε)ds0 ps0(s0)

∫
dω dz N (z, ω; 0, Q)gout

(
g0 (z, s0, ε) , ω, q

0
−m)

)
× (92)

gout

(
g0 (z, s0, ε) , ω, q

0
−m)

)T
,

with the block covariance matrix

Q =

 q0 m

m> m

 . (93)

2.4 Replica free energy
The approximate inference via message passing presented in the previous sections is related to the replica
approximation of the free energy of the problem defined as

FN = − log p(Y |W ) = − log

∫
dX ds psout(Y |WX, s)px(X)ps(s). (94)

More precisely, the replica approximation [34] of the asymptotic expected free energy density

f = − lim
N→∞

1

N
EW

∫
dY p(Y |W ) log p(Y |W ) (95)

can be directly derived from GAMP on vector variables as presented in [16] (there applied to committee
machines). With our notations, the Bayes optimal free energy density is

−f = max

{
extrmm̂

[
−1

2
Tr(mm̂) + Ix(m̂) + αIz(m)

]}
(96)

with (again D is used for a standard multivariate Gaussian density)

Ix(m̂) =

∫
RP
Dξ

∫
RP

dx0 px(x0)e−
1
2x
>
0 m̂x0+ξ

>m̂1/2x0 log

(∫
RP

dx px(x)e−
1
2x
>m̂x+ξ>m̂1/2x

)
, (97)

Iz(m) =

∫
RP

dy

∫
RP
Dξ

∫
RP
Dz0

∫
ds0 ps(s0)psout(y|(q

0
−m)1/2z0 + q1/2ξ; s0)

× log

(∫
RP
Dz ds ps(s)p

s
out(y|(q

0
−m)1/2z + q1/2ξ, s)

)
. (98)

In the case of mismatched teacher and student, the formula can be generalized and the expected free
energy density

f = − lim
N→∞

1

N
EW

∫
dY dX

0
ds0 p

s
out,0(Y |WX

0
, s0)px0

(X
0
)ps0(s0)

× log

(∫
dX ds psout(Y |WX, s)px(X)ps(s)

)
(99)
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is now approximated as the extremum of a potential over all the overlap and auxiliary matrices

q =
1

N

N∑
i=1

xa,ix
>
a,i , m =

1

N

N∑
i=1

x0,ix
>
a,i , q

12
=

1

N

N∑
i=1

xa,ixb,i , (100)

where a and b are indices of different replicas in the computation. We obtain

−f = max
{

extrq,q̂,m,m̂,q
12
,q̂

12

φ(q, q̂,m, m̂, q
12
, q̂

12
)
}
, (101)

with

φ(q, q̂,m, m̂, q
12
, q̂

12
) = −Tr(mm̂) + Tr(qq̂) +

1

2
Tr(q

12
q̂
12

) + Ix(q̂, m̂, q̂
12

) + αIz(q,m, q
12

) , (102)

and

Ix(q̂, m̂, q̂
12

) =

∫
Dξ

∫
dx0 px(x0) log

(∫
dx px(x)e

x>0 m̂x− 1
2x
>(q̂+q̂

12
)x+ξ>q̂1/2

12
x
)

(103)

Iz(q,m, q
12

) =

∫
dy

∫
Dξ

∫
Dz0 ds0 ps0(s0)psout,0(y|(q

0
−mq−1

12
m>)1/2z0 +mq−1/2

12
ξ; s0)

× log

(∫
Dz

∫
ds ps(s)p

s
out(y|(q − q

12
)1/2z + q1/2

12
ξ, s)

)
. (104)

Writing the extremization conditions for the potential φ(q, q̂,m, m̂, q
12
, q̂

12
) yields a set of self consistency

equations for the overlap matrices. This set of coupled equations can be shown to be equivalent to the SE
fixed point equations, (91)-(92) for the Bayes optimal case, and (74)-(83) for the mismatched case. This
equivalence reveals the connection between the replica method and message passing algorithms at first
apparently unrelated.

Finally, let us comment on the validity of the formula for the asymptotic free energy in the Bayes optimal
case. We conjecture that when one selects the maximum value between all the extrema in (96), the replica
prediction is asymptotically correct. A rigorous justification can be provided using the approach used for the
committee machine in [16], based on interpolation technics developed in [35, 36] . It is rather straightforward
to repeat these steps for the present problem, which should lead to a complete proof of the conjecture (96).

3 Online algorithm and analysis
In machine learning applications, the offline strategy, where all the training data is exploited at once, is
sometimes made difficult by its memory cost. Instead, data may be partitioned into mini-batches of a few
samples, or even considered one sample at the time. This approach may be preferred even when memory is
not an issue, as in deep learning with Stochastic Gradient Descent (SGD) [12]. Here we will be interested
in the Bayesian online learning of the calibration variables as the observations are received. The main
concept behind Bayesian online learning algorithms, such as Assumed Density Filtering (ADF) [37, 27], is to
update a prior along upon receiving/processing different data points. In the statistical physics literature,
Bayesian online learning algorithms were proposed and analyzed for simple neural networks [38, 39, 40, 41]
and compressed sensing [42].

In the present section, we propose an online algorithm, online cal-AMP, for the calibration problem of the
GLM. Our algorithm takes inspiration from the streaming version of AMP for the simple GLM of [17], which
we review in the following section. We also derive the corresponding State Evolution analysis.

3.1 Streaming AMP for online reconstruction in the GLM
In [17], a mini-batch version of the GAMP algorithm is proposed. On the example of the GLM, one imagines
receiving at each iteration k a subset y

(k)
of the components of y ∈ RM generated via a channel

y ∼ pout(y|Wx) , (105)
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Algorithm 2 Offline Gain Calibration State Evolution

Input: matrix Y ∈ RM×P and matrix W ∈ RM×N :

Initialize:
t = 0, m(0) = 0, V (0) = q0 = ρ,
∀ µ = 1, · · · , NMC s0,µ ∼ ps0(s0,µ)

repeat
1) Draw Monte Carlo samples for update of m̂ (115) and r (113)
∀ µ = 1, · · · , NMC

zµ, ωµ ∼ N (zµ, ωµ; 0, Q(t))

ε ∼ pε(ε)
y
µ

= g0(zµ, s0,µ, ε)

with Q(t)

(k)
=

 q0IP m(t)IP

m(t)IP m(t)IP

 ∈ R2P×2P

2) Compute integrands

2.2) Compute ŝµ(y
µ
, zµ, ωµ, V

(t)) (123)

2.3) Compute goutµ(y
µ
, zµ, ωµ, V

(t)) (121)

3) Update r and m̂

r(t) =
1

NMC

NMC∑
µ=1

(
ŝ(t)µ

)2
m̂(t) =

1

NMC

NMC∑
µ=1

(
goutµ

)2
3) Update m(t+1) by numerical integration using (114), and V (t+1) = q0 −m(t+1).
t = t+ 1

until convergence
Output: time series {V (t),m(t), m̂(t) ; t = 1 · · · tmax}

from which one wishes to reconstruct x ∈ RN . Bayes formula gives the posterior distribution over x after
seeing k mini-batches

p(x|y
(k)
, {y

(k−1), · · · y(1)},W ) =
p(y

(k)
|x,W )p(x|{y

(k−1), · · · y(1)},W )∫
dx p(y

(k)
|x,W )p(x|{y

(k−1), · · · y(1)},W )
. (106)

The formula suggests the iterative scheme of using as a prior on x at iteration k the posterior obtained at
iteration k − 1. This idea can be implemented in different approximate inference algorithms, as proposed by
[43] using a variational method. In the regular version of GAMP [11] an effective factorized posterior is given
at convergence by the input update functions (scalar equivalent of (31)-(32)):

p(x|y,W ) '
N∏
i=1

1

Zx(λi, σi)
px(xi) exp

{
− (λi − xi)2

2σi

}
. (107)

Plugging this posterior approximation in the iterative scheme yields the mini-AMP algorithm using the
converged values of λ(`),i and σ(`),i at each anterior mini-batch ` < k to compute the prior

p(k)x (x) = p(x|{y
(k−1), · · · y(1)},W ) '

N∏
i=1

1

Zx,i
px(xi) exp

{
−
k−1∑
`=1

(λ(`),i − xi)2
2σ(`),i

}
, (108)

where the Zx,i normalizes its respective marginal. Compared to a naive mean-field variational approximation of
the posterior, AMP takes into account more correlations and is indeed found to perform better in experiments
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reported by [17]. Another advantage of the AMP based online inference is that it is amenable to theoretical
analysis by a corresponding State Evolution. In the following we apply these ideas to the online learning of
the calibration variables in the model we defined in Section 2.1.

3.2 Online cal-AMP
We consider here the analysis of the online reconstruction of the calibration variable s0 by tracking s as the
observations y

(k)
∈ RM are treated consecutively. We readily adapt the strategy of [17], by using at step

k + 1 the approximate posterior on s at step k as an effective prior on sµ in cal-AMP.

Algorithm The AMP algorithm consists here in restarting cal-AMP at each new observation y
(k)

(that is
with P = 1 sample in the notation of Section 2), while updating the prior used for the calibration variable.
From the definition of the approximate posterior (48), we obtain the recursion on the effective prior p(k+1)

sµ

on sµ:

p(k+1)
sµ (sµ) = ms,(k)

µ (sµ) (109)

=
1

Z(k)
out

∫
dz psout

(
y(k),µ|z, sµ

)
p(k)sµ (sµ)N (z;ω(k),µ, V(k),µ), (110)

where the output variables ω(k),µ and V(k),µ correspond to the values at convergence (or at the last iteration
tmax) of the cal-AMP algorithm at the previous step k. In Section 4.1, we consider the gain calibration
problem and specify effective strategies to implement this recursion within the AMP algorithm.

State Evolution The streaming State Evolution analysis of the online cal-AMP is also adapted using
the above recursion. Note that the effective prior at a given step/sample P (we assume the samples to be
processed one at a time) depends on the output variables of the algorithm for all the previously seen samples.
Expending the recursion above we have:

p(P )
sµ (sµ) =

1

Z(P−1)
out

∫ P−1∏
k=1

(
dz(k) p

s
out

(
y(k),µ|z(k), sµ

)
N (z(k);ω(k),µ, V(k),µ)

)
ps(sµ) (111)

with

Z(P )
out = Z(P )

out ({y(k),µ, ω(k),µ, V(k),µ}Pk=1) , (112)

where again for each k the output variables ω(k) and V (k) are the converged values for the corresponding step k.
The dependence of the normalization Z(P )

out on the output variables is reflected in the definitions at step P of the
output update function gout(P ) = ∂ logZ(P )

out /∂ω(P ) and calibration update function ŝ(P ) =
∫

ds sms,(P )(s).
Therefore, the State Evolution involves an averaging over all the output variables ω(k) and V (k) relative to
the already processed samples.

More precisely, in the Bayes optimal setting, it is easy to see from the cal-AMP SE, that the online
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Figure 2: Full covariance matrices and departure from the diagonal ansatz for Gaussian inputs ρ = 1
(top row) P = 2 (bottom row) P = 3. Left: Comparison of the MSEs achieved by cal-AMP for full
unconstrained covariance matrices and diagonal covariance matrices for N = 1000. Middle: Average value
at fixed points of the diagonal elements and the off-diagonal elements of V when unconstrained as a function
of the size of the problem N . Right: Average absolute value of the ratio between off-diagonal and diagonal
elements of V as a function of N .

algorithm is characterized by the equations:

r(P ) =

∫
dε pε(ε)ds0 ps0(s0)

∫
dω dz N (z, ω; 0, Q

(P )
) (113)

P−1∏
k=1

∫
dω(k) dz(k) N (z(k), ω(k); 0, Q

(k)
) ŝ(P ) (g0 (z, s0, ε) , ω, q0 −m)

2
,

m(P ) =

∫
dx0 px0(x0)

∫
Dξ fx1

(
(αχ̂)−1

(√
αm̂ξ + αm̂(P )x0

)
; (αm̂(P ))

−1
)
x0 , (114)

m̂(P ) =

∫
dε pε(ε)ds0 ps0(s0)

∫
dω dz N (z, ω; 0, Q

(P )
)

P−1∏
k=1

∫
dω(k) dz(k) N (z(k), ω(k); 0, Q

(k)
) gout

(P ) (g0 (z, s0, ε) , ω, q0 −m)
2
, (115)

where the 2× 2 covariance matrices Q
(k)

, are analogous to the block covariance matrix (93) for each step k

using the corresponding scalar fixed points m(k). In the following Section, we will discuss how to implement
this State Evolution in practice, focusing on the specific problem of gain calibration.
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Algorithm 3 Online Gain Calibration State Evolution

Input: matrix Y ∈ RM×P and matrix W ∈ RM×N :
Initialize: t = 0,
∀ µ = 1, · · · , NMC

s0µ ∼ ps0(s0µ)

Λ0,µ = 0 , Σ0,µ = 0

for k = 1, · · · , P do
Initialize: t = 0, m(0)

(k) = 0, V (0)
(k) = q0 = ρ

repeat
1) Draw Monte Carlo samples for update of m̂ (115) and r (113)
∀ µ = 1, · · · , NMC

(zµ,k, ωµ,k) ∼ N (zµ,k, ωµ,k; 0, Q(t)

(k)
)

ε ∼ pε(ε)
yµ,k = g0(zµ,k, s

0
µ, ε)

with Q(t)

(k)
=

 q0 m
(t)
(k)

m
(t)
(k) m

(t)
(k)


2) Following step (2) of Algorithm 4 with

- samples of previous steps {yµ,l, zµ,l, ωµ,l}l≤k−1 at convergence
- current yµ,k, zµ,k, ωµ,k
- current V (t)

(k)

2.1) Update Λk,µ,Σk,µ
2.2) Compute ŝµ
2.3) Compute goutµ,k

3) Update r(k) and m̂(k)

r
(t)
(k) =

1

NMC

NMC∑
µ=1

(
ŝ(t)µ

)2
m̂

(t)
(k) =

1

NMC

NMC∑
µ=1

(
goutµ,k

)2
4) Update m(t+1)

(k) by numerical integration using (114), and V (t+1)
(k) = q0 −m(t+1)

(k) .
t = t+ 1

until convergence
end for
Output: time series {V (t)

(k) ,m
(t)
(k), m̂

(t)
(k) ; t = 1, · · · , tmax}Pk=1

4 Numerical tests

4.1 Gain calibration setting and update functions
As a test case, we consider the following problem of gain calibration [7, 8, 1, 2]. The input signal is known to
be ρ-sparse and distributed according to a Gauss-Bernoulli distribution,

∀ i = 1, · · · , N , px0
(xi) =

P∏
k=1

(
ρN (x(k),i; 0, 1) + (1− ρ) δ(x(k),i)

)
. (116)
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Each component of the output includes a division by a calibration variable that is uniformly distributed in a
positive interval [a, b]:

∀ µ = 1, · · · ,M , ps0(sµ) = 1[a,b]/(b− a) , 0 < a < b, (117)

y
µ

=
1

s0,µ
(w>µX0

+ ε) , ε ∼ N (ε, 0,∆IP ) . (118)

We will consider both the offline reconstruction where the P samples are exploited simultaneously and the
online case.

Output functions For any value of P , the output functions have analytical expressions in this setting.
The channel distribution and partition function are

pout(yµ|zµ) =

∫ b

a

dsµ ps(sµ)(sµ)PN (zµ; sµyµ,∆IP ), (119)

Zout(y, ω, V ) =

∫
dz pout(y|z)N (z;ω, V ) =

∫
dz

∫ b

a

ds ps(s)(s)
PN (z; sy,∆IP )N (z;ω, V )

=

∫ b

a

ds ps(s)(s)
PN (ω; sy, V + ∆IP ) (120)

which give

gout(y, ω, V ) =
1

Zout
∂ωZout = (V + ∆IP )−1(ŝ(y, ω, V )y − ω), (121)

∂ωgout(y, ω, V ) = Cs(y, ω, V )(V + ∆IP )−1yy>(V + ∆IP )−1 − (V + ∆IP )−1. (122)

These expressions involve the estimate and variance of the calibration variables under the approximate
posterior which can be computed as

ŝ(y, ω, V ) = fs1 (y, ω, V ) =

∫ b
a

ds (s)P+1N (z; sy, V + ∆IP )∫ b
a

ds (s)PN (z; sy, V + ∆IP )
=
I(P + 1, ν, δ, a, b)

I(P, ν, δ, a, b)
, (123)

Cs(y, ω, V ) = fs2 (y, ω, V ) =
I(P + 2, ν, δ, a, b)

I(P, ν, δ, a, b)
− ŝ(y, ω, V )2, (124)

where

I(P, ν, δ, a, b) =

∫ b

a

ds sP e−
1
2δ (s−ν)2 , (125)

δ = (y>(V + ∆IP )−1y)−1 , (126)

δ−1ν = y>(V + ∆IP )−1ω (127)

and I(P, ν, δ, a, b) can be computed using gamma functions as explained in [1, 2].

Input functions For a Gauss-Bernoulli prior on the entries of X, and assuming the AMP variances σ
i
are

diagonal matrices, the input update functions can be written component-wise with scalar arguments:

fx1 (λ, σ) =

(
ρ

λ

(1 + σ)3/2
e−

λ2

2(1+σ)

)/ρ e−
λ2

2(1+σ)

(1 + σ)1/2
+ (1− ρ)

e−
λ2

2σ

σ1/2

 , (128)

and

fx2 (λ, σ) =

(
ρ
σ(1 + σ) + (λ)2

(1 + σ)5/2
e−

λ2

2(1+σ)

)/ρ e−
λ2

2(1+σ)

(1 + σ)1/2
+ (1− ρ)

e−
λ2

2σ

σ1/2

 − fx1,k2, (129)

so that x̂i,k = fx1 (λi,k, σi,kk) and Cxi,kk = fx2 ((λi,k, σi,kk).
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4.2 Offline tests
The offline AMP algorithm is directly given by Algorithm 1 replacing the values of the output and input
functions presented in the previous paragraph. In our numerical tests, we additionally impose that the
covariance matrices V

µ
, ∂ωgout

µ
and σ

i
are diagonal. This assumption lightens the numerics when considering

a larger number of samples P .
Consequently, we first investigate how the algorithm behaves under a diagonal ansatz for the covariances.

On Figure 2, we show that the performance of the algorithm with diagonal covariances is comparable to the
performance of the algorithm with a full covariance matrix in terms of signal reconstruction. Furthermore, we
find that the off-diagonal elements tend to vanish as we increase the size of the problem, and conjecture that
they are null in the thermodynamic limit. In the following, we adopt the diagonal ansatz for covariances.

Under the assumption of diagonal covariance matrices, the State Evolution equations (91), (92) involve
P × P matrices proportional to the identity (given the P examples are statistically equivalent). Therefore
they can be parametrized with one scalar value, the unique diagonal element, noted respectively m and m̂.
While the update of m only requires a two dimensional integral that can be performed numerically, we resort
to a Monte Carlo sampling for the update of m̂. The procedure is described in Algorithm 2.

On the top row of Figure 4 and respectively of Figure 5, we report the reconstruction performance by the
cal-AMP algorithm of the signal X

0
and the calibration variable s0, in the plane ρ− α, for different values of

P . These phase diagrams are similar to the ones reported in [1, 2] and will be compared with the online
case described in the next Section. The performances are compared with the information theoretic threshold
αmin corresponding to the minimal number of observations necessary to reconstruct the unknown signal and
calibration variables,

Mmin × P = ρN × P +Mmin ⇒ αmin =
Mmin

N
= ρ

P

P − 1
, (130)

and the sharp threshold of reconstruction of the fully calibrated Bayesian AMP αCS [44].
On Figure 3a, we check numerically that the derived State Evolution predicts the behavior of the AMP

algorithm for gain calibration. The MSEs of the two procedures are indeed consistent along the iterations
of the algorithm. On Figure 3b, we also report an almost perfect agreement of the fixed points of SE and
cal-AMP in terms of the MSE of the cal-AMP estimate of X

0
as we vary the number of samples P .

4.3 Online tests
The online algorithms include supplementary operations to update the effective prior on the calibration
variable from one step to the next. In this setting the recursion is

p(k+1)
sµ (sµ) =

1

Z(k+1)
out

∫
dz N (y

(k),µ
; z/sµ,∆)N (z;w(k),µ, V(k),µ)p(k)sµ (sµ), (131)

∝ sµ exp
{
− (sµ − ν(k),µ)2

2δ(k),µ

}
p(k)sµ (sµ) (132)

so that

p(P )
sµ (sµ) ∝ sPµ exp

{
− (s− Λ(P ),µ)2

2Σ(P ),µ

}
with


Σ−1(P ),µ =

P∑
k=1

δ−1(k),µ

Λ(P ),µ = Σ(P ),µ

(
P∑
k=1

δ−1(k),µν(k),µ

)
,

(133)

yielding a posterior on the calibration variable at step P with an identical form to the posterior of the
offline algorithm (albeit with parameters computed differently). Therefore ŝµ and Csµ can still be computed
analytically following (123) and (124). We provide a pseudo-code for the online cal-AMP in Algorithm 4 and
a pseudo-code for online SE in Algorithm 3.
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On the bottom rows of Figure 4 and 5 we plot phase diagrams obtained with online cal-AMP. Compared
to the offline diagrams, we find that the reconstruction requires more samples to achieve comparable levels of
accuracy. On Figure 3c and 3d we check the consistency of the cal-AMP and SE fixed points in terms of the
MSE of cal-AMP in reconstructing X

0
.
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Figure 3: Comparison of mean squared errors in reconstructing the signal X
0
using cal-AMP and predicted

by SE for the gain calibration problem with calibration variables uniformly distributed in [0.95, 1.05] and
N = 104. Along the iterations of the algorithm and comparing fixed points we find a very good agreement of
the two procedures. Nevertheless, the Monte Carlo integration in the SE does not allow for great numerical
precision for low errors. We start seeing discrepancies between SE and AMP for errors below 10−8.
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Figure 4: Normalized cross correlation between cal-AMP estimate X̂ and teacher signal X
0
for the gain

calibration problem with calibration variables uniformly distributed in [0.95, 1.05] and N = 103. Diagrams
are plotted as a function of the measurement rate α = M/N and the sparsity level ρ for the offline (top row)
and online (bottom row) algorithms, for increasing number of available samples P . The blue line αCS is
the phase transition threshold for a perfectly calibrated channel. The pink line αmin marks the strict lower
bound on the number of measurements necessary for reconstruction. The online cal-AMP requires more
samples than the offline version to achieve comparable errors, nevertheless above the transition relatively low
errors are already reached at P = 10. We note that the algorithms are sometimes unstable at low ρ, leading
to unexpectedly high MSEs (top left corner of top right diagram).
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Figure 5: Normalized cross correlation between cal-AMP estimate ŝ and teacher signal s0 for the gain
calibration problem with calibration variables uniformly distributed in [0.95, 1.05] and N = 103. Diagrams
are plotted as a function of the measurement rate α = M/N and the sparsity level ρ for the offline (top
row) and online (bottom row) algorithms, for increasing number of available samples P . The pink line
αmin marks the strict lower bound on the number of measurements necessary for reconstruction. Results are
similar to the diagrams in terms of errors on the signal X̂ of Figure 4.
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Algorithm 4 Online Gain Calibration Approximate Message Passing

Input: matrix Y ∈ RM×P and matrix W ∈ RM×N :
Initialize: Λ0,µ = 0, Σ0,µ = 0,
for k = 1, · · · , P : do

Initialize: x̂i,k, Cxi,k ∀ i and goutµ,k, ∂ωgoutµ,k ∀ µ
repeat
1) Estimate mean and variance of z(k) given current x̂(k)

V
(t)
µ,k =

N∑
i=1

W 2
µiC

x
i,k

(t) (134)

ω
(t)
µ,k =

N∑
i=1

Wµix̂
(t)
i,k −

N∑
i=1

W 2
µiC

x(t)
i,kgout

(t−1)
µ,k (135)

2) Exploit current y
(k)

and inherited Λk−1,µ,Σk−1,µ
2.1) Update recursion parameters given y

(k)

δ
(t)
µ,k

−1
= y2µ,k/(V

(t)
µ,k + ∆) (136)

ν
(t)
µ,k = δµ,kyµ,kω

(t)
µ,k/(V

(t)
µ,k + ∆) (137)

Σ
(t)
k,µ = Σk−1,µ + δ

(t)
µ,k (138)

Λ
(t)
k,µ = Σk,µ

(
Σk−1,µΛk−1,µ + δ

(t)
µ,kν

(t)
µ,k

)
(139)

2.2) Update estimates ŝ and Cs

ŝ(t)µ =
I(k + 1,Λk,µ,Σk,µ, a, b)

I(k,Λk,µ,Σk,µ, a, b)
(140)

Cs(t)µ =
I(k + 2,Λk,µ,Σk,µ, a, b)

I(k,Λk,µ,Σk,µ, a, b)
(141)

2.3) Update gout and ∂ωgout

∂ωgout
(t)
µ,k = Cs(t)µ y2µ,k/(V

(t)
µ,k + ∆)2 − (V

(t)
µ,k + ∆)−1 (142)

gout
(t)
µ,k = (ŝ(t)µ yµ,k − ω(t)

µ,k)/(V
(t)
µ,k + ∆), (143)

3) Estimate mean and variance of x given current optimal z

σ
(t)
i,k =

(
−

M∑
µ=1

W 2
µi∂ωgout

(t)
µ,k

)−1
(144)

λ
(t)
i,k = x̂

(t)
i,k + σ

(t)
i,k

(
M∑
µ=1

Wµigout
(t)
µ,k

)
(145)

4) Estimate of mean and variance of x augmented of the information about the prior
Cxi,k

(t+1) = fx2 (λ
(t)
i,k, σ

(t)
i,k) (146)

x̂
(t+1)
i,k = fx1 (λ

(t)
i,k, σ

(t)
i,k) (147)

t = t+ 1

until convergence
end for
Output: Estimates and variances x̂i, C

x
i , ŝµ, Csµ
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5 Conclusion
In this paper, we presented a theoretical characterization of the cal-AMP algorithm for blind calibration.
The derivation of the corresponding State Evolution was presented from the message passing equations of a
vectorial version of the GAMP algorithm. Furthermore, we extended the algorithm and its analysis to the
online scenario, which allows to adapt the calibration upon receiving new observations. The validity of the
newly proposed algorithms and analysis were demonstrated through numerical experiments on the case of
gain calibration. In the offline setting, cal-AMP achieves near-perfect reconstruction close to the theoretical
lower bound. In the online setting, cal-AMP is also able to calibrate and reconstruct from a small number of
samples.

For practical applications, the extension to the online case is of particular interest. It enables continuous
improvement of hardware sensing channel, without requiring to keep past observations in memory. A natural
extension will also be to consider the G-VAMP [20, 21] version of cal-AMP, which will enable a generalization
of the algorithm to measurement matrices with non-i.i.d. entries. From the theoretical point of view, we note
that the introduced SE analysis in the non-Bayes optimal setting should make it possible to characterize other
reconstruction algorithms, as algorithms proposed in [7, 8]. Also, it will be interesting to confirm whether
cal-AMP can also succeed in a multi-layer setting, likewise the recent extension of GAMP to ML-AMP [45].
This generalization will open the way to message passing algorithms solutions in more complex calibration
problems.
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