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Abstract

Layered Neural Networks are a class of models based on nearaputation and have been
applied to the measurement of uranium enrichment. The usetiods consider a limited num-
ber of X- and ~-ray peaks, and require calibrated instrumentation for eaample. Since the
source-detector ensemble geometry conditions critiadiffer between such measurements, the
spectral region of interest is normally reduce to improve sitcuracy of such conventional meth-
ods by focusing on th&, X region where the three elementary components are preseich S
measurements lead to the desired ratio. Experimental dat@ been used to study the perfor-
mance of neural networks involving a Maximum Likelihoodhddt The encoding of the data
by a Neural Network approach is a promising method for thesugament of uraniurd® U and
23877 in infinitely thick samples.

1 Introduction

Neural computing has generated widespread interest andaydyp in recent years. The popularity
of this technique is due in part to the analogy between Aidifideural Networks (ANNs) and bi-
ological neural systems. Many applications of ANNs havenhiaeestigated using ANNs, and we
demonstrate their use below in the analysis of photon speftbm uranium-enrichment measure-
ments to determine thg— isotope ratio. With modern detector systems, complex andige
spectral data can be collécted that i impose a demanding aeefli€ient interpretational methods.

Traditional non-destructive analysis during for uranienrichment measurement involves the
use of severak — and~y—ray peaks, mainly in the 60 to 200 keV region. Most of thesehats
were developed more than 20 years ago, and are based on ereasts of the full energy peak at
185.7 keV ([1],[2],[3].[4]). This approach requires cahition of the system and the measurement
conditions to remain constant. Other methods have beerap®ausing severaj-ray peaks and
calibration with a limited number of peaks [5],[6].

Calibration procedures and matrix effects can be avoiddddysing the spectra analysis on the
K, X region (which contains the main uranium components) andsingunfinitely thick samples.
Such samples sufficiently thick that any further increasesdwt affect the.—ray emissions.

The spectral processing of th€, X region involves quantification of the photon emissions
identified with23°U, 238U and X -ray fluorescence. This approach requires well-defined fdata
the photons emissions, together with the detector charstite and geometry.

Under such circomstances a Neural Network would be a ussduirt developing a search pro-
cedure for an "optimum" regression function among a set cépi@mble functions. ANNs belong to
evaluation techniques for non-parametric models calédla rasa Like most statistical methods,
ANNSs are able to process vast amounts of data and to makecpoedi that can be surprisingly
accurate. Compared with usual automatic spectra analyefisars, ANNs use full-parallel com-
puting, are simple to implement, are insensitive to owtlemd contain nonlinearities. We describe
below the most suitable method based on neural networksaiotifyithe uranium content.

lprinted from proceedings | CRM 95 (Paris)- International Conference on
Radi onucl ei des Measurenents- section A - (1996)



2 Experimental Studies

The efficiency response for the quantification of uraniuniffécdlt to establish due to the dearth of
peaks that can be used. This problem can be minimised byirggtihe region of spectral interest
to the relatively complex so that thfé,, X energy range from 83 to 103 keV (Fig. 1).
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Figure 1: X - and~-rays in the spectral analysis of tt&, X region.

This region contains enough information to allow the deteation of 22U and?*®U and is
sufficiently small for the efficiency to be defined as consthri$ however very complex to analyze,
due to several interfering - and~-rays that can be grouped as follows :

+ 235U and daughters : 84.21 key{' Th), 89.95keV ¢3! Th, ThK,, X), 92.28 keV PaK ., X),
93.35 keV (ChK ., X), 95.86 keV PaK ., X)

« 2381 and daughters : 83.30 keW4Th), 92.28 keV PaK,, X), 92.38 keV (234Th), 92.79
keV (7234Th), 94.65 keV UK,,X), 95.86 keV PaK,, X), 98.43 keV K., X), 99.85
keV (y?34Pa)

 Uranium X-ray fluorescence : 94.65 ke¥({, X), 98.43 keV{E ,, X).

The spectral processing of this region by the standard agprtakes into account three groupings
: to 235U and his daughterg?®U and its daughters and the uraniutiray fluoresence spectrum.
These spectral emissions are represented by mathematicassions taking into account the shapes
of the X - (Voigt profile) andy-ray (Gaussian) peaks, their energies, and emission pititieab A
conventional least squares method is used such asdke code [7]. The enrichment is fully
determined by correcting for the presencé¥d using the 120.9 keV peak.

Six infinitely-thick uranium oxide standards with diffeteamrichments (from 0.7 to 9.6%) were
counted several times byray spectrometry to test the neural procedure. These sammre bare
cylindrical pellets with certified enrichments, and thealimcharacteristics are listed in Table 1.

Table 1: Characteristics @fO, standards

Diameter(cm)x U o . Stated enrichment U ratio

Height(cm) o ratio (g.g~ ") (9-971%) (g_ngl%)U
1,30x 2,00 88,00 0,71124+0,004 0,7112
1,30x 1,90 88,00 1,416+0,001 1,416
0,80x 1,10 88,00 2,7854+0,004 2,786
0,80x 1,02 87,96 5,111+0,015 5112
0,80x 1,00 87,98 6,222+0,018 6,225
0,92« 1,35 87,90 9,548+0,04 9,558




The Ge(HP) planar detector used in the measurement sysigthééollowing specifications :
surface area of 2.0@n?, thickness of 1.0@m, and FWHM of 190 eV at 6 keV and 480 eV at 122
keV. All the measurements were made under the same corgliii@n reduction of 0.05 keV per
channel and a distance between the source and detectoowvifdl.1 cm. Ten 20000-s. spectra
for each standard pellet were analysed. TH& concentration was relatively low, aIthougﬁ%%
mass ratio varying from 0,5 to 1,1% (depending on the pele) determined by-ray spectrometry
using both the 53.2 and the 120.9 keV peaks#6t/ and the 185.7 keV peak f@f°U.

65 sets of experimental data were obtained using the camtiemis given in Table 1, and shown
in Fig. 2.

Intensity
70000 —
60000
50000
40000 {
30000 [+
20000
10000

(o]

Figure 2: 3D-Representation of th&), spectra.

3 Layered Neural Network and Training Method

3.1 Neural Networks

Neural Networks are non-linear black-box model structtinas can be used with conventional pa-
rameter estimation methods. Their details and basic caseep clearly described in a paper to be
published [8]. ANN consists of a large number of neurons,simple linear or nonlinear comput-
ing elements interconnected in complex ways and often azgdrinto layers [9]. The collective or
parallel behaviour of the network is determined by the wawirich the nodes are connected and
the relative type and strengh (excitory or inhibitory) of fhteractions among them [10].

The objective of ANNSs is to construct a suitable model whighen applied to &3°U enrich-
ment spectrum, produces an outpylf Yhich approximates the exact uranium enrichment ratio. A
connectionist approach is adopted to substitute a neurdehand the learning procedure of the
network for classic mathematical algorithms, that are thasethe separation of a given curve for
each individual peak and the background.

An example of a multi-layer network is given in Fig. 3.a. Theation convention is such that
the square represents a computational unit into which et wariables;) are fed and multiplied
by the respective weights(). The fundamental processing element of an ANN is a node &,
which is analogous to neurons in biological systems. Eacle has a series of weighted inputs,
which may be either an external signal or the output from otteeles. The sum of the weighted
inputs is transformed with a linear or a non-linear transfation function (often the logistic function
flz) = ﬁ) . This standard Neural Network is callétulti-LayeredPerceptron KLP), and is
analogous to the Multivariate Nonlinear Regression.

Transmission of information between units of two neighbgiayers is performed through ori-
ented links involving connection weights. The construti®as follows :

* input layer : each input unit receives input-variable¢ected through a free parameters re-
duction procedure.

« hidden layer : acts as an array of feature detectors thatypcfeatures without regard to
position. Information is fed to the input units is coded oa tiidden layer into an internal
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representation so that these units contribute to the inf@aah second-layer unit. The hidden-
layer is fully-connected to the output.

 outputlayer: applies a sigmoid activation function towedghted sum of the hidden outputs.

The role of the hidden layer is fundamental : a network withisidden units will be unable to
perform the necessary multi-input/multi-output mappingarticularly with non-linear problems.
An input pattern can always be encoded if there are enougtehidnits, so that the appropriate
output pattern.

The training data are denoted y = (x,y9)Y., where N is the number of observations
andx is the feature vector corresponding to e observation. The expected response =
(y1,v2, ... ynm) is related to the inputs = (x1, 22, ... 2x) according to

y = ¢(X7w)7 (1)

wherew are theconnection weights
The approximation results are non-constructive, and thightg have to be chosen to minimize
some fitting criterion, e.g. least squares :

N

Z(yzl - ¢(Xpaw))2a (2)

p

with respect to all the parameters, Whgﬁeis the target for theth example pattern. The minimiza-
tion has to be done by a numerical search procedure catletinear optimization in which the
parameter estimate is defined as the minimizing argument :

@ = argmin,J(w) 3)

Most efficient search routines are based on local iterationgaa "downhill" direction from the
current point. This method involves an iterative schemengefby :

oJ
X 300 )

whered () is the parameter estimate after iteration(> 0) is the step size, angl; is an estimate
of the gradient of/ (w?). The practical difference between this procedure and #tisttal approach

GUTD — o) _ g



lies in the way the training data are used to dictate the gadfie. There are 2 main features to the
processing : (1) specifying the architecture of a suitablevork, (2) training the network to perform
well with reference to a training set.

3.2 Application of ANN

The ANN method has been applied to 65 sets of experimental:dfite pure?3°U spectra, and
ten of each standard (see Table 1). Each spectrum conteiisdéla points. Computations of the
spectra are compared using two regression modelsmoper ( Fig. 3) in which the inputs are
spectral data, andixTures orF ExPERTS MODEL (Fig. 4) [11] where the inputs are the enrichment
values. The network specifications for the networks creftethe calibration of the simulated data
are listed in Table 2 and they were found to be optimal for loedjction bias [8]. While the choice
of the right architecture is mainly intuitive and impliebdrary decisions, an attempt to apply ANN
directly fails due to dimensionability. Therefore, the @insion of the input vector has been reduced
dramatically by Principle Components Analysis (PCA), iegdo an adequate reduction of weights
from the first layer of the ANN.

Table 2: ANNs specifications and parameters

parameter MLP 6-3-1 MLP 3-5-1 Mixtures of Experts
Type of input spectral data spectral data enrichment value
input nodes 6 3 1
hidden node 3 5 1050
output node 1 1 210
learning rule BP BP Maximum Likelihood
input layer transfer function linear linear linear
hidden layer transfer function sigmoidal sigmoidal sigtabi
output layer transfer function linear linear exponential
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Figure 4: Mixtures of Experts model.

Thewmrp mopEL (Fig. 3), consists of an input layer of 6 or 3 units leading iptgh one layer
of hidden units to an output layer of a single unit that cqrogsls to the desired enrichment. This
network represents a poor parametrized model, but therpaatasetx; y(@))52, is small. The
network is initialized with random weights and trained, #8melbias is evaluated for each pattern(Eqg.
2). This quantity decreases rapidly at the beginning (Fig.aBd the training is stopped to avoid
overfitting when the network reaches a minimum error. Af2080 successful training passes, the
bias rate ranged from -0.05 to 0.04% for the 6-3-1 net (frof830 to 0.061% for the 3-5-1 net).
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Figure 5: Sum of squares of bias on the training set for MLIiggctures

Each item in thevixTURES OF EXPERTS MODEL (MEX) iS associated with a vector of measurable
features, and a targgd which represents the enrichment. The network receivesnat k and
creates the output vectgr as a predicted value of the unknowfl. This model consists of 210
independent, fully-connected networks (Fig. 4) : one eiseassigned to a channel of té, X
region, each expert being an observer trying to identifyigna" due to radioactive decay in a large
amount of noise. The variance of each count is proportianidle enrichment of a particular sample
and the background level of the particular observation. @pewation-competition procedure driven
by a supervisor between the expert outputs leads to theehbtbe most appropriate concentration.

Lety,ya2, ... denote the output vectors of the experts, andj., . . . represent the supervisor
output units. The output of the entire architecturgris= 21 g;y3, and the supervisor decides
whether expert is applicable or not ; the winning expert is the network witle smallest bias

(y? =)

4 Discussion

The initial base included only 65 data sets, and we wishecépla maximum of these example
data for the training base. Redundances in the data-sehements present one major advantage :
since we measure more than one response for each case,atiforiftom all of the responses can
be combined to provide more precise parameter estimatimhdetermine a more realistic model.

The measure of system performance in MEX-simulations ixtbgs-entropyError (according
to the poissonnian error model) and the Mean Square ErrorMiitP. Bias rates obtained by MEX
are benchmarked against the results obtained by MLP in Tabled Figs. 5 and 7. Fig. 5 shows
the learning curves (i.e. learning performances) for the MiLP networks using a random training
procedure. The horizontal axis gives the number of itenatiand the vertical axis represents the
Mean Square Errors value (MSE). Clearly, the 6-3-1 netwesgkried significantly faster than the
3-5-1 network : this difference can be explained by the imfation gain of the 6-input network
compared with the 3-input network.

Fig. 6 shows the predicted enrichment values (one for eattied10 experts) whenmal11% —
250 spectrum is analysed by the MEX model. The final predictedesbf the simulations are
listed in the right-hand column of Table 3. Compared withMhieP, the MEX method is shown to be
extremely reliable : for example, the bias between the ptediand calculated 2.785% enrichments
ranges from 2.784 to 2.790%. As noted above, after 32 00Gessfid training passes, the greatest
bias occurs for 5.111 and 6.122% enrichments ; This rel&oleof precision can be ascribed to the
small size of the training dataset.

Fig. 7 compares the results of the three models, in wich the between the predicted and
desired enrichments is plotted for each of the 65 samples.r@sults suggest that the strong dis-
persion of the bias when using MLP is significantly attendatben MEX is applied, although this
observation must be moderated for the samples with the &h#zhment ratio. A comparison of
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Table 3: Ranges of calculated Enrichments with MLP and MEX

Declared enrichment MLP 3-5-1 MLP 6-3-1 MEXs
0.711% 0.691-0.723 0.700-0.720 0.702-0.710
1.416% 1.394-1.426 1.406-1.435 1.406-1.416
2.785% 2.732-2.822 2.762-2.799 2.784-2.790
5.111% 5.066-5.148 5.089-5.132 5.112-5.136
6.122% 6.105-6.162 6.117-6.133 6.088-6.112
9.548% 9.531-9.570 9.541-9.550 9.542-9.552

the absolute bias curves suggest that, the Mixtures of Exg&es the most robust performance.

The modular approach has three main advantages over the Midelsn: able to model the
observed behavior, learns faster than a global model andefiresentation is easier to interpret.
Modular architecture takes advantage of task decompaositiot the learner must decide which
variables to allocate to the networks. No hypothesis is mattherespect to any aspect of the spectra,
including the extent of spectra resolution, nature of theuees being analysed, and whether you
select the most significative areas of the spectrum only (Mhogels) or a significant fraction of the
full spectrum (MEX model). At the same time, the method idhhigpecific because the ANN must
learn to recognise representative spectra of the radieidad to be identified. Furthermore, other
tests have revealed to us that ANNSs are resistant to notbeuagih this observation may arise from
the extremely small size of the training dataset.

5 Conclusions

The simulation studies on re&lO, photon spectra have shown that Neural Networks can be very
effective in predicting>*U enrichment. This approach appears to be useful when a fmimee is
required with reasonnable accuracy, no spectral hypalaesimade, and no definitive mathemat-
ical model can be assignedpriori. The resistance to noise is certainly one of the most powerfu
characteristics of this type of analysis. A suitable netweith connections and weighting functions
could be easily implemented using commercial data proegdsardware. The good results show
that this type of analysis can be considered the most apptepnethod for the production of quan-
titative estimates of the concentrations of radionuctstdimponents in mixtures under well-defined
experimental conditions : the resulting data may be beftan those obtained when using stan-
dard methods. The Neural Network method of analysis hastalea successfully used XKi—ray
fluorescence studies [12].

There is no single learning procedure which is appropriateafl tasks. It is of fundamental
importance that the special requirements of each task algzad and that appropriate training al-
gorithms are developed for families of tasks. The efficiesgt of neural networks requires extremely
careful analysis of the problem, an analysis which can diteneglicted by impatient users.
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