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Abstract
Layered Neural Networks are a class of models based on neuralcomputation and have been

applied to the measurement of uranium enrichment. The usualmethods consider a limited num-
ber of X- and γ-ray peaks, and require calibrated instrumentation for each sample. Since the
source-detector ensemble geometry conditions criticallydiffer between such measurements, the
spectral region of interest is normally reduce to improve the accuracy of such conventional meth-
ods by focusing on theKαX region where the three elementary components are present. Such
measurements lead to the desired ratio. Experimental data have been used to study the perfor-
mance of neural networks involving a Maximum Likelihood Method. The encoding of the data
by a Neural Network approach is a promising method for the measurement of uranium235U and
238U in infinitely thick samples.

1 Introduction

Neural computing has generated widespread interest and popularity in recent years. The popularity
of this technique is due in part to the analogy between Artificial Neural Networks (ANNs) and bi-
ological neural systems. Many applications of ANNs have been investigated using ANNs, and we
demonstrate their use below in the analysis of photon spectra, from uranium-enrichment measure-
ments to determine the

235U
Utotal

isotope ratio. With modern detector systems, complex and precise
spectral data can be collected that impose a demanding need for efficient interpretational methods.

Traditional non-destructive analysis during for uranium-enrichment measurement involves the
use of severalX− andγ−ray peaks, mainly in the 60 to 200 keV region. Most of these methods
were developed more than 20 years ago, and are based on measurements of the full energy peak at
185.7 keV ([1],[2],[3],[4]). This approach requires calibration of the system and the measurement
conditions to remain constant. Other methods have been developed using severalγ-ray peaks and
calibration with a limited number of peaks [5],[6].

Calibration procedures and matrix effects can be avoided byfocusing the spectra analysis on the
KαX region (which contains the main uranium components) and by using infinitely thick samples.
Such samples sufficiently thick that any further increase does not affect theγ−ray emissions.

The spectral processing of theKαX region involves quantification of the photon emissions
identified with235U , 238U andX-ray fluorescence. This approach requires well-defined datafor
the photons emissions, together with the detector characteristics and geometry.

Under such circomstances a Neural Network would be a useful tool in developing a search pro-
cedure for an "optimum" regression function among a set of acceptable functions. ANNs belong to
evaluation techniques for non-parametric models calledtabula rasa. Like most statistical methods,
ANNs are able to process vast amounts of data and to make predictions that can be surprisingly
accurate. Compared with usual automatic spectra analysis methods, ANNs use full-parallel com-
puting, are simple to implement, are insensitive to outliers and contain nonlinearities. We describe
below the most suitable method based on neural networks to quantify the uranium content.

1printed from proceedings ICRM’95 (Paris)- International Conference on
Radionucleides Measurements- section A - (1996)
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2 Experimental Studies

The efficiency response for the quantification of uranium is difficult to establish due to the dearth of
peaks that can be used. This problem can be minimised by reducing the region of spectral interest
to the relatively complex so that theKαX energy range from 83 to 103 keV (Fig. 1).

0

10000

20000

30000

40000

50000

60000

70000

1750 1800 1850 1900 1950 2000

90 keV(ThKX2)

94,6 keV(UKX2)

92,4 keV

92,8 keV

93,3 keV(ThKX1)

98,4 keV(UKX1)

95,9 keV(PaKX1)

(a)

Figure 1:X- andγ-rays in the spectral analysis of theKαX region.

This region contains enough information to allow the determination of 235U and238U and is
sufficiently small for the efficiency to be defined as constant. It is however very complex to analyze,
due to several interferingX- andγ-rays that can be grouped as follows :

• 235U and daughters : 84.21 keV (γ231Th), 89.95 keV (γ231Th,ThKα2X), 92.28 keV (PaKα2X),
93.35 keV (ThKα1X), 95.86 keV (PaKα1X)

• 238U and daughters : 83.30 keV (γ234Th), 92.28 keV (PaKα2X), 92.38 keV (γ234Th), 92.79
keV (γ234Th), 94.65 keV (UKα2X), 95.86 keV (PaKα1X), 98.43 keV (UKα1X), 99.85
keV (γ234Pa)

• Uranium X-ray fluorescence : 94.65 keV (Kα2X), 98.43 keV(Kα1X).

The spectral processing of this region by the standard approach takes into account three groupings
: to 235U and his daughters,238U and its daughters and the uraniumX-ray fluoresence spectrum.
These spectral emissions are represented by mathematical expressions taking into account the shapes
of theX- (Voigt profile) andγ-ray (Gaussian) peaks, their energies, and emission probabilities. A
conventional least squares method is used such as theMGA-U code [7]. The enrichment is fully
determined by correcting for the presence of234U using the 120.9 keV peak.

Six infinitely-thick uranium oxide standards with different enrichments (from 0.7 to 9.6%) were
counted several times byγ-ray spectrometry to test the neural procedure. These samples were bare
cylindrical pellets with certified enrichments, and their main characteristics are listed in Table 1.

Table 1: Characteristics ofUO2 standards

Diameter(cm)×
Height(cm)

U
O

ratio (g.g−1%)
Stated enrichment
(g.g−1%)

235U
235U+238U

ratio
(g.g−1%)

1,30× 2,00 88,00 0,7112±0,004 0,7112
1,30× 1,90 88,00 1,416±0,001 1,416
0,80× 1,10 88,00 2,785±0,004 2,786
0,80× 1,02 87,96 5,111±0,015 5,112
0,80× 1,00 87,98 6,222±0,018 6,225
0,92× 1,35 87,90 9,548±0,04 9,558
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The Ge(HP) planar detector used in the measurement system had the following specifications :
surface area of 2.00cm2, thickness of 1.00cm, and FWHM of 190 eV at 6 keV and 480 eV at 122
keV. All the measurements were made under the same conditions, i.e. reduction of 0.05 keV per
channel and a distance between the source and detector-window of 1.1 cm. Ten 20000-s. spectra
for each standard pellet were analysed. The234U concentration was relatively low, although a

234U
235U

mass ratio varying from 0,5 to 1,1% (depending on the pellet)was determined byγ-ray spectrometry
using both the 53.2 and the 120.9 keV peaks for234U and the 185.7 keV peak for235U .

65 sets of experimental data were obtained using the concentrations given in Table 1, and shown
in Fig. 2.
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Figure 2: 3D-Representation of theUO2 spectra.

3 Layered Neural Network and Training Method

3.1 Neural Networks

Neural Networks are non-linear black-box model structuresthat can be used with conventional pa-
rameter estimation methods. Their details and basic concepts are clearly described in a paper to be
published [8]. ANN consists of a large number of neurons, i.e. simple linear or nonlinear comput-
ing elements interconnected in complex ways and often organized into layers [9]. The collective or
parallel behaviour of the network is determined by the way inwhich the nodes are connected and
the relative type and strengh (excitory or inhibitory) of the interactions among them [10].

The objective of ANNs is to construct a suitable model which,when applied to a235U enrich-
ment spectrum, produces an output (y) which approximates the exact uranium enrichment ratio. A
connectionist approach is adopted to substitute a neural model and the learning procedure of the
network for classic mathematical algorithms, that are based on the separation of a given curve for
each individual peak and the background.

An example of a multi-layer network is given in Fig. 3.a. The notation convention is such that
the square represents a computational unit into which the input variables (xj) are fed and multiplied
by the respective weights (ωj). The fundamental processing element of an ANN is a node (Fig. 3.b),
which is analogous to neurons in biological systems. Each node has a series of weighted inputs,ωi,
which may be either an external signal or the output from other nodes. The sum of the weighted
inputs is transformed with a linear or a non-linear transformation function (often the logistic function
f(x) = 1

1+e−x ) . This standard Neural Network is calledMulti-LayeredPerceptron (MLP), and is
analogous to the Multivariate Nonlinear Regression.

Transmission of information between units of two neighboring layers is performed through ori-
ented links involving connection weights. The construction is as follows :

• input layer : each input unit receives input-variables, selected through a free parameters re-
duction procedure.

• hidden layer : acts as an array of feature detectors that pick up features without regard to
position. Information is fed to the input units is coded on the hidden layer into an internal
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Figure 3: (a) MLP 3-5-1 with nonlinear threshold and (b) nodein an ANN.

representation so that these units contribute to the input of each second-layer unit. The hidden-
layer is fully-connected to the output.

• output layer : applies a sigmoïd activation function to theweighted sum of the hidden outputs.

The role of the hidden layer is fundamental : a network without hidden units will be unable to
perform the necessary multi-input/multi-output mappings, particularly with non-linear problems.
An input pattern can always be encoded if there are enough hidden units, so that the appropriate
output pattern.

The training data are denoted byχ = (x,yd)N
t=1 whereN is the number of observations

andx is the feature vector corresponding to thetth observation. The expected responsey
d =

(y1, y2, . . . yM ) is related to the inputsx = (x1, x2, . . . xN ) according to

y = φ(x, ω), (1)

whereω are theconnection weights.
The approximation results are non-constructive, and the weights have to be chosen to minimize

some fitting criterion, e.g. least squares :

J(ω) =
1

2

N∑

p

(yd

p − φ(xp, ω))2, (2)

with respect to all the parameters, wherey
d

p is the target for thepth example pattern. The minimiza-
tion has to be done by a numerical search procedure callednonlinear optimization. in which the
parameter estimate is defined as the minimizing argument :

ω̂ = argminωJ(ω) (3)

Most efficient search routines are based on local iteration along a "downhill" direction from the
current point. This method involves an iterative scheme defined by :

ω̂(i+1)
← ω̂(i)

− η ×
∂J

∂ω(i)
(4)

whereω̂(i) is the parameter estimate after iterationi, η(> 0) is the step size, and∂J
∂ω(i) is an estimate

of the gradient ofJ(ωi). The practical difference between this procedure and the statistical approach
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lies in the way the training data are used to dictate the values ofω. There are 2 main features to the
processing : (1) specifying the architecture of a suitable network, (2) training the network to perform
well with reference to a training set.

3.2 Application of ANN

The ANN method has been applied to 65 sets of experimental data : five pure235U spectra, and
ten of each standard (see Table 1). Each spectrum contains 4096 data points. Computations of the
spectra are compared using two regression models:MLP MODEL ( Fig. 3) in which the inputs are
spectral data, andMIXTURES OF EXPERTS MODEL (Fig. 4) [11] where the inputs are the enrichment
values. The network specifications for the networks createdfor the calibration of the simulated data
are listed in Table 2 and they were found to be optimal for low prediction bias [8]. While the choice
of the right architecture is mainly intuitive and implies arbitrary decisions, an attempt to apply ANN
directly fails due to dimensionability. Therefore, the dimension of the input vector has been reduced
dramatically by Principle Components Analysis (PCA), leading to an adequate reduction of weights
from the first layer of the ANN.

Table 2: ANNs specifications and parameters

parameter MLP 6-3-1 MLP 3-5-1 Mixtures of Experts
Type of input spectral data spectral data enrichment value
input nodes 6 3 1
hidden node 3 5 1050
output node 1 1 210
learning rule BP BP Maximum Likelihood
input layer transfer function linear linear linear
hidden layer transfer function sigmoïdal sigmoïdal sigmoïdal
output layer transfer function linear linear exponential
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Figure 4: Mixtures of Experts model.

TheMLP MODEL (Fig. 3), consists of an input layer of 6 or 3 units leading up through one layer
of hidden units to an output layer of a single unit that corresponds to the desired enrichment. This
network represents a poor parametrized model, but the training dataset (x;y(d))65t=1 is small. The
network is initialized with random weights and trained, andthe bias is evaluated for each pattern(Eq.
2). This quantity decreases rapidly at the beginning (Fig. 5), and the training is stopped to avoid
overfitting when the network reaches a minimum error. After 32 000 successful training passes, the
bias rate ranged from -0.05 to 0.04% for the 6-3-1 net (from -0.031 to 0.061% for the 3-5-1 net).
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Figure 5: Sum of squares of bias on the training set for MLP architectures

Each item in theMIXTURES OF EXPERTS MODEL (MEX) is associated with a vector of measurable
features, and a targetyd which represents the enrichment. The network receives the input x and
creates the output vectory as a predicted value of the unknownyd. This model consists of 210
independent, fully-connected networks (Fig. 4) : one expert is assigned to a channel of theKαX

region, each expert being an observer trying to identify a "signal" due to radioactive decay in a large
amount of noise. The variance of each count is proportional to the enrichment of a particular sample
and the background level of the particular observation. A cooperation-competition procedure driven
by a supervisor between the expert outputs leads to the choice of the most appropriate concentration.

Let y1,y2, . . . denote the output vectors of the experts, andg1, g2, . . . represent the supervisor
output units. The output of the entire architecture isy =

∑210
i=1 giyi, and the supervisor decides

whether experti is applicable or not ; the winning expert is the network with the smallest bias
(yd
− yi).

4 Discussion

The initial base included only 65 data sets, and we wished to keep a maximum of these example
data for the training base. Redundances in the data-set enrichments present one major advantage :
since we measure more than one response for each case, information from all of the responses can
be combined to provide more precise parameter estimations and determine a more realistic model.

The measure of system performance in MEX-simulations is thecross-entropyError (according
to the poissonnian error model) and the Mean Square Error with MLP. Bias rates obtained by MEX
are benchmarked against the results obtained by MLP in Table3 and Figs. 5 and 7. Fig. 5 shows
the learning curves (i.e. learning performances) for the two MLP networks using a random training
procedure. The horizontal axis gives the number of iterations and the vertical axis represents the
Mean Square Errors value (MSE). Clearly, the 6-3-1 network learned significantly faster than the
3-5-1 network : this difference can be explained by the information gain of the 6-input network
compared with the 3-input network.

Fig. 6 shows the predicted enrichment values (one for each ofthe 210 experts) when a5.111%−
235U spectrum is analysed by the MEX model. The final predicted values of the simulations are
listed in the right-hand column of Table 3. Compared with theMLP, the MEX method is shown to be
extremely reliable : for example, the bias between the predicted and calculated 2.785% enrichments
ranges from 2.784 to 2.790%. As noted above, after 32 000 successful training passes, the greatest
bias occurs for 5.111 and 6.122% enrichments ; This relativelack of precision can be ascribed to the
small size of the training dataset.

Fig. 7 compares the results of the three models, in wich the bias between the predicted and
desired enrichments is plotted for each of the 65 samples. The results suggest that the strong dis-
persion of the bias when using MLP is significantly attenuated when MEX is applied, although this
observation must be moderated for the samples with the 6.122-enrichment ratio. A comparison of
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Table 3: Ranges of calculated Enrichments with MLP and MEX

Declared enrichment MLP 3-5-1 MLP 6-3-1 MEXs
0.711% 0.691-0.723 0.700-0.720 0.702-0.710
1.416% 1.394-1.426 1.406-1.435 1.406-1.416
2.785% 2.732-2.822 2.762-2.799 2.784-2.790
5.111% 5.066-5.148 5.089-5.132 5.112-5.136
6.122% 6.105-6.162 6.117-6.133 6.088-6.112
9.548% 9.531-9.570 9.541-9.550 9.542-9.552

the absolute bias curves suggest that, the Mixtures of Experts gives the most robust performance.
The modular approach has three main advantages over the MLP models : able to model the

observed behavior, learns faster than a global model and therepresentation is easier to interpret.
Modular architecture takes advantage of task decomposition, but the learner must decide which
variables to allocate to the networks. No hypothesis is madewith respect to any aspect of the spectra,
including the extent of spectra resolution, nature of the features being analysed, and whether you
select the most significative areas of the spectrum only (MLPmodels) or a significant fraction of the
full spectrum (MEX model). At the same time, the method is highly specific because the ANN must
learn to recognise representative spectra of the radionucleides to be identified. Furthermore, other
tests have revealed to us that ANNs are resistant to noise, although this observation may arise from
the extremely small size of the training dataset.

5 Conclusions

The simulation studies on realUO2 photon spectra have shown that Neural Networks can be very
effective in predicting235U enrichment. This approach appears to be useful when a fast response is
required with reasonnable accuracy, no spectral hypothesis are made, and no definitive mathemat-
ical model can be assigneda priori. The resistance to noise is certainly one of the most powerful
characteristics of this type of analysis. A suitable network with connections and weighting functions
could be easily implemented using commercial data processing hardware. The good results show
that this type of analysis can be considered the most appropriate method for the production of quan-
titative estimates of the concentrations of radionucleidic components in mixtures under well-defined
experimental conditions : the resulting data may be better than those obtained when using stan-
dard methods. The Neural Network method of analysis has alsobeen successfully used inX−ray
fluorescence studies [12].

There is no single learning procedure which is appropriate for all tasks. It is of fundamental
importance that the special requirements of each task are analyzed and that appropriate training al-
gorithms are developed for families of tasks. The efficient use of neural networks requires extremely
careful analysis of the problem, an analysis which can oftenbe neglicted by impatient users.
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