
HAL Id: cea-02524847
https://cea.hal.science/cea-02524847v1

Submitted on 30 Mar 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Creep motion of elastic interfaces driven in a disordered
landscape

E E Ferrero, L Foini, T Giamarchi, A B Kolton, A Rosso

To cite this version:
E E Ferrero, L Foini, T Giamarchi, A B Kolton, A Rosso. Creep motion of elastic interfaces driven
in a disordered landscape. Annual Review of Condensed Matter Physics, 2021, 12, pp.111-134.
�10.1146/annurev-conmatphys-031119-050725�. �cea-02524847�

https://cea.hal.science/cea-02524847v1
https://hal.archives-ouvertes.fr


Creep motion of elastic
interfaces driven in a
disordered landscape

E. E. Ferrero,1 L. Foini,2 T. Giamarchi,3 A. B.
Kolton,4 and A. Rosso5

1Instituto de Nanociencia y Nanotecnoloǵıa, Centro Atómico Bariloche,
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Xxxx. Xxx. Xxx. Xxx. YYYY. AA:1–25

https://doi.org/10.1146/((please add

article doi))

Copyright c© YYYY by Annual Reviews.

All rights reserved

Keywords

creep, domain walls, depinning, disordered elastic systems, avalanches,

activated motion

Abstract

The thermally activated creep motion of an elastic interface weakly

driven on a disordered landscape is one of the best examples of glassy

universal dynamics. Its understanding has evolved over the last 30

years thanks to a fruitful interplay between elegant scaling arguments,

sophisticated analytical calculations, efficient optimization algorithms

and creative experiments. In this article, starting from the pioneer ar-

guments, we review the main theoretical and experimental results that

lead to the current physical picture of the creep regime. In particular,

we discuss recent works unveiling the collective nature of such ultra-

slow motion in terms of elementary activated events. We show that

these events control the mean velocity of the interface and cluster into

“creep avalanches” statistically similar to the deterministic avalanches

observed at the depinning critical threshold. The associated spatio-

temporal patterns of activated events have been recently observed in

experiments with magnetic domain walls. The emergent physical pic-

ture is expected to be relevant for a large family of disordered systems

presenting thermally activated dynamics.
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1. Introduction

Our understanding of physics is largely based on idealized problems, the famous ‘spherical

cows’. Yet, the beauty of nature makes use of a much vast complexity. It is well known

nowadays that the presence of impurities and defects messing up with those rounded mam-

mals leads to new emerging physical behavior, not observed in the idealized disorder-free

problems. For example, the equilibration time of glasses becomes so large that it results to

be experimentally inaccessible. Such systems avoid crystallization and basically live forever

out-of-equilibrium (1, 2). Dirty metals display localization and metal insulator transitions,

unseen in perfect crystals (3, 4). Systems of a broadly diverse nature show intermittent

dynamics induced by the presence of disorder (5). Strained amorphous materials (6, 7, 8),

fracture fronts (9, 10, 11), magnetic (12, 13) and ferroelectric domain walls (14, 15), liquid

contacts lines (16, 17), they all share a common phenomenology: when the applied drive is

just enough to induce motion, most of the system remains pinned but large regions move

collectively at high velocity. These reorganizations are called avalanches. Their location

is typically unpredictable and their size distribution display a scale free statistics. Given

the ubiquity of this stick-slip behavior, the study avalanches has occupied a central scene

in non-equilibrium statistical physics, as can be seen in the large literature of sandpile

models (18), directed percolation and cellular automata (19).

The depinning of an elastic interface moving in a disordered medium (20, 21, 22, 23, 24,

25) is one of the paradigmatic examples where avalanches are well understood, thanks to the

analogy with standard equilibrium critical phenomena (22, 26). When the interface is driven

at the force f two phases are generically observed: for f < fc the interface is pinned at zero

temperature and motion is observed only during a transient time, for f > fc the line moves

with a finite steady velocity. At fc the system displays a dynamical phase transition and the

diverging size of avalanches is the outcome of the presence of critical correlations. Below and

above fc the avalanches display a finite cut-off, that diverges approaching fc. We presently

know the statistics of avalanches sizes (27) and durations (28) and their characteristic

shape (29, 30). An important observation is that subsequent depinning avalanches are

uncorrelated in space and time at variance with the avalanche behavior observed in many

2 Ferrero et al.



Figure 1: Left: Sketch of the interface pulled by an external force f . The dark circles are

the impurities that contribute to the pinning energy of the interface. In the random bond

case (center) only neighboring impurities contribute while in the random field case (right)

all the impurities on the left side of the interface contribute.

systems where a ‘main-shock’ is at the origin of a cascade of ‘after-shocks’. The so-called

Omori law and productivity law, central in the geophysics of earthquakes (31), are not

present at the depinning transition 1. Namely all the experimental observations of depinning

avalanches temporally correlated were shown to be related to a finite detection threshold,

created by the limited sensitivity of the measurement apparatus (34).

Nonetheless, genuine aftershocks could be experimentally observed far from the depin-

ning transition, in the so-called creep regime. This regime, which describes the motion of

magnetic domain walls at finite (e.g. room) temperature and low applied fields, corresponds

to an interface pulled by a small force (f � fc) at finite temperature (35, 24, 25). The col-

lective dynamics observed in this case is qualitatively different from the one at the critical

threshold. In both regimes the dynamics is collective and involves large scale reorganiza-

tions. But from the more recent results creep “avalanches” display complex spatio-temporal

patterns similar to the ones of observed in earthquakes.

In this paper we review the main arguments and results of the last thirty years about

creep with particular attention to the recent progress. The paper is organized as follows.

In Sect. 2 we introduce the model, present the dynamical regimes at zero temperature and

discuss the different universality classes. In Sect. 3 we provide the scaling arguments leading

to the creep law, namely the behavior of the steady velocity as a function of the applied

force at finite temperature. The numerical methods are discussed in Sect. 4. The more

recent results valid in the limit of vanishing temperature are presented in Sect. 5. In Sect. 6

we review the creep experiments on domain wall dynamics. Conclusions and perspectives

are given in Sect. 7.

2. Dynamical phase diagram at zero temperature

We consider a d-dimensional interface in a d+ 1 disordered medium. For simplicity we

assume that the local displacement at any time t is described by a single valued function

u(x, t) (see Figure 1 left) and that the dynamics is overdamped. At zero temperature the

1Although depinning-inspired models have been adapted to produce aftershocks by adding terms
of slow relaxation or memory (32, 33)
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equation of motion of the elastic manifold writes:

γ∂tu(x, t) = c∇2u(x, t) + f + Fp(x, u) 1.

where c∇2u(x, t) describes the elastic force due to the surface tension, f is the external

pulling force and γ the microscopic friction. The fluctuations induced by impurities are

encoded in the quenched stochastic term Fp = −∂uVp(x, u), where the energy potential

Vp(x, u) describes the coupling between the manifold and the impurities.

For simplicity we assume the absence of correlations along the x direction 2, while

the correlations of Vp(x, u) along the u direction usually belong to one of two universality

classes: (i) In the Random Bond class (RB) the impurities affect in a symetric way the the

phases on each side of the interface. They thus simply locally attract or repel the interface

(see Figure 1 center). In this case the pinning potential and the pinning force are both

short-ranged correlated. (ii) The Random Field class (RF) describes a disorder coupling

in a different way in the two phases around the interface. Thus the pinning energies are

affected by the impurities inside the entire region delimited by the interface (see Figure

1 right). Then Fp displays short range correlations while the pinning potential Vp(x, u)

displays long-range correlations [Vp(x, u)− Vp(x′, u′)]2 ∝ δ(x−x′)|u−u′|. Here, the overline

denotes average over disorder realizations.

Equation Eq.1, so called quenched Edwards-Wilkinson equation, is a coarse-grained

minimal model governing the dynamics of the interface, at zero temperature for the moment,

at large scales (22, 26, 25). It is a non-linear equation in u that has been extensively studied

by numerical simulation (37), functional renormalization group techniques (FRG) (38, 21,

39) and exact mean-field solutions (40, 41, 42). For the case of a contact line of a liquid

meniscus (43) as well as the crack front of a brittle material (44) the local elastic force is

replaced by a long range one:

c∇2u → c

∫
(u(x′, t)− u(x, t))

|x′ − x|α+d
ddx′ 2.

with α = 1 and d = 1. The qualitative phenomenology of this generalized long range model

is similar to the quenched Edwards-Wilkinson, but the universal properties (as critical

exponents and scaling functions) are different. However, for α ≥ 2 one recovers the short-

range universality class (45).

The solution of this class of equations shows a behavior reminiscent of second order

phase transitions with the velocity playing the role of the order parameter and the force

acting as the control parameter. In particular, below a critical depinning threshold fc the

steady velocity is zero, and it acquires a finite value above only above that threshold. The

velocity vanishes continuously at the critical force as v ' (f − fc)β . At the depinning the

interface appears rough with a width

w2(L) =
1

L

∫ L

0

u2(x)dx−
(

1

L

∫ L

0

u(x)dx

)2

3.

that grows as L2ζdep , with L being the size of the system and ζ the roughness exponent.

Both β and ζdep are universal depinning exponents depending on the dimension d of the

interface and on the range α of the elastic force; but interestingly, not on the disorder

2See Ref.(36) for a discussion of the correlated disorder case.
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Figure 2: Left: Sketch of an avalanche below fc: the applied force f is increased infinites-

imally and a finite portion of the interface is destabilized. The size S of the avalanche

corresponds to the spanned area. Right: Dynamical phase diagram at zero temperature.

At f = fc the velocity and the shape of the interface have a universal scaling behavior, the

dynamics is characterized by large and scale free avalanches. At f = 0 the interface is in

the ground state with a different roughness exponent which depends on the correlation of

the disorder (RB or RF). At very large force the interface flows with a velocity that grows

linearly with the force and the quenched disorder acts as a thermal noise.

type (20, 46). Slightly above fc the dynamics of a point of the interface is highly inter-

mittent: for long times the point is stuck with a vanishing velocity (much smaller than the

average value v) and suddenly starts to move with a high velocity. In equilibrium second

order phase transition the universality arises from the existence of a correlation length that

diverges approaching the critical threshold. For depinning the system is out-of-equilibrium

but the presence of large spatial correlations is manifested by the collective nature of this

intermittent dynamics: at a given time, while many pieces of the interface are at rest, large

and spatially connected portions move fast and coherently.

The presence of large correlations can be detected using a quasistatic protocol below (but

close to) fc. This is shown in Figure 2 left where an interface is at rest at a force f . Upon

increasing infinitesimally the force f → f + δf , an avalanche takes place: a large portion of

the interface advances a finite amount while elsewhere only readjusts infinitesimally (∝ δf).

The avalanches locations cannot be predicted and their sizes (the areas spanned between

two consecutive metastable states) present scale free statistics

P (S) = S−τdepg(S/Sc) . 4.

The Gutenberg-Richter exponent τ is universal as are β and ζdep, g(x) is a function that

decays fast for x ≥ 1 and is constant for x < 1. The characteristic size of the maximal

avalanche increases when f → f−c . In practice, Sc is the clear manifestation of the divergent

correlation length ξ ' |f − fc|−νdep and one expects Sc ' ξd+ζdep ' |f − fc|−νdep(d+ζdep).

Many works have been devoted to describe the dynamics inside an avalanche (47, 33, 34,

28, 48): typically the instability starts well localized at a given point and speads in space

over a distance x(t) ' t1/z up to a time tc ' ξz. For the qEW equation 1 it has been

proven that there are only two independent exponents, e.g. ζdep and z, and the other can

www.annualreviews.org • Creep motion 5



Table 1: Depinning exponents are known numerically with good precision and saturate to

their mean field values for d ≥ 2α. At the depinning RB and RF disorder are in the same

universality class. The numerical values of the roughness exponents ζdep are taken from

(49) for α = 1 and from (50) for α = 2. Those of the dynamical exponent z are taken from

(51) for α = 1 d = 1, from (52) for α = 2 d = 2 and from (37) for α = 1 d = 1.

Depinning Observable d = 1 d = 1 d = 2 Mean Field

exponent α = 2 α = 1 α = 2 d ≥ 2α

z t(L) ∼ Lz 1.43 0.77 1.56 α

ζdep u(x) ∼ xζdep 1.25 0.39 0.75 0

τdep P (S) ∼ S−τdep τdep = 2− α/(d+ ζdep) 3/2

νdep ξ ∼ |f − fc|−νdep νdep = 1/(α− ζdep) α−1

β v ∼ |f − fc|β β = νdep(z − ζdep) 1

be computed by non trivial scaling relations (see Table 1). Note that these relations are

valid in low dimensions, because for d ≥ 2α the value of the exponents saturates at their

mean field value.

The physics is very different in the limits of very small or very high forces. At f = 0

the interface is at equilibrium in the ground state, its roughness is characterized by a very

different (smaller) roughness exponent and the nature of the disorder matters: RF interfaces

are rougher than RB. The ground state energy is an extensive quantity (grows as Ld) but its

sample to sample fluctuations scale as Lθ. The energy exponent θ obeys the scaling relation

θ = 2ζeq+d−α (see Table 2). This relation is a consequence of the statistical tilt symmetry

of the model which assures that the elastic constant c is not renormalized. On the other

hand, assuming that in equilibrium elastic and disorder energy scale in the same way, one has

from Eel[u] = c
2

∫ (u(x′,t)−u(x,t))2

|x′−x|α+d ddxddx′ the relation Eeq ∝ L2ζeqL−(α+d)L2 ∼ L2ζeq+d−α.

Note that for α > d/2, the interface is flat (ζeq = 0) and the energy exponent saturates to

the central limit value θ = d/2.

At f →∞ the quenched pinning reduces to an annealed stochastic noise because in the

comoving frame one has Fp(x, u) = Fp(x, δu + vt) ∼ Fp(x, vt). For short-range correlated

pinning force, the strength of the disorder plays the role of and effective temperature Teff . In

this so-called fast-flow regime the motion is not intermittent, and one recovers the standard

Edwards Wilkinson dynamics with the generalized fractional laplacian of Eq.2 (53). In

particular the dynamical exponent is z = α and the roughness exponent is ζflow = (α−d)/2

for d ≤ α. For larger dimension, the Edwards Wilkinson interface is flat.

For intermediate forces the physics is not fully governed by any of the three characteristic

points described above (f = fc, f = 0 and f → ∞). Therefore, one could wonder if a

completely new scaling description should be introduced. It turns out that it is not the

case, at least for f > fc. The physics of the interface can be described by a crossover

between short length scales, governed by the critical behaviour at f = fc, and large length

scales, governed by the fixed point of f = ∞. Below the depinning threshold, f < fc,

no steady-state can be defined at zero temperature rather than the complete arrest of the

interface. The presence of a finite temperature, discussed in the next section, allows to

investigate a non-trivial stationary dynamical regime (the creep) with finite velocity at

forces in between the equilibrium and the depinning fixed point, and to analyze how this

two fixed points affect the dynamics at different scales.

6 Ferrero et al.



Table 2: Equilibrium exponents for elastic manifold with random bond disorder (RB). For

α = 2 the results in d = 1 are exact. In d = 2 we used the numerical results from (54)

obtained using a maximal flow algorithm. For α = 1 the results are known from FRG

calculations, for RF disorder one expects ζeq = θ = 1/3. Note that θ and ζeq are not

independent, but obey to the following scaling relation θ = 2ζeq + d− α.

Equilibrium Observable d = 1 d = 1 d = 2 Mean Field

exponent α = 2 α = 1 α = 2 d ≥ 2α

θ E(L) ∼ Lθ 1/3 ' 0.2 ' 0.84 d/2

ζeq u(x) ∼ xζeq 2/3 ' 0.2 ' 0.41 0

τeq P (S) ∼ S−τeq τeq = 2− α/(d+ ζeq) 3/2

νeq ξ ∼ f−νeq νeq = 1/(α− ζeq) α−1

2.1. The case of the quenched Kardar-Parisi-Zhang (KPZ) depinning

The quenched Edwards Wilkinson equation and its generalization to long range elasticity

are well studied and understood. In all these models the non-stochastic part of the equation

is linear in the displacement u and one can derive the scaling relation of table 1. However,

in presence of anisotropies in the disorder (55) or in the elastic interaction (57), a non-

linearity becomes relevant for short range elasticity. In this case the equation of motion of

the interface writes:

γ∂tu(x, t) = c∇2u(x, t) + λ(∇u(x, t))2 + f + Fp(x, u) . 5.

The inclusion of this non-linear term affects the physical behavior as f →∞ leading to

the standard Kardar-Parisi-Zhang (KPZ) (58) dynamics rather than the Edwards Wilkin-

son. At depinning, if λf ≥ 0 the motion remains intermittent with large avalanches but

with different exponents (59, 56) characterized by new scaling relations, as shown in Ta-

ble 3. When λf < 0 the interface develops a sawtooth shape with an effective exponent

ζdep = 1 (60). This regime has been recently observed in (61).

Table 3: Exponents of the qKPZ depinning universality class. The numerical values of the

roughness exponent ζdep are taken from (50). For d = 1 the exponents z and νdep are taken

from (55), while for d = 2 from (56). The existence of an upper critical dimension is under

debate.

qKPZ Observable d = 1 d = 2

exponent α = 2 α = 2

z t(L) ∼ Lz 1 1.1

ζdep u(x) ∼ xζdep 0.63 0.45

νdep ξ ∼ |f − fc|−νdep 1.733 1.05

τdep P (S) ∼ S−τdep τdep = 2− (ζdep + 1/νdep)/(d+ ζdep)

β v ∼ |f − fc|β β = νdep(z − ζdep)

www.annualreviews.org • Creep motion 7



Figure 3: Left: Velocity force characteristics at finite temperature. When f is very small

compared to fc and at very small temperature, one observes the creep law ln v ∼ f−µ.

Adapted from (25). Right: First experimental verification of a creep law consistent with

µ = 1/4 in 2d ultra-thin Pt/Co/Pt film at room temperature, taken from (62).

3. Velocity at finite temperature

At finite temperature the interface has a finite steady velocity v, even below fc. The energy

of the interface can be written as the sum of three contributions:

E[u] =

∫ L

0

ddx
[ c

2
(∇u(x))2 + Vp(x, u(x))− fu(x)

]
, 6.

the first term on the RHS being the elastic energy of the interface, the second, the pinning

potential, and the third, the energy associated to the driving force f . We note that the

equation of motion (1) is obtained from γ∂tu(x, t) = −δE[u]/δu(x, t). At finite temperature

one can write the associated Langevin equation:

γ∂tu(x, t) = c∇2u(x, t) + f + Fp(x, u) + η(x, t) , 7.

with 〈η(x, t)η(x′, t′)〉 = 2γTδ(t− t′)δ(x−x′) where the average is over different realizations

of the thermal noise, while the disordered landscape remains fixed.

In presence of a finite drive, the energy Eq. 6 has no lower bound as it is tilted by the force

and in average decreases linearly by increasing u. Yet, the presence of pinning generates

metastable states and barriers up to fc. The activated motion at finite temperature allows

to overcome these barriers yielding a finite steady-state velocity.

The velocity force characteristics is represented in Figure 3 left. At very small force

and finite temperature a creep regime is observed, where the velocity displays a stretched

exponential behavior:

v(f, T ) = v0e
−
(
fT
f

)µ
, 8.

with v0 and fT depending on the temperature and the microscopic parameters, while µ is a

universal exponent. This creep law was verified experimentally in ferromagnetic ultrathin

films with µ ' 1/4 first by Lemerle et al. (62) (see Figure 3 right). Rather strikingly, this

law can span several decades of velocity (from almost walking speed to nails growth speed)

by just varying one decade of the externally applied magnetic field at ambient temperature.

The creep law was subsequently found by many other experiments(63, 64) (see Section 6 for

a brief review), confirming the universality and robustness of several creep properties. Such

universality naturally calls for minimal statistical-physics models on which we will focus.

8 Ferrero et al.



Figure 4: Left: Thermally assisted flux flow. The activated velocity of a single degree

of freedom in a short range disordered potential is linear in the force and exponentially

suppressed by the size of the typical barrier Ep. Right: Creep behavior. The energetic

barrier encountered by an interface diverges when the applied force vanishes. Indeed in

order to find a new metastable state characterized by smaller energy a large portion of

the interface has to reorganize. Scaling arguments predict that the linear size of such

reorganization scales as `opt ∼ f
− 1
α−ζeq .

Eq. 8 has been predicted in (65, 66, 67) and derived within the functional renormal-

ization group technique in (46). The stretched exponential behavior originates from the

collective nature of the low temperature dynamics of these extended objects. For a point-

like system embedded in a short-range disorder potential the response to a small force will

be linear in f . The idea is to consider that the energy landscape is characterized by valleys

at distance ∆u separated by an energetic barrier of typical size Ep. In presence of the

tilt introduced by a finite force f , the energy gap between two consecutive valleys becomes

∼ f∆u (see Figure 4). According to the Arrhenius law, the time to jump from left to right

will be eβ(Ep−f∆u/2), while the time for doing it from right to left would be eβ(Ep+f∆u/2).

Therefore, the velocity can be computed as the thermally assisted flux flow (TAFF (68))

across the barrier:

v ∝ e−β(Ep−f∆u/2) − e−β(Ep+f∆u/2) ' e−βEp∆uf . 9.

We conclude that, in presence of bounded barriers, the velocity will be linear even if with

an exponentially suppressed mobility.

For an extended object the typical barrier grows when the external force vanishes and

their divergence is at the origin of the stretched exponential behavior in Eq. 8. In Figure

5 we show different configurations obtained at different times from the direct integration of

Eq. 7. At short times one observes incoherent oscillations and the configurations differ only

at short length scales. At much larger times the line advances in the direction of the force

with a coherent excitation that involves a large reorganization. This collective motion leads

the system to a local minimum characterized by a lower energy due to the presence of the

force. It is very unlikely that the interface will climb back to the previous configurations

characterized by a higher energy. This new and deeper valley is the starting point of a new

search in the forward direction. At these time scales the dynamics of the line can be seen

as a sequence of metastable states

α1 → α2 → α3 → . . . 10.
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characterized by decreasing energies

Eα1 > Eα2 > Eα3 > . . . 11.

At low temperature for a given α1, α2 is the metastable state with lower energy that can be

reached crossing the minimal barrier. It is possible to show that for an interface of internal

dimension d embedded in a d + 1 dimension the pathway obtained with such a rule is the

optimal one (and thus the one that dominates the statistics of the dynamics) in the low

temperature limit (69).

Figure 5: Configurations at

different times obtained by di-

rect integration of Eq. 7. At

short times one observes in-

coherent oscillations and the

configurations differ only at

short length scales. At much

larger times the line advances

in the direction of the force

with a coherent excitation

that involves a large reorgani-

zation.

The first attempts to evaluate the barriers and the

length scales associated to this coarse grained dynamics

have been done in (65, 66) and in (46) via FRG. The main

assumption in their original derivation is that, during the

dynamical evolution, the energy barriers scale as the en-

ergy fluctuations of the ground state at f = 0. At equi-

librium the fluctuations of the free energy are known to

grow with the system size with a characteristic exponent

θ that depends on the equilibrium roughness exponent via

an exact scaling relation θ = 2ζeq +d−α. Numerical simu-

lations in (70) have shown that the barriers separating two

equilibrium metastable states, that differ on a portion `,

grow as `ψ with an exponent consistent with ψ ' θ. Using

these ideas one can assume that the energy barriers due

to the pinning centers and in absence of tilt grow with the

size of the reorganization

Ep(`) ∼ `θ = `2ζeq+d−α 12.

If the motion is in the forward direction one has to subtract

the energy induced by the tilt

Ef(`) ∼ f u(`) `d = f`ζeq+d 13.

In Figure 4 right we show that the competition between

these two terms (Eqs.12 and 13) yields the characteristic

length scale `opt of the optimal reorganization (and the op-

timal barrier Ep(`opt)) allowing to reach a new metastable

state with a lower energy:

`opt ∼ f
− 1
α−ζeq Ep(`opt) ∼ f

− θ
α−ζeq . 14.

Using the scaling of Ep in Eq. 9 one recovers the creep

law, Eq. 8, and identifies the creep exponent

µ =
θ

α− ζeq
=

2ζeq + d− α
α− ζeq

15.

as an equilibrium exponent. In particular in d = 1, for RB

disorder and short range elasticity one recovers µ = 1/4 as in the experiment (62).

10 Ferrero et al.



Although for the average velocity there is an excellent agreement between the simple

scaling arguments (65, 66) and the more sophisticated FRG analysis (46), the FRG showed

clearly that other lengthscales besides `opt (see Figure 4 right) were necessary to describe

the motion, pointing to a rich dynamics in the creep regime. In particular the FRG showed

that the thermal nucleus led in the dynamics to avalanches at a larger lengthscales than `opt

itself. In order to make a full analysis of the creep regime, a numerical investigation was thus

eminently suitable. This is however a highly non-trivial task considering the exponentially

large time and length scales. We discuss on how to undertake such a study in the next

section.

4. Numerical methods

The direct simulation of the Langevin equation 7 has been performed in (67) and later in

(71). This approach confirms a non-linear behavior for the velocity-force characteristics

but fails in probing the specific scaling of the creep law. In fact, at low temperature

these methods can focus only on the microscopic dynamics describing incoherent and futile

oscillations around local minima (see Figure 5). The forward motion that allows to escape

from these minima occurs at very long time scales that are difficult to reach. In practice

one has to increase the temperature or the force bringing the system beyond the validity of

the creep scaling hypothesis.

A completely different strategy focus on the coarse grained dynamics at the time scales of

the coherent reorganizations that are able to lower the energy. In practice one has to model

the interface as a directed polymer of L monomers at integer positions u(i), i = 1, . . . , L

and with periodic boundary conditions (u(L + 1) = u(1)). The energy of the polymer is

given by:

E =
∑
i

[
(u(i+ 1)− u(i))2 − fu(i) + V (i, u(i))

]
. 16.

To reduce the configuration space it is useful to implement a hard metric constraint such

that

|u(i+ 1)− u(i)| ≤ κ, 17.

with κ ∼ O(1) an integer.

To model RB disorder one can define VRB(i, u) = Ri,u with Ri,u Gaussian random

numbers with zero mean and unit variance, while for RF disorder VRF (i, u) =
∑u
k=0 Ri,k,

such that [VRF (i, j)− VRF (i′, j′)]2 = δi,i′ |j − j′|.
At the coarse grained level the dynamics corresponds to a sequence of polymer positions

determined using a two step algorithm.

• Thermal activation. Starting from any metastable state one has to find the compact

rearrangement that decreases the energy by crossing the minimal barrier among all

possible pathways.

• Deterministic relaxation. After the above activated move, the polymer is not nec-

essarily in a new metastable state and relaxes deterministically with the non local

Monte Carlo elementary moves introduced in (72).

From the computational point of view the most difficult task is in the first step. In prin-

ciple, one fixes a maximal barrier and enumerates all possible pathways that stay below

the maximal allowed energy. If one of them reaches a state with a lower energy the ther-

mal activation step is over, otherwise the maximal barrier is increased and the process is
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repeated. This protocol is exact, it has been implemented in (69), but it has severe compu-

tation limitations at low forces as the minimal barrier is expected to diverge for vanishing

forces. In order to explore the low force regime, a different strategy has been adopted in

(73). Instead of looking to the pathway with the minimal barrier one selects the smallest

rearrangement that decreases the energy. This is done by fixing a window w and computing

the optimal path between two generic points i, i+w of the polymer using the Dijktra’s algo-

rithm adapted to find the minimal energy polymer between two fixed points. The minimal

favorable rearrangement corresponds to the minimal window for which the best path differs

from the polymer configuration. Using this strategy, it was possible not only to increase

of a factor 30 the system size, but, and more importantly, to decrease of a factor 100 the

external drive f , unveiling the genuine creep dynamics.

5. Creep dynamics in the limit of vanishing temperature

Figure 6: Sketch of the selected pathway starting from the metastable state αk. During

‘step one’ of the algorithm one searches for a polymer configuration with an energy smaller

than the one associated to αk by crossing a minimal barrier Ep. During ‘step two’ the

polymer relaxes deterministically to a metastable configuration, no barriers are overcome

at this stage. Adapted from (69).

Here we give a summary of the main results obtained using the coarse grained dynamics

introduced in (69, 73). The output of the algorithm is a sequence of metastable states αk
(k = 1, . . . , n), as shown in Figure 6. In (69) the barrier Ep is the minimal between all

possible pathways, while in (73) the criterium of the minimal barrier has been approximated

with the criterium of the minimal rearrangement which allows to reach much smaller forces

and much larger sizes. The area between two subsequent metastable states (see Figure 6)

defines the size of an activated event. Below this size the dynamics is futile characterized by

incoherent vibrations, while once the new metastable state is reached the backward move

is suppressed.
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5.1. Statistics of the events and clusters

From the scaling arguments of Section 3 one expects that the area of the activated events

is of the order `
d+ζeq
opt with `opt that grows when the force decreases (see Eq. 14). However

the distribution shown in Figure 7 displays a power law scaling analogous to the depinning

one

P (Seve) ∼ S−τeveg(Seve/Sc) . 18.

When the force decreases the cutoff Sc(f) grows and displays the scaling predicted in

Section 3:

Sc ∼ `d+ζeqopt ∼ f−νeq(d+ζeq) . 19.

Here d = 1 and ζeq depends on the nature of the disorder: for RB Sc(f) ∼ f−5/4 while for

RF Sc(f) ∼ f−2.
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Figure 7: Events size distributions P (Seve) for RB (left) and RF (right) at different forces.

Main pannels show collapses by plotting Seve/Sc with Sc(f) = f−νeq(1+ζeq). Insets show

the unscaled distributions. Note that for RB disorder Sc(f) = f−5/4 while for RF disorder

Sc(f) = f−2. The perfect collapse validates the expected creep scaling `opt ∼ f−νeq , given

Sc ∼ `(1+ζeq)
opt . Adapted from (73).

Eq. 18 implies that the typical activated events are much smaller than the one predicted

by scaling arguments. However few very large events dominate the characteristic time scales

of the forward motion. The behavior of the velocity in the creep formula is then determined

by the occurrence of such large reorganizations. Indeed, the barriers associated to the

largest elementary events are expected to scale as Uopt(f) ∼ `θopt ≈ Sc(f)θ/(d+ζeq). Then

the mean velocity in the Arrhenius limit writes as v ∼ exp[−Uopt/T ] ∼ exp[−(fT /f)µ/T ],

with µ = θ/(2 − ζeq), recovering the celebrated creep law of Eq. 8. The main difference

with the previous scaling approaches (65, 66) is that the creep law is not determined by the

‘typical’ events but by the largest ones instead.

To get further inside on the sequence of these events one notes that the exponent τ of

P (Seve) is larger than the one expected in equilibrium (in particular in Figure 7 for RB

τ = 1.17 instead of τeq = 4/5 and for RF τ = 1.59 instead of τeq = 1). The anomaly

observed in the exponent τ is the first fingerprint of a discrepancy between creep events

distributions and other type of avalanches, as the depinning ones, going well beyond the
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Figure 8: Left: Sequence of activated events events in the creep regime. First, in the

activity map, each segment corresponds to an event and displays its longitudinal length.

The full configurations of 300 consecutive metastable states are shown immediately after.

An individual event of size Seve and a cluster of size Sclust are exemplified. Right: Sequence

of deterministic avalanches close to the depinning that appear randomly distributed in space.

Again, both activity map and sequence of configurations are shown. Adapted from (73).

anticipated differences of critical exponents. In Figure 8 it is shown that the typical

sequence of avalanches is randomly located in space while the creep events are organized

in spatio temporal patterns very similar to earthquakes: the large events are the main

shocks that are followed by a cascade of small activated events. The events in the cascade

are the analogous of the aftershocks which are responsible of an excess of small events in

the Gutenberg-Richter exponent as reported also in the analysis of the real earthquakes

(31, 74, 33) 3. Similar patterns for the elementary activated were observed below but near

the depinning threshold (75).

In order to analyze the spatio-temporal patterns one can study the clusters of correlated

events, defined by the activated events enclosed by a circle in Figure 8. All details in the

definition of the clusters are found in (73).

Surprisingly, for both RB and RF disorder, the statistics of the clusters appear as the

one of the depinning avalanches with τdep = 1.11 and the cut-off controlled by the system

size and diverging in the thermodynamic limit (76) (see Figure 9).

5.2. Geometry of the interface

An independent and complementary confirmation of these results comes from the study

of the roughness of the interface at different scales as introduced in (69). In practice one

measures the structure factor S(q) = u(q)u(−q) ∼ q−(d+2ζ) where u(q) is the Fourier

3The Gutenberg-Richter exponent b = 3
2

(τ−1) for the earthquake magnitude distribution should
be smaller than the mean field prediction 3/4, but from seismic records one gets (33, 31) b ' 1
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transform of the position of the interface and the overline represents the average over many

configurations. The insets of Figure 9 shows that there exists a crossover 1/qc ∼ `opt

between two different behavior of the roughness: at small length scales the interface seems

to be at equilibrium, while at large length scales it appears at depinning. This observation

supports the idea that the clusters are depinning-like above a scale `opt. Although such a

result is consistent with the predictions obtained by FRG in (46), it should be stressed that

these clusters with depinning statistics above `opt are formed by several activated events

rather than generated by a single deterministic move.

The coarse grained dynamics studied here is in the limit of vanishing temperature. At

finite temperature the velocity is non-zero and this induces that the fast flow roughness

becomes relevant at the large length scales (see Figure 10). The crossover occurs at a

scale ξ that diverges at vanishing temperature. The FRG proposes a scaling form for ξ at

low temperature and force which depends on f and T (46), but this form was never tested

in numerical simulation or experiments.

Quenched Edwards-Wilkinson (qEW) to quenched KPZ (qKPZ) crossover. The roughness

exponent measured at large scales ζdep ≈ 1.25 (see the inset of Figure 9) is in agreement

with the depinning exponent of the quenched Edwards-Wilkinson universality class.

The qEW depininning exponents are expected when the elastic interactions are harmonic

and short range as in Eq. 6. When the interactions are anharmonic (57, 77) or a metric

constraint as Eq. 17 is present, the depinning is in the quenched KPZ universality class. In

particular the roughness exponent is expected to be ζqKPZ
dep ≈ 0.63 (57, 69). The reasons of

why simulations deep in the creep regime (but with the metric constraint of (17)) apparently

display a crossover from ζeq to ζdep instead of a crossover from ζeq to ζqKPZ
dep are analyzed in

(78). The exponents of the qEW universality class show up at an intermediate regime, but
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Figure 9: Cluster area distribution P (Sclus) for different forces for RB (left) and RF (right)

disorder. A characteristic size Sc(f) separates small clusters that follow equilibrium-like

statistics from big clusters that follow a depinning-like one. This result is confirmed by

the study of the rescaled structure factor S(q) for the same forces (insets): a geometrical

crossover is observed from equilibrium-like roughness at small scales to a depinning-like

roughness at large scales. Adapted from (73).
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at very large scales the qKPZ exponents are recovered, as expected. The crossover between

the two depinning regimes is estimated to be

Lanh ∝ `
ζdep−ζeq
ζdep−1

opt . 20.

For small forces the crossover occurs at very large sizes and it cannot be observed numeri-

cally. However, at larger forces the crossover can be observed as shown in Figure 11 left

for the structure factor and in Figure 11 right for the cluster size statistics.

5.3. Optimal Paths and Barriers

The exact algorithm for simulating the coarse-grained dynamics below the depinning thresh-

old is computationally expensive but has the advantage that gives access to the energy

barriers of the activated motion (69). If the interface moves on a torus (namely, periodic

boudary conditions are assumed both in x and in u) the dynamics reaches a stationary

state independent on the initial condition, with a finite sequence of metastable states αk
separated by barriers Ep(αk → αk+1) that can be computed exactly.

Barriers are important, since the Arrhenius activation formula tell us that at van-

ishing temperatures the steady state forward motion of the elastic interface is fully con-

trolled in a finite sample by the largest barrier U = maxk Ep(αk → αk+1) encountered in

the stationary sequence of metastable states. The dominant configuration αk∗ such that

U = Ep(αk∗ → αk∗+1) is the largest barrier in a given sample plays a role similar to a

ground state configuration in an equilibrium system; in the sense that its attributes tend

to dominate the average properties at low enough temperatures (compared with the gap

between the first and second largest energy barriers).

In Figure 12 left we show the mean value U as a function of the force. As expected

from the creep formula U grows with decreasing the force. Unfortunately, the computational

cost of applying the exact algorithm is too high to verify the asymptotic scaling U ∼ f−µ

when f → 0. When f → fc, the barrier vanishes and the size of the activated event

Figure 10: Left: Dynamical phase diagram proposed in (46) at finite temperature. Below

fc the crossover between equilibrium and depinning occurs at the scale `opt. At finite

temperature there is also a crossover at a length scale ξ between depinning and fast flow.

However ξ diverges in the limit of small temperature. Right: Behavior of the roughness

measured from the structure factor consistent with the dynamical phase diagram. Adapted

from (69).
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Figure 11: Left: Structure factor for the Random Bond case showing the characteristic

lengthscale Lanh which separate the harmonic depinning regime with roughness exponent

ζdep from the anharmonic depinning regime with exponent ζqKPZ
dep , for different high forces

f ∈ {0.2, 0.5, 0.6, 0.7, 0.8, 0.9}, L = 3360. The bottom-left inset shows the raw structure

factor arbitrarily shifted in the vertical direction for different forces for a better display. The

main panel shows the structure factor rescaled with Lanh ∝ (`opt/Lc)7/3, as proposed in Eq.

20 for RB disorder. Straight gray lines are a guide to the eye, showing slopes corresponding

to ζdep ' 1.25 (full line) and ζqKPZ
dep ' 0.65 (dash line). Right: Cluster size distributions

for L = 3360 and f ∈ {0.2, 0.5, 0.8}. The anharmonic crossover has consequences in the

cluster distribution for large cluster sizes. In the depinning regime the power law decay has

a crossover from a regime described by τdep ≈ 1.11 to a regime described by τqKPZ
dep ≈ 1.25

indicated by the two dashed lines. Adapted from (78).

Figure 12: Left: Average over disorder realizations of the dominant barrier, as obtained by

using the exact transition pathways algorithm. Adapted from (69). Right: Rescaled energy

barrier as a function of H/Hdep for different materials and temperatures ranging from 10

to 315 K (25 curves in total), from (79). Black circles correspond to the barriers shown on

the left.

becomes of the order of the Larkin length, the length for which the relative displacements
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are of the order of the interface thickness (or the correlation length of the disorder) (24).

This matches nicely with the behavior expected for the critical configuration at f = fc.

There, the barrier is zero as the configuration is marginally stable and the soft mode is

localized (Anderson-like) with a localization length that can be identified with the Larkin

length (80). In Figure 12 right we show the same quantity obtained in experiments for

different ferromagnetic domain walls.

6. Comparison with Experiments

The creep regime has been studied in different types of domain walls. Paradigmatic exam-

ples are domain walls in thin film ferromagnets with out of plane anisotropy (12), driven by

an external magnetic field or by an external electric current. In these systems, the domain

walls can be directly observed by microscopy techniques based on magneto-optic Kerr effect

(MOKE). This allows to measure the mean velocity as a function of the applied field and

the domain wall geometry. More recently, the analysis of the images has allowed to identify

the sequence of events connecting different metastable domain wall configurations in pres-

ence of a uniform weak drive. In this section we briefly review part of such experimental

literature. For a dedicated review of the experimental literature on magnetic domain walls

up to 2013, including reports of different values of µ and strong pinning issues, see (12).

As a side remark we also mention the possibility to study the creep regime of domain walls

in ferroelectric materials driven by an external electric field and observed with piezoforce

microscopy (14, 15).

6.1. Creep Velocity

The creep law Eq. 8 was first experimentally tested in thin ferromagnetic films

(Pt/Co(0.5nm)/Pt) driven by a magnetic field H by Lemerle et al. (62). They observed a

clear stretched exponential behavior (log v ∝ −H−µ) of the stationary mean velocity as a

function of the applied field. Rather strikingly, such law can span several decades of velocity,

from almost walking speeds to the speed of nails growth. The creep exponent µ was found

to be compatible with the prediction µ = (2ζeq − 1)/(2− ζeq) = 1/4 where the equilibrium

roughness ζeq = 2/3 corresponds to a RB disorder. A confirmation of the validity of the

creep predictions was reported later in a study of Ta/Pt/Co90Fe10(0.3nm)/Pt ferromagnetic

thin film wires (63). In this paper not only Eq. 8 with µ ≈ 1/4 was verified, but it was

also observed a dimensional crossover (d : 1→ 0) in the velocity force characteristic at low

field. Indeed, decreasing the magnetic field the length scale `opt grows as ∼ H−νeq with

νeq = 1/(2 − ζeq) up to the size of the wire’s width where it saturates. As a consequence

the barrier Ep ∼ `θopt saturates inducing the breakdown of the creep law of Eq. 8 when `opt

becomes of the order of the wire width. A dimensional crossover (d : 1 → 0) then takes

place, from creep, Eq. 8, to a TAFF like regime, Eq. 9.

From the creep theory perspective the experiments of Refs. (62, 63) hence provide

crucial information: (i) Although domain walls are actually two dimensional objects in

three dimensional materials, they effectively behave as a simpler one dimensional elastic

object. In other words, the thickness of the magnetic film is smaller than `opt and the

dynamics is governed by energy barriers with θ(d = 1). (ii) Dipolar interactions originated

by stray magnetic fields seem to be unimportant otherwise the nonlocal elasticity would

change the exponent µ. (iii) The disorder is of RB type as for RF disorder one expects
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ζeq = 1, yielding µ = 1. This is particularly relevant, since the nature of the DW pinning

is one of the less controlled properties of the hosting materials.

In particular since the pioneer work by Lemerle et al. (62) there have been several

recent works in thin magnetic systems reporting a consistent creep behavior with a mean

domain wall velocity showing a stretched exponential law with µ = 1/4 at low enough

driving fields (12, 79, 64, 81, 82, 83, 84, 85, 86, 87) and for different temperatures (79). The

energy barrier encountered by the wall has been estimated using the Arrhenius formula

U = −KBT log v/v0 with v0 is a characteristic field independent velocity (64). Its behavior

as a function of H was found to be universal for a large family of materials: U diverges at

small fields as predicted by the creep law, U ∼ H−µ and vanishes at the depinning field as

U ∼ (H−Hd) (see Figure 12 right). Both asymptotic behaviors are well described by the

matching expression U ∼ (1− (Hd/H)µ). Moreover, the behavior experimentally observed

for U as a function of H is in perfect agreement with the value U found in (69) and shown

in Figure 12 left.

Figure 13: Left: Roughness exponents obtained in (62) by fitting the displacement cor-

relator function [u(x+ L)− u(x)]2 ∼ L2ζ with 1µm < L < 15µm and v = 7 nm/s. The

average exponent is ζ ≈ 0.69±0.07. Right: Roughness exponent obtained in (84) by fitting

the detrended width. Different symbols correspond to two domain wall configurations at

v ≈ 2 nm/s. The solid line indicates a qEW scaling 2ζdep ≈ 2.5, the dashed line a qKPZ

scaling 2ζqKPZ
dep = 1.26.

6.2. The Roughness puzzle

Another important test of the creep theory is to study the steady-state roughness of the

interface. From Figure 10 we expect that the width of a domain wall of size L, w(L) (see

Eq. 3) should scale as

w2(L) ∼


L2ζeq if L < `opt

L2ζdep if `opt < L < ξ

L2ζflow if ξ < L .

21.

Lemerle et al. (62) and various following works report ζ ≈ 0.7± 0.1, in agreement with the

equilibrium value ζeq = 2/3 but far from the depinning qEW universality class ζdep = 1.25.
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As we discuss below however, in the light of the current theory for creep and more recent

experiments, the identification of the observed ζ with ζeq = 2/3 can not be justified, calling

for a new reinterpretation of the data.

Recently, Gorchon et al. (79) studied field-driven domain walls in the prototypical ul-

trathin Pt/Co(0.45nm)/Pt ferromagnetic films. By fitting the velocity force character-

istics in the creep and depinning regimes, they determined the critical depinning field

Hdep ≈ 1000 Oe and a characteristic energy scale Tdep ≈ 2000 K at room temperature

(T = 300 K). With these values it is possible to estimate `opt using the assumptions of

weak pinning (88, 89, 90):

`opt = Lc(Hdep/H)νeq

Lc = (kBTdep)/(MsHdepwcδ)

22.

The microscopic Larkin length Lc can be evaluated as a function of the domain wall width

wc, the thickness of the sample δ and the saturation magnetization Ms. All these mi-

cromagnetic parameters are known, yielding Lc ≈ 0.04 µm (see (83) for the analysis for

different materials). Using a spatial resolution of 1 µm, typical for MOKE setups and the

measured Hdep ≈ 1000 Oe one can get the condition H . 0.4 Oe at room temperature to

resolve the typical thermal nucleous size, i.e. `opt > 1 µm. Interestingly, `opt was estimated

in Ta/Pt/Co90Fe10(0.3nm)/Pt wires (63) with a completely different method, observing

finite size effects as the wire width w was reduced. A good scaling `opt ∼ H−νeq with

1-d RB exponents, compatible with ζeq = 2/3, was found. For these samples a field of

H = 16 Oe gives `opt ≈ 0.16 µm, remarkably in good agreement with the above estimate

for the Pt/Co/Pt film. Unfortunately, no direct roughness exponent measuremnts were

reported in Ref (63). The above estimates suggest that the range of length scales used to

fit experimentally the roughness exponent exceed the size of `opt. This implies that the

value ζ ∼ 0.6− 0.7 recorded in (62, 91, 92, 86, 93) can not be interpreted as an equilibrium

exponent and must actually correspond to the depinning regime or to the fast flow regime

of roughness (see Figure 2)

The fast flow exponent predicted for RB or RF systems is ζflow = 1/2 both for RB

or RF systems, quite far from the observed values. For short range elasticity there are

two universality classes at the depinning transition: the qEW with a roughness exponent

ζdep ' 1.25 and the quenched KPZ with ζqKPZ
dep ' 0.63. The first value is consistent with

the roughness exponent obtained in (84) at low velocity, while the last value is remarkably

close to the values at higher velocity reported in (62). A possible way to solve this puzzle is

to invoke a crossover qEW / quenched KPZ already observed in the numerical simulations

in Section 5.2. There, at low drive, the crossover occurs at very large length scales, and the

qEW exponents are measured. At higher drive the quenched KPZ is recovered already at

short distances. To invoke such an identification however, we have to justify the presence of

a KPZ term in the effective DW equation of motion. At least two mechanisms can justify the

presence of a non-linear KPZ term: (i) A kinetic mechanism yields λ ∼ v (58) for interfaces

driven by a pressure (i.e. driven by a force locally normal to the interface). (ii) A quenched

disorder mechanism induced by the anisotropy of the disorder (55) or anharmonicities in

the elasticity (57, 50, 77) yields a velocity independent λ. At the depinning transition only

the second mechanism is relevant but at the moment we lack a microscopic derivation and

the presence of crossovers between qEW and qKPZ is still under debate.

To shed light on this puzzle another important ingredient that should potentially be
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taken into account is the presence of defects such as bubbles and overhangs, at short length-

scales. The effects of these defects on the large scale properties of the domain wall are not

yet well understood. Large scale simulations on the 3-d random field Ising model showed an

anomalous behavior of the roughness of the interface which doesn’t match with the qEW

prediction (94) (see also (95)).

6.3. Creep avalanches

Figure 14: Left: Large reorganizations as obtained by Repain et al. (96) in irradiated

Pt/Co/Pt thin films. The inset shows the successive domain wall configurations in a 92×
28 µm2 field of view. Time interval between two images is ∆t = 200 s. Right: Sequences of

magnetization reversal areas detected deep in the creep regime of Pt/Co/Pt thin films, as

obtained by Grassi et al. (84). In this image time windows of ∆t = 15 s were used.

A direct experimental access to the thermal activated events and clusters would consti-

tute a strong test for the current theoretical picture.

Repain et al. in (96) observed reorganizations in the creep regime whose characteristic

size qualitatively increases when lowering the field. It is not clear if these reorganizations

can be identified with the thermal activated events as they look like chains of concatenated

arcs (see inset in Fig.14) suggesting the presence of strong diluted pinning. More recently,

Grassi et al. (84) performed a detailed and more quantitative analysis in non-irradiated

Pt/Co/Pt films, focusing on regions of the sample where strong pinning was not present.

They observed almost independent thermally activated reorganizations. Their observations

are consistent with the existence of “creep avalanches” with broad size and waiting-time dis-

tributions. It is tempting to identify them with the clusters found in numerical simulations

discussed in Section 5.1.

The quantitative experimental study of creep events remains a big experimental chal-

lenge. The single thermally activated event or “elementary creep event” of Sec 5 appears

to be systematically too small to be resolved by Kerr microscopy, even for velocities of

order of v ∼ 1 nm/s. Partially developed clusters appear to be accessible however, yielding

indirect information about the elementary events that control the mean creep velocity. Un-

derstanding the effect of strong diluted pinning mixed with weak dense pinning is of crucial

importance for a quantitative analysis, since elementary activated events could be equally

associated to the collective rearrangements of typical size `opt or to activated depinning

from strong centers.
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7. Conclusions and Perspectives

Elastic interfaces driven in disordered media represent a dramatic simplification of physical

systems, such as magnetic domain walls in disordered ferromagnets. However, by encom-

passing the key interplay between elasticity and disorder, these models are able to predict

with extraordinary precision some properties which are practically impossible to infer from

more realistic microscopic approaches. An important example is provided by the creep

regime. The theoretical picture is now well understood:

• The velocity versus the force characteristics displays a stretched exponential behavior.

• The geometrical properties of the interface show a crossover from an equilibrium-like

behavior at short length scales to a depinning-like behavior at large length scales.

• The dynamics displays spatio-temporal patterns (“creep avalanches”) made of many

correlated activated events. The statistical properties of these avalanches are de-

scribed by the depinning critical point.

The creep regime is relevant for many physical systems, ranging from fracture fronts, contact

lines or ferroelectric domain walls. The most striking confirmation comes however from

the experiments in ferromagnetic films. There, the stretched exponential behavior of the

velocity is today well established. More recently, the analysis of the MOKE images showed

the fingerprints of an avalanche creep dynamics.

Despite of the success of the elastic interface model many important questions remain

open. First, the statistical properties of the creep avalanches are still an experimental

challenge: the elementary events are too small to be resolved with MOKE microscopy and

the spatio-temporal correlations have not been characterized. Second, there is a mismatch

between the roughness exponents observed in numerical simulations and the ones observed

experimentally. To find a solution for this puzzle is probably one of the biggest current

challenges in the field. We hope these questions will motivate further research on the

universal collective dynamics of elastic interfaces in random media.
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26. Kardar M. 1998. Physics Reports 301:85–112

27. Rosso A, Le Doussal P, Wiese KJ. 2009. Physical Review B 80:144204

28. Kolton AB, Doussal PL, Wiese KJ. 2019. EPL (Europhysics Letters) 127:46001

29. Papanikolaou S, Bohn F, Sommer RL, Durin G, Zapperi S, Sethna JP. 2011. Nature Physics

7:316

30. Laurson L, Illa X, Santucci S, Tallakstad KT, Måløy KJ, Alava MJ. 2013. Nature communica-
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