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MODULARITY BELIEF PROPAGATION ON MULTILAYER
NETWORKS TO DETECT SIGNIFICANT COMMUNITY

STRUCTURE∗

WILLIAM H. WEIR† , BENJAMIN WALKER‡ , LENKA ZDEBOROVÁ§ , AND

PETER J. MUCHA†‡

Abstract. Modularity based community detection encompasses a number of widely used, effi-
cient heuristics for identification of structure in single- and multilayer networks. Recently, a belief
propagation approach to modularity optimization provided a useful guide for identifying non-trivial
structure in a way that other optimization heuristics have not. In this paper, we extend modularity
belief propagation to multilayer networks. As part of this development, we also directly incorporate
a resolution parameter. We show that the resolution parameter affects the convergence properties
of the algorithm and yields different community structures than the baseline. We demonstrate our
extension on synthetic multilayer networks, showing how our tool achieves near optimal performance
and prevents overfitting. We highlight these advantages in comparison to another widely used tool,
GenLouvain for multilayer modularity. Finally, we apply multilayer modularity belief propagation
to two real-world multilayer networks and discuss practical concerns in implementing our method,
which we have released as a Python package for general use.

Key words. community detection, modularity, belief propagation, networks, multilayer net-
works, message passing, resolution parameter

AMS subject classifications. 68Q25, 68R10, 68U05

1. Introduction. Networks provide useful models for understanding complex
systems across a wide range of problems in different domains, including biology, en-
gineering and the social sciences. Recent attention has focused on developing tools
to understand the expanded class of multilayer networks. The multilayer framework
is quite flexible, allowing for the representation of multiplex pairwise interactions,
dynamic networks, different classes of nodes, and “networks of networks” [22]. One
class of ongoing challenges in network science, in particular for multilayer networks, is
the detection and representation of high-level structure and communities (for review,
see e.g. [11, 13, 43, 46, 48])

There are many computational approaches to identifying structure within net-
works. One family of approaches attempts to fit a statistical model to the observed
network and uses hypothesis testing to assess the significance of proposed community
structure. Many of these models are derived from the stochastic block model (SBM)
[18, 21, 42]. Another approach is to define an objective function that measures the
quality of community structure in a particular sense, and then optimize that objec-
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tive. For example, the Infomap approach [45] detects communities as groups of nodes
that minimize the description length to encode random walks on a network. Another
popular quality function, the modularity score developed by Newman and Girvan
[35], compares the observed edge weight within groups to that expected under a null
model of the network. Modularity was extended to multilayer networks by incorpo-
rating interlayer edges as additional coupling between the layers [33]. Generalizing a
re-derivation of modularity from a Laplacian dynamics perspective [25, 26], Mucha et
al. [33] developed a formula for multilayer modularity that can be written generally
in the supra-matrix form

(1.1) Q(γ, ω) =
∑
i,j

(Aij − γPij + ωCij) δ(ci, cj)

where i and j each index distinct node-layer objects, possibly in different layers,
Aij is the supra-adjacency1 encoding the intralayer edges, Pij describes the expected
number of intralayer edges based on the selected random model(s), and Cij encodes
the interlayer connections. The normalizing factor traditionally written in front of the
summation above has been absorbed here into the constituent terms for notational
convenience. We here assume for simplicity the Newman-Girvan model for undirected
edges within each layer, writing the null model contribution (prior to absorbing the
normalizing factor) from layer l as

(1.2) Pij =

{
didj
2mli

li = lj

0 li 6= lj

where li is the layer containing node-layer i, (e.g. i ∈ Vli), di =
∑
j Aij , and mli =∑

i,j∈Vli
Aij is the total weight of edges in layer li. We have implicitly assumed

that a given node-layer i only participates in intralayer edges within its own layer
(by definition). In the case where edge weights are binary (Aij ∈ {0, 1}), di is the
degree of node i. For weighted networks, Aij is continuous and di =

∑
j Aij is

called the ‘strength’ of node i. Similar null models are available for bipartite graphs,
directed networks, and networks with signed edges (see, e.g., the supplement of [33]
for references to appropriate forms for Pij in different contexts).

In general, maximizing Eq 1.1 over the combinatorially large space of possible par-
titions is NP-hard [6]. Several fast and efficient algorithms exist for locally optimizing
modularity, including Louvain [5] and the GenLouvain [20] extension for optimizing
multilayer modularity. One of the main problems with optimizing modularity as a
means of community detection is that partitions of high modularity often exist even
in randomly generated networks without underlying structure (see for example [2, 7]).

Zhang and Moore [57] were able to surmount several of the issues with modularity-
based methods by treating modularity optimization in terms of the statistical physics
of the spin-glass system with Hamiltonian H = −mQ({ti}), where {ti} = [t1, . . . , tN ]
with ti ∈ {1, ..., q} indicating the assignment of node i (of N) to one of q communities.
As such, the distribution of states of the system is given by the Boltzmann distribution

(1.3) P ({ti}) ∝ e−βH({ti})

1In the supra-adjacency representation, a single block diagonal matrix is used to represent all
intralayer connections, each block representing a single-layer, with no connections between the blocks.
A different matrix, Cij encodes the interlayer connections. Note that dim(Aij) = dim(Cij) =
dim(Pij).
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where β represents the nondimensional inverse temperature that sets the sharpness
of the energy landscape. Maximizing the joint distribution P ({ti}) is then equivalent
to globally optimizing modularity and identifying the ground state of the system.
Instead of searching for a global modularity maximum, Zhang and Moore attempt
to solve for the marginals of each node, P (ti = q), in the finite temperature regime.
By looking for a “consensus of good partitions” rather than seeking a single “best”
partition, the algorithm converges only if there is broad underlying structure within
the network. If there exist several local maxima that are widely separated (i.e. un-
correlated) in the space of partitions, the belief propagation will oscillate between
these partitions and fail to converge. In particular, Zhang and Moore demonstrated
that the algorithm’s convergence properties distinguish between synthetic networks
with or without known underlying structure, even when the nominal modularity val-
ues of the identified partitions are quite similar. Maximization of the marginals has
the additional benefit of producing a soft partition wherein nodes are partly assigned
to multiple communities, thereby revealing which node labels the algorithm is most
uncertain about.

Several tools are available to compute the marginals of Eq 1.3, including Markov
Chain Monte Carlo sampling, Gibb’s sampling, and the class of algorithms known
as belief propagation (alternately, the cavity method) [30]. Belief propagation is a
general algorithm for calculating the marginals of a joint distribution by a series of
iterative updates. Belief propagation was initially developed for trees [39] for which it
is an exact algorithm, but has been shown to provide good approximations on graphs
with loops (i.e. “loopy” belief propagation) [40, 30]. Zhang and Moore apply belief
propagation to modularity maximization, deriving update conditions for the node
beliefs in terms of the message ψi→kt from node i to k concerning community t that
helps determine what node k “believes” its own community to be:

(1.4) ψi→kt ∝ exp

βdi
2m

θt +
∑

j∈∂i\k
log
(

1 + ψj→it (eβ − 1)
)

where m is the total number of edges; di =
∑
j Aij is the degree of node i; ∂i \k is the

neighborhood of node i except node k; and θt =
∑
i diψ

i
t serves as a field-like term,

approximating the null model contribution in modularity in terms of each node’s belief
about its own community, ψit, given by its marginal

(1.5) ψit =
1

Zi
exp

βdi
2m

θt +
∑
j∈∂i

log
(

1 + ψj→it (eβ − 1)
)

where the belief includes contributions from all neighbors of node i, and Zi =
∑
s ψ

i
s

is a normalization constant. That is, ψit is the properly normalized version of ψi→it

insofar as i is already not a member of its own neighborhood, ∂i, so there is no
excluded element in the sum over j.

Fixed points of the “loopy” belief propagation algorithm are minimizers of the
Bethe free energy

(1.6) fBethe = − 1

Nβ

∑
i∈V

logZi −
∑

(i,j)∈E
logZij +

β

4m

∑
t

θ2t

 ,

where V is the set of N nodes, E is the set of edges, and Zij =
∑
st e

βδstψisψ
j
t is the

normalization constant for the pairwise joint marginals. Computing marginals for
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each node, Zhang and Moore defined a “retrieval partition” assigning the community
for each node according to its greatest marginal ti = arg maxt ψ

i
t, with randomly

broken ties. Retrieval modularity can be computed from the retrieval partition using
Eq 1.1. We note that while this approach uses the modularity score to establish the
energy landscape over which optimization is performed, ultimately the belief propa-
gation minimizes the free energy; while lower free energy often corresponds to higher
modularity for the retrieved partition, this relationship is in no way required and
indeed is sometimes violated.

Our work introduces a belief propagation approach for the more general multilayer
modularity framework, suitable for a variety of multilayer topologies. Specifically, we
extend Zhang and Moore’s modbp method in three ways. We explicitly allow weighted
edges, which can greatly influence the communities detected (see [36]). We incorporate
a resolution parameter γ into the modularity quality function as done in [44] and
show that this can create a wider retrieval phase and achieve better performance
in the case where the number of communities is not known a priori. Finally, we
extend modbp to the multilayer modularity framework developed by Mucha et al.
[33] and demonstrate the use of this tool on both synthetic and real world data.
Our resulting method, multimodbp, can be used on both multilayer networks and
single-layer networks. We have developed a multimodbp python package implementing
our method in a fast, efficient manner that interfaces with other standard networks
tools. (To our knowledge, the only other multilayer community detection method
that incorporates belief propagation instead uses a specific version of the stochastic
block model to capture temporal dynamics [14].)

The rest of this paper is organized as follows. In Section 2, we introduce the
changes we have made to Zhang and Moore’s belief propagation including the incor-
poration of the resolution parameter and the extension to the multilayer framework.
Next, in Section 3, we show how incorporation of the resolution parameter can improve
performance in the context of synthetic data as well as a real world network in the
single-layer case. To demonstrate the ability of our approach to detect communities
within the multilayer framework, we showcase multimodbp on two types of synthetic
multilayer models with differing interlayer topology, and compare the performance
of our model with another popular multilayer modularity based approach, GenLou-
vain [20]. Finally, we demonstrate the utility of our model on two real world datasets,
showing how a belief propagation approach reveals an additional layer of information
about a network’s structure above and beyond other methods. We conclude with a
brief discussion and remark on other possible improvements.

2. Methods.

2.1. Belief propagation update equations. We describe here the modifica-
tions to the modbp update equations used in multimodbp. Formal justification for
these modifications is described in Section S.1 of the supplement. We have made the
updates as follows. First, by incorporating a resolution parameter [44], γ, we effec-
tively treat the field term and the edge term in the update equations as though they
are at different temperatures. Second, we explicitly include the corresponding edge
weights in the sum over contributions from neighbors of node i. Finally, to appro-
priately handle the null model in the multilayer modularity framework (see Eq 1.2),
we have adapted the field term, θlt to be layer specific and to only contribute to the
beliefs originating from nodes within a given layer, l. We also introduce an addi-
tional interlayer contribution, scaled by interlayer coupling parameter ω, to account
for interlayer edges in a manner similar to the intralayer contributions to multilayer
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modularity, leading to the new update equation:

(2.1) ψi→kt ∝ exp

γ βdi
2mli

θlit +
∑

j∈∂i\k
log (1 + ψj→it (eÃijβ − 1))


where li is the layer containing node i, (i.e. i ∈ Vli), the field term θlit =

∑
j∈Vli djψ

j
t

and node strength di =
∑
j∈Vli Aij only include contributions from layer li; the field

term θlit =
∑
j∈Vli djψ

j
t and node strength di =

∑
j∈Vli Aij only include contributions

from layer li; Ãij = Aijδ(li, lj) + ωCij(1 − δ(li, lj)), with lj the layer containing j,
combines the intralayer and interlayer edges according to whether i and j are present
in the same layer; and we again define ψit to be the normalized (Zi =

∑
s ψ

i
s) version

of ψi→it with ∂i \ i = ∂i for the sum in Eq. 2.1. We note that the block description
of Aij and Cij considered here makes the δ(·, ·) indicators in Ãij unnecessary; but we
include them to help clarify the notation in terms of the layers containing i and j.

The solution to the above iterative equations is the minimizer of the following
Bethe free energy equation, as derived in Section S.2 of the supplement:

fBethe = − 1

Nβ

∑
i

logZi −
∑
i,j∈E

logZij +
∑
l

β

4ml

∑
t

(θlt)
2

(2.2)

where Zij =
∑
st e

βδstψisψ
j
t is the normalization factor for the pairwise joint marginals.

While we demonstrate multimodbp below in the context of the specific multilayer
topology corresponding to a multiplex network, our formulation is flexible enough to
handle any type of multilayer network consisting of two classes of edges (i.e., intralayer
and interlayer edges). In particular, we remark that, similar to the weights in Aij ,
the contribution from Cij is explicitly included here, allowing for different interlayer
weights. In principle, the method could also be extended to networks with multiple
types of edges, such as encountered in representing network data that is both longitu-
dinal and multiplex, with each new edge type introducing its own coupling parameter,
ωi.

2.2. Choice of β. By analyzing the linearized stability of the fixed point to
small, uncorrelated perturbations, Zhang and Moore provided a heuristic for selecting
the appropriate value of β = β∗ at which point the trivial, factorized solution (ψj→it =
1/q for all beliefs) is no longer stable. If a retrieval phase exists (i.e. there is detectable
community structure), running the algorithm with β = β∗ should converge if the
network has a reasonable degree distribution. If significant structure is not present
within the network, for values of β > β∗ the algorithm enters the ‘spin-glass’ phase in
which convergence never occurs. Practically this can be used to eliminate or at least
reduce one of the free parameters involved in running the algorithm. We provide a
similar heuristic approach for selecting an appropriate value of β∗ in the multilayer
setting that accounts for edge weights.

The linear stability of the factorized solution is characterized by the derivatives of
the messages with respect to each other at the fixed point (1/q). To identify β∗, the
critical value for instability with respect to random, uncorrelated perturbations, we
linearize the multimodbp update equations (Eq 2.1) and then analyze the stability of
the equations under repeated iteration. We use the notation from Zhang and Moore.
However, in our case, the linearized form depends on whether the incoming message,
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ψj→is travels along an intralayer or interlayer edge:

(2.3)
∂ψi→kt

∂ψj→is

∣∣∣∣
1/q

=

{
Tst if (i, j) ∈ Eintra
Rst if (i, j) ∈ Einter

where Eintra and Einter are the sets of intralayer (li = lj) and interlayer (li 6= lj) edges,
respectively, and Tst and Rst are the intralayer and interlayer linearization matrices,
respectively (see Supplement Equation S.22). Linearizing about the factorized fixed
point ψi→jt = 1

q yields

(2.4) ψi→kt ∝
∑
s,j

ψj→is [Tstδ(li, lj) +Rst(1− δ(li, lj))] .

In Supplementary Section S.4, we derive the form for the linearization matrices
Tst and Rst and show that their largest eigenvalues are given by

(2.5) λT =
eβ − 1

q + eβ − 1
and λR =

eωβ − 1

q + eωβ − 1
.

In the linearized approximation, interlayer edges have the same form as if they were
weighted edges in a single-layer network (with weight ω). This observation led us
to posit that we could establish a similar stability condition for the multilayer case
by looking at the stability of the trivial solution on weighted single-layer networks.
In the case where a fixed, weight w is applied to each edge uniformly, we have the
following stability condition:

(2.6) cλ2w ≤ 1 , where λw =
ewβ − 1

q + ewβ − 1
.

where c is the average excess degree of the network. Solving this equation at equality
for β∗(c, q, w) gives:

β∗(c, q, w) =
1

w
log(

q√
c− 1

+ 1) .(2.7)

In practice we have found that for randomly distributed weights on the edges, one can
modify Equation 2.7 to use the average weight on the network 〈w〉 and still robustly
identify the retrieval phase (see Supplement S.5) :

β∗(c, q, w) =
1

〈w〉
log(

q√
c− 1

+ 1) .(2.8)

In the case of the multilayer networks, we calculate the average edge strength 〈w〉,
treating the coupling strength ω as the weights for the interlayer edges. We have found
that this heuristic works well in identifying values of β for which our method converges.
We note that β∗ represents the stability of the solution for uncorrelated perturbations
in the beliefs. In the case when detectable community structure exists, the messages
become correlated with each other and the transition from the trivial paramagnetic
phase to the retrieval phase is generally lower than β∗ [57]. Thus, choosing values
of β near β∗ works well in practice. Additionally, Schülke el al. showed that in
many networks there can be multiple zones of the retrieval phase corresponding to
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detecting communities at different scales [47]. Therefore, in our experiments, we run
the algorithm for a range of {β∗i } = [β∗(c, q = 2), . . . β∗(c, q = qmax)], where qmax is
some reasonable upper limit for the number of communities in a particular network.
We emphasize that like the original Zhang and Moore approach, our heuristic assumes
randomly distributed edges and weights and provides no guarantees that β∗ will be
found within the retrieval phase. For certain networks, scanning a larger range of β
will be necessary, though in practice we have found that the approach above is fairly
robust.

2.3. Selection of number of communities, q. One critical issue with many
community detection algorithms is in selecting the appropriate number of communi-
ties. In the context of modularity, adjusting the resolution parameter γ can reveal
communities of different scale and size, overcoming the “resolution limit of detection”
first raised by [12]. Since then there have been several approaches showing how the
scale of the community structures identified varies with the resolution parameter (see,
e.g., the discussion and references in [54])

Zhang and Moore do not include a resolution parameter in deriving their modbp
algorithm (thereby implicitly setting γ = 1 in Eq 1.4), instead suggesting an alter-
native approach for selecting the appropriate number of communities. They show
in several examples that the maximum modularity achieved in the retrieval phase
of the algorithm peaks at certain numbers of communities. They suggest that this
peak identifies the correct value for q, the number of communities, where there is
no additional increase in the retrieval modularity Q({ti}). However, this approach
requires running modbp for many possible values of q, and then choosing an arbitrary
threshold when modularity is no longer sufficiently increasing to establish the correct
value of q. In many cases, selecting an exact value of q is made difficult because
of fluctuations in the retrieval modularity near the β∗ value derived by Zhang and
Moore. Figure S.13 in the Supplement illustrates how choosing q is challenging in
practice by these considerations. Meanwhile, selecting the number of communities in
this manner implicitly uses the value γ = 1, which has been shown to return non-ideal
partitions in synthetic and real-world networks (see, e.g., [1, 12, 37, 51]). We show
in Section 3 the positive impact of using different values for γ on several different
networks.

There have been two other approaches to selecting the appropriate number of
communities using modbp without having to run the algorithm at many values of q.
Both approaches involve selecting a qmax, the largest possible number of communities,
and then using similarities in the marginal probabilities of assignments to evaluate the
true number of communities. Lai et al. [24] noted that in the event that q is too large,
many of the marginal community assignments will be highly correlated, and highly
correlated states (community assignments) can be condensed into a single group.
Similarly, Ref. [47] condenses the community assignments on the basis of the average
distance between the marginals across all nodes in the network. In practice, we have
found that for the default resolution (γ = 1), choosing the number of communities
this way all but obliterates the retrieval phase if qmax is chosen to be too much
larger than the actual number. We have implemented the method in Ref. [47], letting
the number of communities float up to a pre-specified qmax (See Section 2.2), and
condensing together communities that have closely aligned marginals. We show that
incorporation of a resolution parameter γ restores the width of the retrieval phase and
returns values closer to the correct number of communities. As previously mentioned,
because we do not specify a single value of q; rather, we run the algorithm across a
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range of β = [β∗(c, q = 2), . . . , β∗(c, q = qmax)] where the formula for β∗(c, q) is given
in Eq. 2.8. We have found that this provides a reasonable range of β values to search
within and that performance of the algorithm does not depend on the precise value
of β, as long as it is within the retrieval phase.

2.4. Assessing Partition Alignment with AMI. We use the information
theoretic measure Adjusted Mutual Information (AMI) [52] throughout our analysis
to assess the agreement between the predicted partition and either (1) the known
underlying truth in the case of the generative models tested, or (2) relevant metadata
for real world networks. Mutual information measures how much entropy or uncer-
tainty is removed from one variable by observation of another. The adjusted mutual
information specifically measures the overlap between two partitions, with a value of
1 representing perfect agreement and a value of 0 representing overlap no better than
expected under random chance.

2.5. Cross-layer community alignment. In running multimodbp at low levels
of interlayer coupling (ω) on multilayer networks with a temporal coupling topology
(e.g the dynamic stochastic block model described in Section 3.2.1), we frequently
observed that the intralayer marginals would rapidly converge to communities that
remained misaligned between layers. Such misalignment would then typically lead to
“fragmented” partitions as shown in Figure S.15. For these partitions, within any
single-layer the AMI of the partition with the ground truth with that layer would be
very high, but the total AMI over the entire multilayer data would become much lower.
To correct for this issue, we implemented a greedy heuristic to explicitly permute the
community assignments within certain layers in order to maximize local alignment
between neighboring layers. Specifically, we identify the layer x that has the greatest
number of nodes (of those present in both layers) that change community identity
from the previous layer, y. We then find the matching of community labels in x that
best matches those observed in y; that is, we minimize the total number of mismatches
across layers x and y:

(2.9) C(x, y) =
∑
i∈x

∑
j∈y

[(ci 6= cj) ∧ I((i, j) ∈ Einter)]

Once the optimal bipartite matching has been identified [23], the community labels in
layer x and every subsequent layer are rearranged according to that matching (with
community labels in subsequent layers that are not present in either layer x or y
remaining unchanged). We then repeat this procedure until no further labels are
changed (i.e. the optimal matching is the identity at the layer where the greatest
change occurs). This heuristic is similar to the interlayer merging developed by
Bazzi et al. to overcome a similar problem encountered when optimizing multilayer
modularity with the GenLouvain algorithm [3].

We note that this procedure does not alter the community structure identified
within any particular layer, maintaining nodes that have been grouped together.
Rather, this procedure aligns the community labels between layers in a way that
always increases the retrieval modularity, thereby improving the computed results.
This approach assumes a notion of persistent community across inherently ordered
layers which is appropriate in the temporal multilayer setting. We do not require a
strict one-to-one mapping of node identities between layers. However, this matching
approach does require an inherent ordering of layers across the multilayers. If an un-
ordered interlayer coupling is defined (e.g., categorically multiplex connections), this
matching feature can be disabled.
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3. Results.

3.1. Single-layer networks. We begin by examining how our modifications
affect the ability of modbp to detect communities within synthetically generated data
in the single-layer case. For single-layer networks, our method is equivalent to Zhang
and Moore’s except two main differences (see also 2. Methods): First, we have
included a resolution parameter γ that adjusts the relative balance of the terms in the
update equation. Like other implementations of modularity, this effectively controls
the size of the identified partitions. Second, we have set an upper limit qmax on the
number of communities and incorporated the approach from [47] to select an effective
number of communities based on the overlap of the marginals (see Section 2.3).
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Fig. 1: Demonstration of multimodbp on two realizations of the SBM model. From left
to right, the plots show the retrieval modularity, number of iterations to convergence,
and the AMI of the retrieval partition with known community assignments and the
effective number of communities. (a) 4 community SBM with n = 1000, ε = pout

pin
= .1,

cavg = 4, and even community sizes and (b) and 4 community SBM with n = 1000,
ε = .1, cavg = 4, with uneven community sizes (ν = [300, 200, 300, 200]). For each
network we also show the performance of the sbmbp with parameters for the SBM
supplied (middle plot, dotted black line)

3.1.1. Single-layer stochastic block model. We examine the behavior of
multimodbp on instances of a four-community stochastic block model for different
values of the resolution parameter γ. First, we show that in the setting with several
smaller communities, a higher value of γ produces a much wider retrieval phase and
thus makes detection of communities more robust to selection of β. To investigate
this robustness, we generated a single realization of an SBM and scanned a range
of β values to characterize the behavior of the algorithm seen in Figure 1. For an
SBM network with four even-sized communities, Figure 1a shows that the retrieval
phase for both γ = 1.0 and γ = 1.5 are very narrow (leftmost panel) with a small
corresponding peak in the AMI of detected communities (middle panel). In contrast,
for γ = 0.5 the retrieval phase widens out with a broader and higher set of AMI values
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for the detected communities. Furthermore, the number of communities identified
for γ = 0.5 plateaus at 5, which is more closely aligned with the underlying model
(actually there are only 4 main communities detected as shown in far right panel of
Figure 1a)

We also tested the performance of the algorithm in the case where the sizes of the
planted communities were uneven, shown in Figure 1b. The relative performance for
varying γ is even more disparate in this case. There is a small retrieval phase for γ = 1,
but it is much smaller than that of γ = 0.5 and the AMI is again consistently lower.
For γ = 0.5 we actually detect two retrieval phases. In the first retrieval phase (β ∈
[1.4, 2.0]), only nodes within the two larger communities are labeled correctly. Then,
as β increases (β ∈ [2.0, 2.75]), the smaller two communities also become identifiable.
This is consistent with the multiphase behavior observed in [47], though we note that
in their example, the phase transition is observed for the default value of γ = 1. In
both of these examples the AMI of the identified partition by multimodbp is close to
the result achieved by a belief propagation implementation of the SBM model, which
has been shown to achieve the optimal bounds for this model [8, 9].

3.1.2. Comparison of multimodbp with SBMBP on LFR benchmark
networks. We compare the performance of our algorithm multimodbp, with a belief
propagation approach to fit the Stochastic Block Model (SBM) developed and imple-
mented in Ref. [8], which we refer to as sbmbp. This Expectation-Maximization (EM)
implementation of sbmbp alternates between iteratively updating the marginals using
belief propagation with fixed SBM parameters, and updating the SBM parameters
using likelihood maximization for the fixed marginals. Their implementation requires
setting a fixed q however, so for testing we ran sbmbp across a range of q values
(q ∈ 2, 3, ..., 8) and selected the partition with the lowest free energy density.

Our test dataset is the Lancichinetti-Fortunato-Radicchi (LFR) benchmark gener-
ator [27], an algorithm developed to generate networks with more diverse community
structures. We tested our multimodbp with several values of the resolution parameter
γ against sbmbp across a range of parameters of the LFR model. We vary the LFR
mixing parameter µ, which sets the detectability of the underlying communities. The
LFR algorithm also has a parameter γ̂ to set the exponent of the power law for the
degree distribution and a parameter β̂ to set the exponent of the community size
distribution. We tested both algorithms for two sets of (γ̂, β̂) in Figure 2.

Figure 2 shows that the modularity based approach outperforms the stochas-
tic block model across a range of µ, the mixing parameter, all the way down to the
detectability limit. The flexibility of the modularity approach allows for better identi-
fication of communities with for real world degree distribution (since the classic SBM
assume homogenous degree distribution within a community). The comparison was
done using sbmbp’s EM approach which is not well suited to determine the number
of communities. In contrast, using our approach as described in Section 2.3, the mul-
timodbp algorithm was able to identify the correct number of communities and get
more accurate community assignment using a resolution parameter value of γ = 0.5
(though other values of γ also performed well).

3.1.3. NCAA Division I-A College Football network. We now demon-
strate that inclusion of the resolution parameter γ in the modularity objective func-
tion can significantly improve performance on real-world networks. As an exam-
ple of a real-world network with stable community structure we selected the 2000-
2001 NCAA Division I-A College football network, which has 115 nodes representing
teams (schools) and 613 unweighted edges connecting teams that played at least one



MULTILAYER MODULARITY BELIEF PROPAGATION 11

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
 (Mixing Parameter)

0.0

0.2

0.4

0.6

0.8

1.0

AM
I

LFR ( = 2, = 1)
= 0.50
= 1.00
= 1.50

SBMBP

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
 (Mixing Parameter)

0.0

0.2

0.4

0.6

0.8

AM
I

LFR ( = 3, = 2)
= 0.50
= 1.00
= 1.50

SBMBP

Fig. 2: Performance of multimodbp and sbmbp over many LFR benchmark realiza-
tions with a range of values for the mixing parameter µ. Each point represents an
average over 100 realizations of LFR with 1000 nodes, an average degree of 3 (with
a max of 10), and other parameters set to default values.

game [10, 15]. Our previous work suggests that modularity optimization produces the
best community partition in a range γ ∈ [1.4, 4] [54, 55].

To investigate how the value of γ affects the retrieval phase, we ran multimodbp for
a range of values of the parameter γ and examined the minimal number of iterations
for which non-trivial structure was identified, shown in Figure 3. For each value of γ,
multimodbp was run over 30 evenly-spaced values over β ∈ [0.5, 4.5]. For each value of
γ we show the minimum number of iterations over all values of β for which non-trivial
structure was identified and the AMI of the partition of the corresponding partition
(the partition identified with the minimum number of iterations). Runs that did not
converge after 500 iterations suggest that for that value of γ the retrieval phase was
either very small or nonexistent. It is possible that a retrieval phase exists outside the
chosen range for β, though we verified for a few arbitrary values of γ that the algorithm
did not converge across a much wider range. Furthermore, Figure 3 demonstrates
that the AMI of the retrieval partition increases as a function of γ from γ = 1 up
until it plateaus from γ = [1.7, 3.4] at a stable 11 community partition (shown in
the far right panel). In Figure 4, we show the algorithm convergence properties
as well as performance for a few values of γ on this network. We also compare the
performance of the multimodbp algorithm with the sbmbp approach, showing that even
when the SBM approach identifies the correct number of communities (middle panel
dashed line), multimodbp still achieves more accurate identification of the underlying
community structure (right panel).
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0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
0

100

200

300

400

500

# 
Ite

ra
tio

ns

A)
Minimum number iterations in  range

num. iterations

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

0.65

0.70

0.75

0.80

0.85

0.90

AM
I

B)
AMI, # Communities in retrieval phase

AMI
# Communities 7

8

9

10

11

12

13

14

15

# 
of

 C
om

m
un

iti
es

C)

Fig. 3: Testing multimodbp on the 2000-2001 Division I-A College Football network
[10, 15]. A) The average number of iterations until convergence in the retrieval
phase across a range of γ values. B) The average number of communities detected in
the retrieval phase as γ increases and the corresponding adjusted mutual information
(AMI) of those partitions. C) ForceAtlas2 [19] layout of the football network with
each node colored according to a partition identified using γ = 3.0, demonstrating
excellent alignment to the conference structure.
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Fig. 4: We show the performance characteristics of the algorithm for 3 differ-
ent values of γ on the 2000-2001 NCAA Division I-A College football network A)
Although all three values of γ produce a wide retrieval phase, the communities iden-
tified within each retrieval phase are different. B) The number of non-redundant
communities is higher as γ increases with γ = 3 producing the number of commu-
nities that lines up well with the ground truth (the conferences) in this example,
with C) showing corresponding higher values of AMI for γ = 3. Horizontal black
dashed line shows that sbmbp identifies correct number of communities in B) but
has less agreement with the known conference structure of the network.

3.2. Multilayer modularity belief propagation.

3.2.1. Dynamic stochastic block model. We test the multilayer functional-
ity of multimodbp by application to a multilayer SBM called the dynamic stochastic
block model (DSBM) as described in [14]. In the DSBM, each layer is drawn from a
regular stochastic block model with q communities and edge probabilities described
by probabilities pin within communities and pout between communities. Each node’s
community assignment has a fixed probability η of remaining the same between sub-
sequent layers (and 1 − η probability of choosing a new community). Conditioned
on the node community assignments, each layer’s edges are independent of all other
layers. For a fixed average degree c, the strength of community structure within each
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Fig. 5: Accuracy of the multilayer modbp algorithm on a multilayer SBM for different
values of model parameters ε, and η (x and y axes respectively) and for multimodbp
parameters γ and ω (moving horizontally and vertically vertically across panels). For
these generated networks, N = 250, nlayers = 20, c = 10, and qtrue = 2.

layer is given by the parameter ε = pout/pin. The DSBM represents a temporal mul-
tilayer network where each entity in the network is represented by a single node in
each layer. The correspondence between identified nodes is represented by a single
interlayer edge between adjacent layers.

In Figure 5 we show the average adjusted mutual information (AMI) score of the
multimodbp algorithm on the dynamic stochastic block model for a range of parame-
ters. We consider DSBM networks created using values of ε and η ranging from 0 to
1. For each choice of ε and η we created 50 networks and computed the AMI between
partitions identified using multimodbp and the ground truth. Because the value of
q is usually not known beforehand, for each (γ, ω) point we scan a range of possible
values of β∗ corresponding respectively to possible values of q as given by Eq 2.8 with
qmax = 4 set to twice the true number of communities (2). For each trial, we select
the partition with the highest retrieval modularity among all that converged.

We apply the multimodbp algorithm in this analysis with several choices of the
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resolution parameter, γ (columns in Figure 5) and coupling parameter, ω (rows of
Figure 5). Figure 5 shows that incorporation of a resolution parameter makes a large
difference for detectability of community structure based on the DSBM parameters
used to generated the network. For lower values of ε (i.e., increased intralayer com-
munity signal), γ = 0.5 clearly outperforms the higher values of γ, especially when
frequent community switching is occurring (lower η values). Additionally, within the
first column we see that incorporation of information across layers increases detectabil-
ity of communities except for the lowest values of η.

Within the middle and right columns (γ = 1.0, 1.5), we observe that an additional
regime of detectability is created at higher values of ε, seen in the band at around
ε = .4 for the top middle panel (γ = 1.00, ω = 0.00), as well as the top right panel.
This furthest band is consistent with the limit of detectability in the single-layer
network given by the condition N(pin − pout) > q

√
c in [9] and [34] (depicted by the

vertical dashed line in upper row of Figure 5).
By increasing ω, the AMI along this band is increased, and the range for de-

tection is increased to a maximum of ε = .75 for η = 1.0 (no community switch-
ing). This behavior is consistent with the limits of detectability that are achieved
through aggregation of layers as discussed in [50]. They derive a modified limit of
detectability in the case where each layer is drawn from the same SBM with the
community labels fixed throughout the layers, unlike our model where each nodes’
community assignment is allowed to vary. They compute a detectability threshold of
NL(pin − pout) =

√
4NLρ(1− ρ) where ρ = 1

2 (pin + pout). For parameters used in
this experiment the theoretical detectability limit is ε ≈ .82 (shown by the dashed
lines in Figure 5). Thus the additional flexibility in our approach allows for achieving
near optimal performance depending on the parameters of the underlying model.

3.2.2. Comparison with GenLouvain on Multiplex LFR Benchmark
Networks. We next illustrate the effectiveness of our method by showing that it
outperforms the commonly used GenLouvain [20] modularity optimization algorithm
on a multilayer version of the Lancichinetti-Fortunato-Radicchi (LFR) benchmark net-
works [27]. In this generative model of multilayer networks, each node is connected
to its corresponding node in adjacent layers through an interlayer edge. Community
assignments persist through a given number of layers, and then are reassigned at ran-
dom, using a power-law distribution of community sizes (see Figure 6.B for schematic
representation of multilayer structure). Given the community assignments, each layer
represents an independent realization of the original LFR benchmark network [27].

Figure 6.B shows a comparison of multimodbp and GenLouvain (both using pa-
rameters γ = 1.0 and ω = 1.0) while varying the mixing parameter, µ of the LFR
Multiplex model. (See Figure S.14 for performance over a range of γ and ω values.)
Each point represents the average over 100 trials on different realizations of the model.
For each trial, GenLouvain was run iteratively to match the number of β values run,
with the previous community identified used as the starting partition for the next
run, and using the “moverandw” setting. The partition that maximized modularity
was used to calculate the final values for each trial. Figure 6.A demonstrates several
benefits of using the belief propagation approach over the direct modularity maxi-
mization scheme in GenLouvain. The multimodbp algorithm consistently achieves a
higher agreement with the ground truth all the way up to the value of µ where nei-
ther algorithm is aligned with the known structure. Furthermore, by looking at the
convergence of the algorithm (indicated by blue x’s), multimodbp gives an indication
of whether any significant community structure exists in the network at all. When
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Fig. 6: A) Performance of multimodbp and GenLouvain [20] on multiplex LFR
benchmark realizations with a range of values for the mixing parameter µ. Both
algorithms were run at (γ = 1, ω = 1.0). Each point represents an average over
100 realizations of a multilayer LFR with 250 nodes in each layer, 10 different
layers, and 2 different community assignments, each persisting 5 layers. The average
degree was set to 10 (with a max of 20), and the maximum and minimum possible
community sizes were 100 and 30 nodes respectively. Other LFR parameters were
set to default values (γ̂ = 2.0, β̂ = 1.0). Solid lines represent the AMI of detected
communities with ground truth, while dashed lines represent the modularity of the
identified communities. Blue lines are the results for multimodbp and red lines are
from GenLouvain. B) Representation of the community structure of an example
realization of the LFR multiplex benchmark. Original communities are drawn and
persist for 5 layers, and then new community assignments are made for last five
layers, resulting in a discrete break in the structure.

the multimodbp partition stops aligning with the ground truth partition (µ ≥ 0.4),
multimodbp stops converging, showing that it is not identifying a meaningful par-
tition. In contrast, the value of modularity for GenLouvain (dashed red line) only
declines slightly far past the point where the performance is no better than random.
We see that multimodbp is able to avoid overfitting on random structure because the
node marginals only converge when there is enough correlation between possible high
modularity partitions. GenLouvain on the other hand is usually able to find at least
one high modularity partition even in the absence of real community structure.

3.2.3. Real world multilayer networks. We conclude our results by demon-
strating the inferences that can be made on real-world networks using multimodbp.

We begin with the US Senate voting similarity network as introduced by [53]
and analyzed in [32]. This dataset represents the voting similarity patterns of 1,884
U.S. Senators over 110 Congresses starting in 1789. Each 2-year Congress beginning
in the January following an election is represented as a layer within this network. A
node within a layer represents a Senator serving in that Congress with Senators serving
in consecutive Congresses linked through interlayer edges. In the analysis performed
here, the network was modified to sparsify the intralayer connections by taking the K-
nearest neighbors (KNN) of each Senator based on voting correlations (using K=10)
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Fig. 7: We ran multimodbp on the US Senate voting similarity network comprised of
1884 Senators across the first 110 Congresses [32, 53]. A) The relationship between the
retrieval modularity (x-axis) and the Bethe free energy is given by equation Eq 2.2.
The Bethe free energy correlates strongly with modularity of a partition, and the
partitions with the lowest free energy tend to correspond best with the underlying
party structure. B) We examined the distribution of the average Senator entropy
for each Congress (layer) in the network. Inset graphs depict how changes in average
entropy correspond with network structure and the overall level of polarization within
the network. Node size depicts the average entropy level of Senators with “high
entropy” Senators labeled.

while keeping the edges with the original weights based on voting correlations.
In Figure 7.A we show the correspondence between the retrieval modularity, the

Bethe free energy (Eq 2.2), and the AMI with party labels of partitions identified
across a range of the (γ, ω) parameter space. Each point represents a partition iden-
tified using multimodbp. The belief propagation algorithm fixed points are actually
minimizers of the Bethe free energy (rather than optimizers of the retrieval modular-
ity). We see in general that partitions that minimize the Bethe free energy produce
high retrieval modularities. Optimizing the Bethe free energy also produces parti-
tions that accurately reflect the underlying known structure in the data set (i.e., the
political party affiliations of the Senators), shown by the color of the scatter points
in Figure 7. We show a comparison of these partitions with the real party layouts
in Figure S.17. It appears that the most appropriate choice (in this sense) of the
multimodbp parameters are around (ω = 6, γ = 0.5).

One of the main benefits of using the belief propagation approach for community
detection is that we can obtain a measure of how confident we are in the predicted
community for each node. In Figure 7.B, we show the distribution of Senator en-
tropies for each Congress, averaged over the top 200 partitions identified (by AMI
with parties). On the y-axis we plot the distribution of − log10(entropy) across all
Senators as a measure of how strongly identified the communities are and thus how
polarized Congress is along party lines. We have highlighted several periods of Ameri-
can history such as the Era of Good Feelings with corresponding low polarization/high
entropy, or the high level of polarization immediately preceding the Civil War. The
inset shows how the corresponding changes in entropy from Congress to Congress
are reflected in the community structure of the graph. This is consistent with the
increasing level of polarization identified by Moody et al. in their study of this data
set[31]. Our method gives the further benefit of providing a node level metric to
identify how strongly a node is connected with its community. In Figure 7.B we have
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Fig. 8: Several visualizations of the Lazega Lawyer network [28]. On the right we
show several characteristics of partitions identified with multimodbp at various values
of γ (x-axes) and ω (y-axes). In the top row, from left to right, we show how many
times the algorithm converged over 10 runs at different β values, the number of
communities identified by the best run for each set of parameters (based on lowest
Bethe free energy), and the average entropy of the marginals across all of the nodes
for each of these partitions. In the next two rows we show the AMI of the identified
partition within a single-layer and a specified metadata attribute. For example in the
left most panel of the second row, we show how the “practice” (which type of law
practiced by each node) attribute lines up with the partitioning of work layer. To the
right in B) we show the three layers of the network (advice, work, friends) colored by
two of the metadata attributes, practice (which specialty of law each person is involved
in) and office (which is the location the person works in). Showing the partitions in
this manner demonstrates how different metadata attributes affect the community
structure in the different layers and how this is best captured by multimodbp for
different values of γ and ω.

labeled the “high entropy” Senators, those whose voting patterns indicate a measure
of bipartisanship (or independence from the party as in the case of Bernie Sanders in
the 2007–08 Congress).

The second real-world network that we have analyzed is the Lazega Lawyer net-
work introduced by [28]. We scan the (γ, ω) parameter range [0, 3]× [0, 3] and select
the partition with the greatest retrieval modularity (Q({t̂})) at each point. In Fig-
ure 8, we show the number of iterations taken by the converged partitions for different
parameter choices of (γ, ω). Within the lower right quadrant (high γ, low ω) the al-
gorithm only converged for a small range of β values. In the top row, middle panel,
we see that for this network three communities were chosen for a large portion of the
parameter space, although the structure of the identified partitions varied widely. In
the top right panel of Figure 8.A, we look at the average entropy per node across the
parameter space to identify regions where node ambiguity is minimized. These suggest
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another way to identify regions of the (ω, γ) with corresponding strong community
structure. We see that there are a few partitions with quite low entropy for γ < 1,
and that average entropy tends to increase past this threshold. The region where the
algorithm converged for very few values of β (lower right corner) also tends to have
the highest entropy. In the bottom two rows we have explored how each partition
overlays with a particular metadata attribute within a given layer. For instance the
panel titled “office-friends” shows the AMI of all partitions with the office attribute
only within the friends layer. We see that within different parts of the parameter
space, different features of the metadata align more closely with the partitions iden-
tified. For instance there is a narrow band from γ ∈ (0.5, 0.9) for which the practice
attribute strongly aligns with the community structure of the advice network. For
higher values of γ the advice layer switches to being more aligned with the office
metadata. Similarly, within the “work” layer, we see that the practice attribute con-
tributes most significantly to the structure identified at a similar γ ∈ (0.5, 0.9) regime,
however the office attribute actually contributes more at higher γ and lower ω. Our
results for this network complement those derived in [41] suggesting that no single
metadata attribute explains the structure of this network. These results highlight the
need to explore and summarize partitions across different parameter ranges.

4. Discussion. We have presented multimodbp, an extension of the modularity-
based belief propagation framework to multilayer modularity. Like the original belief
propagation framework for modularity [57], there are a number of features of multi-
modbp that make it a useful tool for identifying community structure in real-world
multilayer networks. At its core, modularity and its multilayer extension are objective
functions for assessing community structure and do not allow for true statistical in-
ference (cf. generative approaches like the stochastic block model, e.g., [16, 42, 49, 50]
for example). However, by formulating multilayer modularity optimization from the
perspective of a Boltzmann ensemble, we can obtain an estimate of the uncertainty
of assignment at each node from its marginal. The marginals reflect how much shift-
ing a node from one community to another changes the modularity and thus is a
measure of how strongly a node prefers a certain community. In this sense we can
find a “soft” partitioning of the nodes, in which one node may belong to multiple
communities, along with confidence levels corresponding to each community. Most
modularity-based algorithms do not allow for overlapping communities with a few
notable exceptions including OverMod [4] and the fuzzy c-means [58], both of which
require an initial disjoint partitioning of the network in order to identify overlaps.
Other versions of overlapping modularity-like approaches include [17, 29]. Our ap-
proach is useful in that it can be used for either a hard or soft partitioning of the
network depending on the desired context.

Meanwhile, although the method of Zhang and Moore allows for the selection of
the number of communities by identifying the value of q for which the retrieval mod-
ularity plateaus [57], we have shown that this approach fails to perform optimally in
a number of cases. This underscores the need for greater flexibility as provided by
incorporation of the resolution parameter γ. Rather than searching along the domain
of q, we allow q to float (up to a certain point qmax) and search along the γ domain
to characterize network structure. The flexibility added by the resolution parameter
becomes even more important in the multilayer context. We have shown that per-
formance of multimodbp is optimized by different combinations of (γ, ω) in different
parameter regimes of the dynamic stochastic block model. This is consistent with
the work of Newman who demonstrated a link between the resolution parameter γ of
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modularity and the pin and pout parameters of the degree-corrected stochastic block
model [37]. Recently, Pamfil et al. extended this approach to multilayer modularity,
deriving a similar mapping between the coupling parameter, ω, and the parameters
of a model very similar to the DSBM studied here [38].

One of the greatest benefits of the multimodbp approach is that the convergence
of the algorithm to non-trivial solutions reveals the existence of significant community
structure above what would be expected at random. Several prior works have shown
that even in randomly-generated networks without underlying structure, modularity
optimization heuristics are capable of finding high-modularity partitions. For this
reason alone we believe an extension of modularity belief propagation for multilayer
networks provides a valuable new tool for network analysis.

There remain a number of technical challenges for implementing multimodbp at
scale. The runtime of the algorithm depends greatly on the number of iterations of
belief propagation that are required to run. As described in Zhang and Moore, this
tends to spike as you approach the retrieval phase, and their formula for β∗ which
we have modified tends to yield values slightly above where this spike occurs. Ideally,
one could have an adaptive solution, identifying a value of β for which the algorithm
appears to be converging quickly early on and adjusting β once the algorithm is
closer to converging. Eventually, we would like to devise an automatic method of
selecting an appropriate value for β based on a preliminary scan of convergence rates
across the β domain, similarly to how we iteratively select the appropriate number of
communities as the algorithm runs. Another issue is the dependency of the runtime
and memory of the algorithm on the number of marginals being optimized. We try to
reduce the dimension of the marginals after the algorithm has run, by attempting to
combine redundant dimensions (those that are highly correlated). One could imagine
attempting such a reduction earlier on after a few course-grained runs of the algorithm
to produce additional performance gains.

To facilitate use of (and possible improvements on) our method, we have written
and distributed a Python package available on PyPI [56].
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S. Supplement.

S.1. Derivation of Multilayer Belief Propagation Update Equations.
To derive the update equations for the multilayer belief propagation, we have relied
heavily on the approach employed by Zhang and Moore [57]. In the belief propagation
algorithm, also known as the sum-product algorithm or cavity method, each node
sends a “message” (ψi→kt ) to its neighboring nodes encoding the marginal probability
of it occupying a given state, t (or, in our case, belonging to a given community). These
updates are iterated over all nodes until the messages converge to a fixed point. The
form of the message for a particular node in the single layer case from Zhang and
Moore is given by:

ψi→kt =
1

Zi→k

∏
j∈∂i\k

q∑
s=1

eβδstψj→is

∏
j∈∂i\k

q∑
s=1

e−β(didj/2m)δstψj→is .(S.1)

We have made several changes to this equation to extend the belief updates to
modularity on multilayer networks. We incorporate the weights of the edges between
nodes i and j by changing the first sum-product term:

∏
j∈∂i\k

q∑
s=1

eβδstψj→is ⇒
∏

j∈∂i\k

q∑
s=1

eβÃijδstψj→is(S.2)

Where li indicates the layer associated with node-layer i and Ãij = Aijδ(li, lj) +
ωCij(1− δ(li, lj)) applies the correct weight based on whether (i, j) is an intralayer or
interlayer edge. Likewise, we incorporate the resolution parameter γ by modifying the
part of the update equations that derives from the null model term in the modularity
equation:

∏
j∈∂i\k

q∑
s=1

e−β(didj/2m)δstψj→is ⇒
∏

j∈∂i\k

q∑
s=1

e−βγ(didj/2m)δstψj→is(S.3)

Zhang and Moore derive the final form of the messages used in the algorithm by
approximating the dense interactions between every pair of nodes given by the null
model with a field approximation that is holds when the graph is sparse. Derivation
of our intralayer term in 2.1 follows the exact same steps. In the multilayer case
however, the contribution to the field term of each outgoing belief comes only from
node-layers that are within the same layer as the source node-layer for the belief. We
therefore introduce a layer specific field term exp { βdi2ml

θlit } Where θlit =
∑
j∈Vl djψ

j
t

only depends on contributions from nodes in layer li, node strength di =
∑
j∈Vli

Aij

only includes contributions from layer li, and ml =
∑
j∈Vli

dj is the total edge strength

in layer li.
These modification give us 2.1. We note that the message passed from node-layer

i to node-layer k, ψi→kt does not depend on the type of edge (i, k). Node i integrates
information from its neighboring nodes (except node k), handling both edge weights
and types appropriately, and passes this information to node k. The edge type (and
weight) between node i and node k only comes into play when node k integrates all
the information coming in from its neighboring nodes.

S.2. Derivation of Bethe Free Energy. We derive here the formula for the
free energy of the single layer model given in Zhang and Moore [57]. In the next
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section we will show how this naturally extends to the multilayer case with interlayer
edges. For any model which has only pairwise interactions, the formula for the Bethe
free energy approximation is given by

fbethe = − 1

Nβ

∑
i

logZi −
∑
i,j∈E

logZij

 .(S.4)

In the modularity model, there are really two types of edge interactions: those
that are given explicitly by the underlying graph ( i.e. the Ai,jδci, cj term), and the

pairwise interaction term that comes from the null model (i.e. Pi,j =
ki,kj
2m δci,cj ). We

can split these two apart:

fbethe = − 1

Nβ

∑
i

logZi −
∑
i,j∈E

logZij −
∑
i 6=j

log Ẑij

(S.5)

where we refer to the edges in the underlying graph as E and split out the non-
edge interactions into another term with normalization Ẑij . We write out the joint
distribution for the “non-edges”:

ψijst =
1

Ẑij
e−β(didj/2m)δstψisψ

j
t(S.6)

We use this to compute Ẑij :

Ẑij =
∑
t

∑
s

e−β(didj/2m)δstψisψ
j
t ,(S.7)

∑
i<j

log Ẑij =
∑
i<j

log
∑
t

∑
s

e−β(didj/2m)δstψisψ
j
t

≈
∑
i<j

log

(∑
t

∑
s

1− β(didj/2m)δstψ
i
sψ

j
t

)

≈
∑
i<j

(∑
t

∑
s

−β(didj/2m)δstψ
i
sψ

j
t

)
=
∑
t

∑
i<j

−β(didj/2m)ψitψ
j
t

= − β

4m

∑
t

∑
i 6=j

didjψ
i
tψ
j
t

= − β

4m

∑
t

θ2t .(S.8)

This gives us the expected full formula,

fbethe = − 1

Nβ

∑
i

logZi −
∑
i,j∈E

logZij +
β

4m

∑
t

θ2t

(S.9)
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S.3. Multilayer Bethe Free Energy. We now extend the Bethe Free Energy
equation to multilayer networks. The formula for multilayer modularity for undirected
networks is given by Equation 1.1 in main text:

(S.10) Q(γ, ω) =
∑
i,j

(Aij − γPij + ωCij) δ(ci, cj)

As before we only have pairwise interactions within the model. However, note
that in the multilayer formulation there are now both intra- and interlayer edges.
We can split the edge term E of fbethe into the contributions from interlayer and the
intralayer edges:∑

i,j∈E
logZij =

∑
i,j∈Einter

logZinterij +
∑

i,j∈Einter

logZintraij .(S.11)

Where Eintra and Einter are given by the non-zero elements of Aij and Cij respectively.
For the non-edge term in the multilayer case, we note that the non-edge interaction
terms are all restricted to within a given layer. This means that nodes within different
layers of the model only interact through the interlayer edge term and not through
the null model term:

1

Nβ

∑
i6=j

log Ẑij =
1

Nβ

∑
l

∑
i 6=j,i,j∈l

log Ẑlij(S.12)

We can therefore split this term into a sum over the contributions from each of the
layers with a similar form as from before:

∑
l

∑
i 6=j,i,j∈l

log Ẑlij = −
∑
l

β

4ml

∑
t

(θlt)
2(S.13)

and we can write the full Bethe free energy as

fbethe = − 1

Nβ

∑
i

logZi −
∑

i,j∈Einter

logZinterij −
∑

i,j∈Einter

logZintraij +
∑
l

β

4ml

∑
t

(θlt)
2


(S.14)

where the Zinterij can be computed from the pairwise marginals of the interlayer in-
teractions:

ψi,js,t =
1

Zinterij

eβωδs,tψi→js ψj→it .(S.15)

S.4. Formula for selection of β∗. Consider the update equation:

(S.16) ψi→kt =
1

Z
exp

βdi
2m

θt +
∑

j∈∂i\k
log
(

1 + ψj→it

(
eβ − 1

))
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We compute the derivative
∂ψi→k

t

∂ψj→i
s

assuming both (i, j) and (i, k) are edges:

∂ψi→kt

∂ψj→is

=
∂

∂ψj→is

 1

Z
exp

βdi
2m

θt +
∑

j∈∂i\k
log
(

1 + ψj→it

(
eβ − 1

))
=

1

Z

∂

∂ψj→is

exp

βdi
2m

θt +
∑

j∈∂i\k
log
(

1 + ψj→it

(
eβ − 1

))
+ exp

βdi
2m

θt +
∑

j∈∂i\k
log
(

1 + ψj→it

(
eβ − 1

)) ∂

∂ψj→is

[
1

Z

]
.(S.17)

We will consider each of these two derivatives separately. First,

∂

∂ψj→is

exp

βdi
2m

θt +
∑

j∈∂i\k
log
(

1 + ψj→it

(
eβ − 1

))
= exp [...]

∂

∂ψj→is

βdi
2m

θt +
∑

j∈∂i\k
log
(

1 + ψj→it

(
eβ − 1

)) .(S.18)

The derivative of the first term here,

∂

∂ψj→is

βdi
2m

θt

is O
(
didj
2m

)
, which we can ignore given our assumption that the network is sparse

(di �
√
m for all i).

We are then left with

∂

∂ψj→is

 ∑
j∈∂i\k

log
(

1 + ψj→it

(
eβ − 1

)) .
The only term in this sum that will lead to a non-zero derivative is if s = t, leading
to

(S.19)
∂

∂ψj→is

log
(
1 + ψj→is

(
eβ − 1

)
δst
)

= δst
eβ − 1

1 + ψj→is (eβ − 1)
.

Evaluating at the fixed point, and combining with the previous 1
Z exp(...) = 1

q this
term becomes

(S.20) δst
eβ − 1

q + eβ − 1

Next we move on to the second term from the previous product rule expansion
(Eq S.17):

∂

∂ψj→is

1

Z
= − 1

Z2

∂Z

∂ψj→is

= − 1

Z2

∂

∂ψj→is

∑
t

exp

 ∑
j∈∂i\k

log
(

1 + ψj→it

(
eβ − 1

))
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where we have ignored the θ term as before. This leads to

(S.21) = −exp(...)

Z2

eβ − 1

1 + ψj→is (eβ − 1)
.

If we bring the extra exp(...) from before back in, and evaluate at the fixed point, this
leads to

(S.22) = −1

q

eβ − 1

q + eβ − 1
.

So in total, we find

(S.23) Tst =
eβ − 1

q + eβ − 1

(
δst −

1

q

)
exactly as expressed in Zhang and Moore.

We see that the form of the linearization of the interlayer messages, Rst, at
the factorized fixed point proceeds along the exact same lines above, with the only
difference being that β has been replaced with βω, and gives us

Rst =
eωβ − 1

q + eωβ − 1

(
δst −

1

q

)
.

S.5. Selection of β∗ on weighted networks. In the case where there are
weights on the edges, the linearized approximation of the messages around the fac-
torized solution depends on the value of each edge weight, wij :

∂ψi→js

∂ψk→it

= T ijst =
ewijβ − 1

q + ewijβ − 1

(
δst −

1

q

)
with corresponding eigenvalue:

λwij
=

ewijβ − 1

q + ewijβ − 1
.

We do not attempt to derive a rigorous stability condition based on the distribu-
tion of weights across the networks. However, we have found that in practice using the
average weight on the edges, 〈w〉 with the originally derived stability criteria yields
reasonable values of β for running the algorithm:

cλ2〈w〉 > 1

gives us the following stability condition:

β∗(c, q, w) =
1

〈w〉
log(

q√
c− 1

+ 1) .(S.24)

As part of testing the formula for β∗(c, q, w), we look at the effect of adding
normally distributed edges weights on an Erdös-Rényi graph shown in Figure S.9.
For the Erdös-Rényi graph with normally distributed weights, Equation 2.8 gives a
very good estimate of where the divergence occurs, while the unmodified equation
becomes less and less accurate for higher weights.
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Fig. S.9: Stability boundary for Erdös-Rényi graph with weights assigned randomly
from a N (µ, σ = .5) normal distribution. Left three plots depict convergence curves
of the algorithm for three different means of the normally distributed edge weights
(µ =1,2, and 3 respectively). Each curve represents the average over 10 realizations of
the ER random graph. The unweighted prediction for β∗ is given by the black dashed
line, while the weight adjusted prediction is given by the dashed green line. On far
right plot β∗ was empirically determined for several different mean weights (red line)
and compared with the predicted values (blue line) showing good agreement.
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Fig. S.10: Stability boundary for 2 community stochastic block model graph with
weights assigned randomly from a N (µ, σ = .5) normal distribution. SBM’s had
n = 200 nodes with mean degree, c = 6, and ε = pout

pin
= .1. Each convergence

curve was averaged over 10 realizations of the SBM model with different means of
the normally distributed edge weights (µ =1,2, and 3 respectively). The unweighted
prediction for β∗ is given by the black dashed line, while the weight adjusted prediction
is given by the dashed green line. Red curve shows the adjusted mutual information
with the underlying ground truth. On far right plot β∗ was empirically determined
for several different mean weights (red line) and compared with the predicted values
(blue line) showing good agreement.

Below in Figure S.10, we also demonstrate that for a 2 community SBM the
modified formula for β∗ occurs within the retrieval phase.

We have used Equation 2.8 to identify the value of β to run the algorithm at
in all of the experiments within this manuscript. Since a priori the number of
communities, q, isn’t known in advance, we run the algorithm at several values
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β = [β∗(q = 2, c, 〈w〉), ...β∗(q = qmax, c, 〈w〉)] for a range of expected numbers of
communities, [2, qmax]. For each run of the algorithm for a given value of β we do
not reset the marginals, thus reducing the time until convergence, once we have found
the retrieval phase. We reiterate that the heuristic derived works well in most cases,
but makes no guarantees that β∗ will be inside the retrieval phase for all degree dis-
tributions and distribution of edge weights. For some networks scanning a range of β
values might be required.
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Fig. S.11: Stability boundary for 2 community unweighted multilayer dynamic
stochastic block model graph. Network had n = 100 node within each layer with
mean degree c = 6 and ε = pout

pin
= .1. Each convergence curve was averaged over 10

realizations of the SBM model with the algorithm run with different interlayer edge
couplings (ω =0, 1, and 2 respectively). The unweighted prediction for β∗ is given
by the black dashed line, while the weight adjusted prediction is given by the dashed
green line. Red curve shows the adjusted mutual information with the underlying
ground truth. In the far right plot β∗ was empirically determined for several different
mean weights (red line) and compared with the predicted values (blue line) showing
good agreement.

In Figure S.11, we also show that the retrieval phase of multilayer networks also
varies with the strength of the coupling parameter, ω. The β∗ predicted by Equa-
tion 2.8 consistently lies within the retrieval phase even as ω increases (in contrast to
the value of β given from the unmodified equation).

S.6. Supplement Figures.
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Fig. S.12: We compare the performance of the algorithm for a wide range of γ values
in the event that the number of communities is fixed at the correct number (q = 4).
Here we do not allow q to float as described in Section 2.3
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Fig. S.13: Using the method recommended by Zhang and Moore to select the appro-
priate value of q for the American NCAA Div-IA College Football Network [15, 10].
Each colored line corresponds to running modbp for a given value of q across a window
of β around β∗(q) (shown by black dashed line). Using this method would suggest an
appropriate q ∈ [6−8] depending on the threshold selected. We note that here, we do
not collapse community labels as described in Section 2.3; for each run a single fixed
value of q is used as well as the default resolution (γ = 1).
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Fig. S.14: We compare multimodbp with GenLouvain using the multiplex LFR bench-
mark network (see Section 3.2.2 in main manuscript) across a range of γ and ω pa-
rameters.
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Fig. S.15: Demonstration of layer ”splitting” on the multilayer dynamic stochastic
block model (DSBM). Left shows the ground truth planted community assignments
while the right shows the communities identified by multimodbp without the cross layer
assignment procedure. We reiterate that this cross layer label permuting preserves all
identified structure within a layer and always results in higher modularity.

Fig. S.16: multimodbp applied to the US Senate Voting similarity network [53]. Left:
AMI of identified partitions with the politcal party labels using multimodbp across
a range of γ (x-axis) and ω values. Right: the number of communities identified by
algorithm as a function of the parameters (γ, ω).
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Fig. S.17: Top identified partitions based on minimization of the Bethe free energy
on the US Senate voting similarity network. In each, each row represents the Senator
for a particular State, organized by region, while the x-axis denotes the year of each
Congress. Nodes are colored according to their identified partition, while the top left
figure is colored by the political party affiliation of each senator.
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