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Abstract. In a noiseless linear estimation problem, one aims to reconstruct a
vector x* from the knowledge of its linear projections y = ®x*. There have been
many theoretical works concentrating on the case where the matrix ® is a random
i.i.d. one, but a number of heuristic evidence suggests that many of these results are
universal and extend well beyond this restricted case. Here we revisit this problematic
through the prism of development of message passing methods, and consider not only
the universality of the ¢; transition, as previously addressed, but also the one of the
optimal Bayesian reconstruction. We observed that the universality extends to the
Bayes-optimal minimum mean-squared (MMSE) error, and to a range of structured
matrices.

1. Introduction

The problem of recovering a signal through the knowledge of its linear projections is
ubiquitous in modern information theory, statistics and machine learning. In particular,
many applications require to reconstruct an unknown n—dimensional signal vector x*
from the linear projections

y = &x7, (1)
where y is a m-dimensional vector, and ® is a m x n random matrix. For instance, if
x* is sparse, this task of estimating the signal from its linear random projections is at
the roots of compressed sensing [1]. A fundamental question in the field is how much
the algorithmic and the information theoretic performance depends on the choice of the
random matrix &.

In the present letter, we concentrate on the noiseless and asymptotic, large n,
regime with a fixed value « =m/n. We consider x* to be k-sparse, i.e. to have only
k non-zero values, and we shall work in the limit where n — oo, kK — o0, and a
finite value of p=£k/n. In such setting, a classical result is the following: for random
matrices ¢ with independent standard Gaussian entries, the (convex) reconstruction
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with /7 penalty displays a precisely determined phase transition. For a certain region
in the (a, p)-phase diagram, it typically finds back the vector x*, being the sparsest
solution, whereas outside that region, it typically fails. The obundary between these
two regions is called the Donoho-Tanner line [2|. It has been shown empirically that the
very same phase transition location seems to hold for a wider range of random matrix
ensembles, see e.g. |3,4], suggesting a large universality of the Donoho-Tanner phase
transitions. Another line of work showed that the convex ¢; reconstruction problem
can be treated through conic geometry, and the success probability of signal recovery
only depends on a geometric number characterizing a subcone (statistical dimension or
Gaussian width) [5,/6].

Here we investigate the universality of the phase transition not only for the ¢;
transition, but also to the performance of the optimal Bayesian reconstruction. We
analyze this question through the prism of information theory, message passing methods,
and random matrix theory. We shall see that the universality indeed extends to a more
generic set of properties than the ¢; transition, such as the minimum mean-squared
(MMSE) error or the easy-hard phase transition for optimal Bayesian learning, and
empirically to structured matrices such as the one appearing in [7,8].

We note that investigation of universality are very common to physics problems,
and understanding how large is the class of model for which a given result applied is a
very fundamental question. The message-passing-based algorithm that we investigate
in this paper to demonstrate the universality also has their origin in pysics works, such
as [9].

2. A short review of results for i.i.d. random matrices

A first well-understood case of universality holds for random matrices ® where all the
elements are generated i.i.d. from a well-behaved distribution -with zero mean and unit
variance- which all exhibit the same transitions as Gaussian random matrices. This is
known for multiple retrieval problems:

2.1. £y recovery

Consider for instance the Donoho-Tanner line |2| that regulates the ¢; recovery. Thanks
to the approximate message passing solver (see below) that has been shown to be
universal with respect to all i.i.d. distributions with finite moments |10,/11], we know
that the Donoho-Tanner phase transition is the same for all such random matrices.

2.2. Information theoretic optimal reconstruction

There has been a considerable amount of work in the information theory community
on the computation of the mutual information and on the MMSE for problems such as
with Gaussian matrices. In particular, following the replica method from statistical
physics (the Tanaka formula [12]), a heuristic formula has been postulated in different
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situations, see e.g. [13-16]. This heuristic replica result has been recently rigorously
proven in a series of papers [17,|17,/18]. In a more recent proof [19], it has been shown,
again, that the formula is not specific to Gaussian i.i.d. matrices, but that any matrix
with i.i.d elements of unit variance and zero mean leads to the same exact result for the
mutual information and the MMSE.

2.3. Hard phase for Bayesian decoders

A third interesting point is to ask about tractacle decoders that aim to perform the
optimal Bayesian estimation, i.e. with a perfect prior knowledge on the distribution of

x*. For simplicity, consider for instance the case where each element of x* has been
sampled from a Gauss-Bernoulli distribution:

xi ~ (1= p)o(z)+ pN(0,1).

In this case, the best known solver is again AMP, using a Bayesian decoder (instead
of the soft thresholding function for ¢; recovery) [14,/15,/20,21]. Interestingly, it shares
with the ¢; recovery a similar phase transition: for a certain region in the (a, p) plane it
typically finds back the vector x*, whereas outside that region it fails. We shall denote
the limit between these regions the "Bayesian hard-phase" transition. The "Bayesian
hard-phase" line, that has been precisely computed in [14},|15] is always better than the
Donoho-Tanner line (as it should, since it exploits additional information). Once more,
the universality of AMP shows that this phase transition is not restricted to Gaussian
matrices, but extends as well to all (well normalized) i.i.d. matrices.

The fact that these three properties (the ¢;, the hard-phase line, as well as the
MMSE) are universal for all i.i.d. matrices makes the case for Gaussian computations,
as done in theoretical computation, stronger. We shall see that this universality extends
well beyond these simple cases.

3. Random rotationally invariant matrices

Moving away from the well-known i.i.d. examples, we start by considering a much larger
set of random matrices defined through their singular value decomposition (SVD): any
real matrix ¢ can be decomposed into ® = UXV | with U and V' orthogonal matrices, and
>’s elements being ®’s singular values. We shall look at the left rotationally invariant
random matrix ensemble: these are matrices ® that can be written as

O =U%V

with an arbitrary rotation matrix U and singular values ¥, but where the matrix V' has
been randomly (and independently of ¥ and U) generated from the Haar measure (that
is, uniformly from all possible rotations).

When the singular values are different from zero, it is straightforward to justify the
universality property for matrices from this subclass. We start by the definition of the



Unwversality of Noiseless Linear Estimation 4

problem: we wish to find @ such that

y=0x =UxVe. (2)

If m <n, then ¥ is written as > = [ 210 } and we define

S —1
gin _ | & 1.0 |
0 00

Multiplying ([2]) on both sides by U?, and then by X™; one reaches

such that X"y =

g=x"UTy=Vz (3)

where V is a m x n matrix composed of the first m lines of V. If instead m > n, ¥ is

0

mmwe®meymz[i*Mﬂsmhmazmzzb,Mmmwmg@byWWMn

Y we obtain

written as

g=Y"UTy =Va. (4)

In both cases, we thus see that the problem has been transformed —in a constructive
way— into a standard linear system with the sensing matrix V when m < n being a
(sub-sampled) random rotation one, or sensing matrix V' when m > n. This shows that
all rotationally invariant matrices, which satisfy U and ¥’s independence on V', can be
transformed the same way and are in the same universality class as far as noiseless linear
recovery is concerned, i.e. they will display the same phase transitions.

Since Gaussian i.i.d. matrices belong among random rotationally invariant matrices
(in this case X follows the Marcenko-Pastur law [22]) this means that all the information
theoretic rigorous results (such as phase transitions and MMSE value) with zero noise
for random Gaussian matrices applies verbatim to all rotationally invariant ensemble,
as long as the SVD’s matrices U and > are independent of V. This is a very strong
universality, that applies to the three cases (1, 2, 3) from sec. Note that the
universality of the Donoho-Tanner line with rotationally invariant matrices was already
hinted by the replica method [23].

Notice, however, that the above construction depends crucially on the fact that we
consider here noiseless measurements. It would not work if an additional Gaussian noise
were added in eq. : in this case, the transformation would make the i.i.d. Gaussian
noise a correlated one. Indeed, the replica formula for noisy measurements underlines
that the MMSE depends on the precise set of matrices in noisy reconstruction [13,24]
(this formula is not yet fully rigorous, but see [25] for a proof in a restricted setting).
Any differences, however, must go to zero in the noiseless limit.
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4. Approximate Message Passing

Having discussed the universality with respect to random rotationally invariant matrices,
we now wish to discuss its effect on specific solvers, concretely the message passing
algorithms.

4.1. AMP

We first consider the original approximate message passing (AMP) [26] to compute the
phase transition between the phase where the algorithm reconstructs x* perfectly, and
the one where reconstruction may be possible but is not achieved by the algorithm.
AMP is an iterative algorihm that follows:

R = Ut(q)Tf(t>
N L, 1, aie
Zt =y — (I)Xt + aZt 1<n£_1(q)th 1 + Xt 1))
where t is the iteration index, x' is the current estimate of x*, z' the current residual,
() is an averaged sum of components, and 7, is a prior-dependent threshold function
applied component-wise (the soft thresholding for ¢;, or the Bayesian decoder [14,[15]).
One of the most interesting features of AMP is that, if ® is a Gaussian i.i.d. matrix,

its mean squared error (MSE) o; can be tracked accurately by the state evolution
formalism [10}/11],26]. State evolution is a relatively simple recursive equation:

(mx+ 72~ x) ] , 5)

where the expectation is with respect to independent random variables Z ~ N(0,1)

01524-1 = \Ij<0_152)a \11(0—2) = E

and X, whose distribution coincides with the empirical distribution of the entries of x*.
Analyzing the evolution of this equation for the ¢; decoder yields the Donoho-Tanner
line 26|, while using the Bayesian decoder it yields the hard-phase line for Bayesian
decoding [14].

It would be interesting to use AMP for rotationally invariant matrices. In order to
do this, we follow the construction of sec.|3; starting from equation (3) we then multiply
by Yo, a m x m diagonal matrix with singular values sampled from Marcenko-Pastur
law (singular values of a Gaussian i.i.d. matrix , and Uy a m x m Haar-generated
orthogonal matrix, thus ensuring that >y and U, are generated independently of V:

UpSoX U Ty = UpSoV (6)

y' = d'e. (7)

After this transformation, ® = UyX,V is a random matrix that belongs to an ensemble
very close to the Gaussian i.i.d. matrices ensemble. In fact, a recent work showed that

1 The singular values of a Gaussian matrix are correlated, so in fact we may want to generate ¥ by
first generating a random Gaussian matrix, and then calculating its singular values.
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AMP applied to a Gaussian matrix follows the same state evolution as matrices such as
@' where Uy, V are uniform orthogonal matrices and 2 diagonal’s elements are singular
values sampled from the Marcenko-Pastur law |27]. Combining this result with the
matrix transformation, we have thus constructively mapped the noiseless reconstruction
problem back to the well-understood noiseless compressed sensing case for a Gaussian
i.i.d. matrix, where we can safely apply the algorithm, and its state evolution. In the
section [5.2 we apply this matrix transformation for numerical experiments using AMP.

4.2. Vector-AMP

While the transformation trick allows to make AMP work with random rotationally
invariant matrices, another alternative is to work directly with a dedicated solver. To
this means, different but related approaches were proposed [24.[28|, in particular, using
the general expectation-propagation (EP) [29,30] scheme. Ma and Ping proposed a
variation of EP called OAMP [31] specially adapted to rotation matrices. Rangan,
Schniter and Fletcher introduced a similar approach called VAMP [32] and proved
that it follows state evolution equations corresponding to the fixed point of the replica
potential [13,24}25]. The multi-layer AMP algorithm of [33] also display the same fixed
point.

We shall concentrate here on the VAMP (Vector-AMP) approach, and for a
moment, put back a small additional random Gaussian i.i.d. noise of variance A in
the measurement in eq. as it is needed for stating the algorithm. VAMP then
consists in the following fixed-point iteration:

St
t+1 ! ¢ 1+1 1 ¢
u = i O, = s i - Prs
CT Na@) T (Varf(@) " -
St
t+1 L, t t+1 1 ¢
u = T T Uy, r = Nt/ 9
C M) T Var()
where we denote by [Ej,. the expectation w.r.t. the tilted distributions

@zr(w) o Py, (x)Q},.(x), and by Var, ,(x) the variance of these distributions. Here,
we have defined @, (x) = e—%pz,rmT:c—i—uZtm’ Py(zx) oc e I=®x5/22 and P,(x) is the prior
used in the algorithm (i.e. the Laplace prior for the ¢; model, or the actual distribution
of the signal for Bayesian reconstruction). In particular

&= (®T® + Ap L) Ty + Aul),
A (9)
(Vary(z)) = NTr(quCD +ApTL)

where, as for AMP, we define the denoiser that yields the estimates of x by z(u,p) =
f dmpr(x)ef%pm2+uz’

. 0
(xr)j ~ o log z(u, p)

wlph
. 1 p 82 (10)
<Varr(:1:)> - E — % 1Og Z(U, IO) ut, ot
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Again, the performance of the recursion can be analyzed rigorously through the state
evolution [32|. For simplicity, let us concentrate on the Bayes optimal case in which
case the state evolution can be closed on the variables (see [32]):

o' = (Varl(z)) and €' = (Var{(x)), (11)
by writing
o' (p1) = 2((p)) ")
12
e(pr) = AE {m} = ASy2(—ApR) "2

where the expectation is above the distribution of the singular values ¥ of the matrix
®, and where we recognize the Stieljes transform Sx(r) =E[1/X — r].

Though this transform, we see that the performance depends crucially on the
distribution of eigenvalues. Let us now go back on the noiseless limit when A — 0
and analyze how the universality shows up. Consider again the Stieltjes transform: out
of the n singular values of the n x n matrix ®7®, we shall have (1 — a)n of them to be
zero (assuming o < 1) while the rest are positive (since m < n). In this case, the limit
r — 0 of the Stieltjes transform will behave as Sx(r) ~ —(1 — a))/r so that

l—«

: t
i e(p) = o
Again, we see that all the complicated dependence on the spectrum of the matrix ® has
been eliminated. This is a direct, alternative, proof that VAMP will also yield universal
results in the zero noise limit for the Bayesian reconstruction. Given that VAMP has
the same fixed point as the replica mutual information [13}[25], this argument applies to
the replica prediction for the MMSE as well.

5. Structured matrices

We now move to very structured matrices, in order to test the universality as well as
the quality and the prediction of the state evolution out of its comfort zone. In order
to do so, we have considered different matrix ensembles:

5.1. Tested ensembled of matrices

Discrete cosine transform matrices The first ensemble we consider consists in Fourier-
like matrices. A n X n discrete cosine transform (DCT) matrix Y is defined by:

2 (25 + 1k
Y = \/;ek cos (T) : (13)

where j,k € [0,n — 1], ¢g = 1/v/2, ¢, = 1 for i = 1,....,n — 1. We used a sub-sampled
version of these matrices in which we picked some rows randomly.
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Figure 1. Phase diagram for a DCT matrix (width n = 1000) in the Bayes-optimal
case. The averaged MSE on 50 executions of VAMP is represented by a color-code,
displaying a phase transition that matches the theoretical Bayes line for Gaussian i.i.d.
matrices (black line). Some finite-size effects can be seen.

LO04 4+  Gaussian nid. + Y W +
+  DCT 3
-
+  Hadamard o R
0.8 +  RF f=ReLu . +:.
. o ++
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Figure 2. Phase diagram in the ¢; reconstruction case obtained by averaging on 20
to 50 executions on VAMP. The dots indicate the phase transitions for Gaussian i.i.d.,
DCT (width n = 2000), Hadamard matrices (n = 4096), and random feature matrices
¢ = f(WX) with f =ReLu, f=sign, f=tanh (W and X are Gaussian i.i.d. of
size an x n and n X n with n = 2000). They match the theoretical Donoho-Tanner
transition for Gaussian i.i.d. matrices (black line).
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Hadamard matrices A natural variant of DCT is given by the Hadamard matrices. H
is a n x n Hadamard matrix if its entries are +1 and its rows are pairwise orthogonal,
i.e. HH" = nlI,. For every integer k, there exists a Hadamard matrix Hj, of size 2*.
These can be created with Sylvester’s construction: Let H be a Hadamard matrix of
order n. Then the partitioned matrix

H H
H —-H
is a Hadamard matrix of order 2n.

Random features maps Finally, we wanted to consider here random features maps
(RFM) as encountered in nonlinear regression problems. In such settings, a random
features matrix & = f(IWX) is obtained from the raw data matrix X by means of a
random projection matrix W and a pointwise nonlinear activation f. Kernel regression
models, nonlinear in the original data X, can then be approximately but efficiently
solved by the linear estimation problem , with an appropriate choice for f and the W-
distribution [34]. Such matrices, that can be seen as the ouput of a neuron with random
weights, have been investigated in particular in the context of neural networks [7,8|.
Indeed, in neural networks configurations with random weights play an important role
as they define the initial loss landscape. They are also fundamental in the random
kitchen sinks algorithm in machine learning [34] and it is thus of interest to test our
understanding of linear reconstructions with AMP and VAMP in this case.

In what follows we will test random features matrices where both W and X are
random Gaussian i.i.d. matrices.

5.2. Numerical results

We provide the codes used to generate the data on github in the repo
http://sphinxteam /Universality-CS-2019. To generate Figure [1] and |2, we ran VAMP
50 times on 50 x 50 points spanning the (a,p)-space, and computed the average mean-
squared error (MSE) between the signal x* and the reconstructed configuration x. The
MSE is represented with a color bar (white means perfect reconstruction). For a DCT
and a Hadamard matrix, we observe a phase transition in the Bayes-optimal case that
matches the theoretical transition for Gaussian i.i.d. matrices. We also ran VAMP for
the ¢; reconstruction problem. Averaging on 20 executions (or 50 for small a where
finite-size effects are more important), we recover again a phase transition matching the
theoretical Donoho-Tanner line for Gaussian i.i.d. matrices |3|. Besides, we compared
the MSE obtained by VAMP at each point of the phase diagram for different matrices.
In figures |3l and 4] we plot the MSE averaged on 20 executions for p fixed and « ranging
between 0 and 1. We get the same error in reconstruction for all matrices, following
the MSE for Gaussian i.i.d. matrix for p = 0.25, 0.5 and 0.75. We also checked that
AMP, provided one uses the trick eq. , reproduce these results as well: indeed the
two algorithms returned extremely similar results.


https://github.com/sphinxteam/Universality-CS-2019
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Figure 3. Mean-squared error for p = 0.25, 0.5 and 0.75 (bottom to up curves) in
the Bayes-optimal case averaged on 20 executions of VAMP for Gaussian i.i.d, DCT,
Hadamard, random features matrices ® = f(WX) with f = ReLu, f = sign, f = tanh
(W and X are Gaussian i.i.d of size an x n and n x n) . The width is n = 2000 for all

MSE

matrices.

3.0 v
”'A\k =+ = Gaussian 1.1.d.
i DCT

2.5 4 : : +:§i Hadamard
et Y RF f=ReLu
: I|I ‘T\; RF f=sign

1 ¢ it

2.0 :_} ﬂ + RF f=tanh
[}
L]
I
I
I
]
1

L0

T
0.0

Figure 4. Mean-squared error for p = 0.25, 0.5 and 0.75 (bottom to up curves) in the
£1 reconstruction case averaged on 20 executions of VAMP for Gaussian i.i.d, DCT,
Hadamard, random features matrices ® = f(WX) with f = ReLu, f = sign, f = tanh
(W and X are Gaussian i.i.d of size an x n and n x n). The width is n = 2000 for all

matrices.
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5.8. Discussion

Figures of the previous section perfectly illustrate our main point: the universality in
noiseless compressed sensing is not limited to the ¢;-type reconstruction as in |3} 4],
but extends to other quantities and estimators, such as the hard-phase line in Bayesian
reconstruction, and the MMSE. Besides, it is not limited to random orthogonal matrices,
but empirically extends to Fourier-type matrices and to the random features maps
currently studied in machine learning. It is an open question to extend the proof of
state evolution to these challenging matrices. It would be interesting to find a good
creterion to identify which matrices satisfy this universality and which do not; this is
something that we are yet unable to predict in advance. An example of structured
matrices that do not seem to follow these universal phase transitions is given by Haar
wavelet matrices, which can be defined recursively by:

11 H,® 1, 1]
W — d W e ’
27 | M T | e

where [, is the identity matrix of size k and ® is the Kronecker product. In fact, VAMP
even fails to converge for these matrices. Investigating this behavior is an interesting
direction of research.

Acknowledgment

We thank Andre Manoel and Galen Reeves for useful discussions. We acknowledge
funding from the ERC under the European Union’s Horizon 2020 Research and
Innovation Program Grant Agreement 714608-SMilLe; and from the French National
Research Agency (ANR) grant PAIL.

[1] E. J. Candes and T. Tao, “Near-optimal signal recovery from random projections: Universal
encoding strategies?”” IEEE Transactions on Information Theory, vol. 52, no. 12, pp. 5406—
5425, Dec 2006.

[2] D. L. Donoho and J. Tanner, “Sparse nonnegative solution of underdetermined linear equations
by linear programming,” Proceedings of the National Academy of Sciences, vol. 102, no. 27, pp.
9446-9451, 2005.

[3] D. Donoho and J. Tanner, “Observed universality of phase transitions in high-dimensional
geometry, with implications for modern data analysis and signal processing,” Phil. Trans. A:
Mathematical, Physical and Engineering Sciences, vol. 367, no. 1906, pp. 4273-4293, 2009.

[4] H. Monajemi, S. Jafarpour, M. Gavish, , and D. L. Donoho, “Deterministic matrices matching the
compressed sensing phase transitions of gaussian random matrices,” Proceedings of the National
Academy of Sciences, vol. 110, no. 4, pp. 1181-1186, 2013.

[5] V. Chandrasekaran, B. Recht, P. A. Parrilo, and A. S. Willsky, “The convex geometry of linear
inverse problems,” Foundations of Computational mathematics, vol. 12, no. 6, pp. 805-849, 2012.

[6] D. Amelunxen, M. Lotz, M. B. McCoy, and J. A. Tropp, “Living on the edge: phase transitions in
convex programs with random data,” Information and Inference: A Journal of the IMA, vol. 3,
no. 3, pp. 224-294, 2014.



Unwversality of Noiseless Linear Estimation 12

[7] J. Pennington and P. Worah, “Nonlinear random matrix theory for deep learning,” in Advances in
Neural Information Processing Systems, 2017, pp. 2637—2646.

[8] Z. Liao and R. Couillet, “On the spectrum of random features maps of high dimensional data,” in
International Conference on Machine Learning, 2018, pp. 3069-3077.

[9] D. J. Thouless, P. W. Anderson, and R. G. Palmer, “Solution of’solvable model of a spin glass’,”
Philosophical Magazine, vol. 35, no. 3, pp. 593-601, 1977.

[10] M. Bayati and A. Montanari, “The dynamics of message passing on dense graphs, with applications
to compressed sensing,” IEEE Transactions on Information Theory, vol. 57, no. 2, pp. 764-785,
2011.

[11] M. Bayati, M. Lelarge, A. Montanari et al., “Universality in polytope phase transitions and message
passing algorithms,” The Annals of Applied Probability, vol. 25, no. 2, pp. 753-822, 2015.

[12] T. Tanaka, “Statistical mechanics of CDMA multiuser demodulation,” EPL (Europhysics Letters),
vol. 54, no. 4, p. 540, 2001.

[13] A. M. Tulino, G. Caire, S. Verdu, and S. Shamai, “Support recovery with sparsely sampled free
random matrices,” IEEE Transactions on Information Theory, vol. 59, no. 7, pp. 4243-4271,
2013.

[14] F. Krzakala, M. Mézard, F. Sausset, Y. Sun, and L. Zdeborova, “Probabilistic reconstruction in
compressed sensing: algorithms, phase diagrams, and threshold achieving matrices,” Journal of
Statistical Mechanics: Theory and Ezperiment, vol. 2012, no. 08, p. P08009, 2012.

[15] ——, “Statistical-physics-based reconstruction in compressed sensing,” Physical Review X, vol. 2,
no. 2, p. 021005, 2012.

[16] J. Zhu and D. Baron, “Performance regions in compressed sensing from noisy measurements,” in
2013 47th Annual Conference on Information Sciences and Systems (CISS). ITEEE, 2013, pp.
1-6.

[17] J. Barbier, M. Dia, N. Macris, and F. Krzakala, “The mutual information in random linear
estimation,” in Communication, Control, and Computing (Allerton), 2016 54th Annual Allerton
Conference on, 2016, pp. 625-632.

[18] G. Reeves and H. D. Pfister, “The replica-symmetric prediction for compressed sensing with
gaussian matrices is exact,” in Information Theory (ISIT), 2016 IEEE International Symposium
on, 2016, pp. 665-669.

[19] J. Barbier, F. Krzakala, N. Macris, L. Miolane, and L. Zdeborové, “Optimal errors and phase
transitions in high-dimensional generalized linear models,” Proceedings of the National Academy
of Sciences, vol. 116, no. 12, pp. 5451-5460, 2019.

[20] J. Vila and P. Schniter, “Expectation-maximization bernoulli-gaussian approximate message
passing,” in Signals, Systems and Computers (ASILOMAR), 2011 Conference Record of the
Forty Fifth Asilomar Conference on. IEEE, 2011, pp. 799-803.

[21] A. Montanari, “Graphical models concepts in compressed sensing,” Compressed Sensing: Theory
and Applications, pp. 394-438, 2012.

[22] A. M. Tulino, S. Verdu et al., “Random matrix theory and wireless communications,” Foundations
and Trends® in Communications and Information Theory, vol. 1, no. 1, pp. 1-182, 2004.

[23] Y. Kabashima, T. Wadayama, and T. Tanaka, “A typical reconstruction limit for compressed
sensing based on lp-norm minimization,” J. of Stat. Mech.: Theory and Ezxperiment, vol. 2009,
no. 09, p. L09003, 2009.

[24] K. Takeda, S. Uda, and Y. Kabashima, “Analysis of CDMA systems that are characterized by
eigenvalue spectrum,” EPL (Europhysics Letters), vol. 76, no. 6, p. 1193, 2006.

[25] J. Barbier, N. Macris, A. Maillard, and F. Krzakala, “The mutual information in random linear
estimation beyond i.i.d. matrices,” in 2018 IEEE International Symposium on Information
Theory (ISIT), 2018.

[26] D. L. Donoho, A. Maleki, and A. Montanari, “Message-passing algorithms for compressed sensing,”
Proceedings of the National Academy of Sciences, vol. 106, no. 45, pp. 18 914-18 919, 2009.

[27] K. Takeuchi, “A unified framework of state evolution for message-passing algorithms,” arXiv



Unwversality of Noiseless Linear Estimation 13

preprint arXiw:1901.03041, 2019.

[28] B. Cakmak, O. Winther, and B. H. Fleury, “S-amp: Approximate message passing for general
matrix ensembles,” in 2014 IEEE Information Theory Workshop (ITW 2014). 1EEE, 2014, pp.
192-196.

[29] T. P. Minka, “Expectation propagation for approximate bayesian inference,” in Proceedings of the
Seventeenth Conference on Uncertainty in Artificial Intelligence, ser. UAT’01, 2001, pp. 362-369.

[30] M. Opper and O. Winther, “Expectation consistent approximate inference,” Journal of Machine
Learning Research, vol. 6, p. 2177, 2005.

[31] J. Ma and L. Ping, “Orthogonal amp,” IEEE Access, vol. 5, pp. 2020-2033, 2017.

[32] S. Rangan, P. Schniter, and A. K. Fletcher, “Vector approximate message passing,” in 2017 IEEE
International Symposium on Information Theory (ISIT). 1EEE, 2017, pp. 1588-1592.

[33] A. Manoel, F. Krzakala, M. Mézard, and L. Zdeborov4, “Multi-layer generalized linear estimation,”
in 2017 IEEE International Symposium on Information Theory (ISIT), 2017, pp. 2098-2102.

[34] A. Rahimi and B. Recht, “Random features for large-scale kernel machines,” in Advances in neural
information processing systems, 2008, pp. 1177-1184.



	1 Introduction
	2 A short review of results for i.i.d. random matrices
	2.1 1 recovery
	2.2 Information theoretic optimal reconstruction
	2.3 Hard phase for Bayesian decoders

	3 Random rotationally invariant matrices
	4 Approximate Message Passing
	4.1 AMP
	4.2 Vector-AMP

	5 Structured matrices
	5.1 Tested ensembled of matrices
	5.2 Numerical results
	5.3 Discussion


