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ABSTRACT

Context. Planet-forming disks are fundamental objects that are thought to be inherited from large scale rotation through the conserva-
tion of angular momentum during the collapse of a prestellar dense core.
Aims. We investigate the possibility for a protostellar disk to be formed from a motionless dense core that contains nonaxisymmetric
density fluctuations. The rotation is thus generated locally by the asymmetry of the collapse.
Methods. We study the evolution of the angular momentum in a nonaxisymmetric collapse of a dense core from an analytical point
of view. To test the theory, we performed three-dimensional simulations of a collapsing prestellar dense core using adaptative mesh
refinement. We started from a nonaxisymmetrical situation, considering a dense core with random density perturbations that follow a
turbulence spectrum. We analyzed the emerging disk by comparing the angular momentum it contains with the one expected from our
analytic development. We studied the velocity gradients at different scales in the simulation as is done with observations.
Results. We show that the angular momentum in the frame of a stellar object, which is not located at the center of mass of the core,
is not conserved due to inertial forces. Our simulations of such nonaxisymmetrical collapse quickly produce accretion disks at the
small scales in the core. The analysis of the kinematics at different scales in the simulated core reveals projected velocity gradients of
amplitudes similar to the ones observed in protostellar cores and for which directions vary, sometimes even reversing when small and
large scales are compared. These complex kinematics patterns appear in recent observations and could be a discriminating feature with
models where rotation is inherited from large scales. Our results from simulations without initial rotation are more consistent with these
recent observations than when solid-body rotation is initially imprinted. Lastly, we show that the disks that formed in this scenario
of nonaxisymmetrical gravitational collapse grow to reach sizes larger than those that are observed, and then fragment. We show that
including a magnetic field in these simulations reduces the size of the outcoming disks and it prevents them from fragmenting, as is
shown by previous studies.
Conclusions. We show that in a nonaxisymmetrical collapse, the formation of a disk can be induced by small perturbations of the
initial density field in the core, even in the absence of global large-scale rotation of the core. In this scenario, large disks are generic
features that are natural consequences of the hydrodynamical fluid interactions and self-gravity. Since recent observations have shown
that most disks are significantly smaller and have a size of a few tens of astronomical units, our study suggests that magnetic braking
is the most likely explanation. The kinematics of our model are consistent with typically observed values of velocity gradients and
specific angular momentum in protostellar cores. These results open a new avenue in which our understanding of the early phases of
disk formation can be explored since they suggest that a fraction of the protostellar disks could be the product of nonaxisymmetrical
collapse, rather than directly resulting from the conservation of preexisting large scale angular momentum in rotating cores.

Key words. methods: numerical – protoplanetary disks – ISM: clouds – ISM: kinematics and dynamics – turbulence –
stars: formation

1. Introduction

Protoplanetary disks are rotationally supported structures that
form around young stars (Li et al. 2014; Dutrey et al. 2014; Testi
et al. 2014). It is currently believed that the rotation of these disks
is inherited from large scales of a few thousands of astronomical
units, which is the scale of the parent prestellar dense core.

During the gravitational collapse of the core, if the angular
momentum is conserved, the infalling material naturally forms
a rotation dominated structure at the small scale of a hundred
astronomical units. The rotation of the disk is thus inherited from
the large scale angular momentum, and as a consequence, the
velocity gradients at large and small scales are correlated. This
scenario is extensively studied in the literature and, in particu-
lar, the majority of collapse calculations start with a prescribed

rotation profile (see for example Bate 1998; Matsumoto &
Hanawa 2003; Machida et al. 2005; Hennebelle & Fromang
2008). While reasonable, this scenario leads to the question
regarding from which scale the angular momentum is inherited
and how exactly this happens. Another frequent configuration
consists in a cloud with a turbulent velocity field that is imprinted
initially (Bate et al. 2003; Goodwin et al. 2004a,b; Dib et al.
2010; Hennebelle et al. 2016; Matsumoto et al. 2017; Gray et al.
2018; Kuznetsova et al. 2019). In this context as well, it has
been found that disks form quickly. The usual interpretation is
that the angular momentum is initially present because of the
turbulence.

Observationally, the kinematics of the dense gas in both
prestellar cores and protostellar envelopes has been studied
thanks to the analysis of molecular line emission that has shown
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to harbor velocity gradients at scales of 0.01–0.1 pc, which is
interpreted as the rotation of cores (see the early works by
Goodman et al. 1993; Ohashi et al. 1997; Chen et al. 2007). The
values of specific angular momentum measured inside protostel-
lar envelopes at scales of a few thousand astronomical units are
on average one order of magnitude lower than the ones observed
at larger scales in starless structures (a few 10−4 km s−1 pc, see
for example Belloche 2013; Yen et al. 2015a; Pineda et al. 2019
and the very recent work by Gaudel et al. 2020). More puzzling,
however, are the observations showing that some protostellar
cores show an apparent disorganization or even a reversal in their
velocity pattern, which is sometimes interpreted as the contri-
bution of infall motions to the projected velocity field (Tobin
et al. 2011; Harsono et al. 2014) or counter rotation (Tobin et al.
2018; Takakuwa et al. 2018). Recent high dynamic range obser-
vations of a sample of 12 low-mass Class 0 protostars (in the
CALYPSO sample) by Gaudel et al. (2020) exhibit systematic
dispersion of velocity gradients between disks’ and envelopes’
scales, which puts the presence of large scale rotation into ques-
tion. Moreover, observations of the specific angular momentum
contained in T Tauri disks suggest that values are larger, by about
one order of magnitude, than the specific angular momentum
observed in the low-mass protostellar cores at scales of a few
thousands astronomical units (Simon et al. 2000; Kurtovic et al.
2018; Pérez et al. 2018). These observations are hence difficult
to reconcile with a simple picture of a rotating-infalling proto-
stellar envelope for which conservation of angular momentum
naturally produces a rotationally-supported disk in its center, and
new models should be developed to reproduce these observations
as well.

To tackle these issues, we investigate a scenario that also
leads to the formation of a protostellar disk. Similar ideas as
the ones exposed in this paper have already been developed in
the context of spiral galaxy formation by Hoyle (1949), Sciama
(1955), and Peebles (1969). In the context of protoplanetary disk
formation, this paper is meant to be exploratory, so we used
minimal physical ingredients. Our simulations are thus purely
hydrodynamics, except in Sect. 4.6. We start from an extreme
scenario, considering a perfectly motionless dense core with
nonaxisymmetric density perturbations. The gravitational col-
lapse of this core is thus nonaxisymmetric. We show analytically
and numerically that this nonaxisymmetry leads to the possibil-
ity of generating rotation locally. As we start from an extreme
motionless scenario, without considering velocity fluctuations,
our model is not fully physical. Despite this fact, we then ana-
lyze the velocity gradients in our simulations and we reproduce
the observational results from Gaudel et al. (2020) about the
dispersion of velocity gradients. We show that the specific angu-
lar momentum step coincides with the results from Belloche
(2013) and Gaudel et al. (2020). Our model thus exhibits good
agreement with observational constraints on kinematics.

The plan of the paper is as follows. In the second section
we present the theory that motivates our study, in the third sec-
tion we present the numerical methods we used to investigate
our problem, in the fourth and fifth sections we present the
results obtained and discuss them, and the sixth section is the
conclusion.

2. Theory

2.1. The axisymmetrical case

In the introduction, we evoke the conservation of angular
momentum during the collapse of a dense core, leading to the

formation of a disk. However, the angular momentum is correctly
defined only in a given frame and with respect to a given point.
We consider the angular momentum calculated in the simulation
box frame R, with respect to the center O of this box1. It is com-
puted as follows, with the summation referring to the different
cells i of the simulation, mi and Mi are the mass and position of
each cell i, respectively:

σO|R =
∑

i

miOMi × dOMi

dt
. (1)

This momentum is conserved in virtue of the fundamental law
of evolution of the angular momentum in a Galilean frame:

d σO|R
dt

=
∑

i

MO (Fext→i) = 0. (2)

Since no external force is applied on the system, the angular
momentum σO|R is conserved. In a simple axisymmetrical case,
this momentum coincides with what we call “the momentum of
the disk”. Indeed, during the collapse, a disk forms in the center
of the box, thus σO|R represents the angular momentum com-
puted in the frame of the disk, in relation to the center of the
disk.

2.2. Nonaxisymmetric configuration

In a nonaxisymmetrical case, σO|R is no longer a relevant quan-
tity to study the disk that formed in the simulation. In fact, to
measure the angular momentum in protostellar disks, the ref-
erence point with respect to which the angular momentum is
computed is the center of the disk, and the velocities considered
are those in relation to the center of the disk, which are deduced
from those projected on the line of sight (Belloche 2013). In
the axisymmetrical case, the center of the formed disk remains
motionless at the center of the simulation box. In the nonax-
isymmetrical case, the disk is not formed at the center of the
simulation box and it has a proper motion. We thus have to con-
sider the angular momentum computed in the frame R′ of the
disk, in relation to the center C of the disk:

σC|R′ =
∑

i

miCMi × dCMi

dt
. (3)

We show in Appendix A.1 that for an initial condition where
all cells are at rest in R, σC|R′ can be expressed as:

σC|R′ = MGC × dGC
dt

= MGC × dOC
dt

(4)

where M =
∑
i

mi is the total mass of the system, and G is the cen-

ter of mass2. Furthermore, the time derivative of Eq. (4) gives:

d σC|R′
dt

= MGC × d2GC
dt2 . (5)

This equation can be interpreted as the variation of the angu-
lar momentum σC|R′ due to the torques of inertial force that
apply to each cell of the simulation in the non-Galilean frame R′
(see Appendix A.2 for detailed development). Since the center

1 In fact, in relation to any fixed point of the simulation.
2 The center of mass remains motionless in the frame R of the simu-
lation box due to the lack of external force. See Appendix A.1 for more
details.
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of mass G and the center of the formed disk C do not coincide,
the angular momentum σC|R′ is not expected to be conserved.

The point C is the accretion center of the system, and the
matter collapses toward it. Since the angular momentum (in R′
with respect to C) of this matter does not vanish, a rotationally
supported structure forms around C.

In the axisymmetrical case, the three points C, G, and O
coincide as well as the two frames R and R′. Thus σC|R′ = σO|R
and the angular momentum is therefore conserved through the
temporal evolution of the structure. In the nonaxisymmetrical
case, Eq. (4) shows that the angular momentum σC|R′ is equal to
the angular momentum of the point C to which the whole simula-
tion mass has been allocated, which was computed with respect
to G in the frame R of the simulation box. Equation (5) shows
that this angular momentum is not conserved in the general case.
Here, we consider the extreme case where every cell is initially
at rest in the simulation frame R. We note that σC|R′ is thus ini-
tially null. As matter is falling toward the accretion center C, the
transversal velocity of this matter has to increase for the angular
momentum to grow. As a result, a rotational structure naturally
forms around the accretion center without violating the conser-
vation of the angular momentum in the simulation frame R.
These ideas are similar to those of Peebles (1969) who showed
that the angular momentum of spiral galaxies can be understood
as a consequence of tidal torques acting during the gravitational
collapse.

In our context of protostellar disk formation and before ana-
lyzing our simulations in Sect. 4.2 in detail, we can provide an
order of magnitude for the expected momentum σC |R′ . The sim-
ulations show that the distance between the points C and G is
about a thousand astronomical units, which roughly corresponds
to a tenth of the dense core radius, about 875 AU. The total mass
inside the simulation is 2.5 M�. If we take the order of magnitude
of the sound speed, 0.2 km s−1, for

∣∣∣∣∣∣ dGC
dt

∣∣∣∣∣∣, we obtain:

σC |R′ ∼ 2.5 M� × 103 AU × 0.2 km s−1 ∼ 1047 kg m2 s−1.

As is seen later, this order of magnitude is consistent with the
values given by our analyses (see Fig. 3) and stresses good
agreement with Belloche (2013) and Gaudel et al. (2020).

3. Numerical methods

3.1. Code and numerical parameters

To study whether the asymmetry of a gravitational collapse can
be sufficient to form a prestellar disk, we carried out a set
of hydrodynamics simulations with RAMSES (Teyssier 2002).
This numerical Eulerian code uses the adaptative mesh refine-
ment (AMR) technique to enhance resolution locally, where it is
needed, on a Cartesian mesh. Our refinement criterion is based
on Jeans length, such that each local Jeans length is described
by at least 40 cells. We used ten levels of AMR, from 8 to 18,
leading to a spatial resolution that goes from 270 to 0.26 AU.

3.2. Initial conditions

We consider a 3D cubic box with sides of 0.33 pc (about
70 000 AU). In the middle of the box, we placed a 2.5 M� sphere
of gas that is the quarter of the box length in diameter and that
has a flat radial density profile. This sphere acts as a model for
the prestellar dense core. The rest of the box was filled with
an envelop of gas whose density is constant and equal to a
thousandth of the mean density of the gas sphere. Initially all
velocities were set to zero so that the angular momentum in the

box frame with respect to any motionless point was initially null.
The alpha parameter, thermal over gravitational energy ratio, of
the gas sphere is 0.35. We used a barotropic equation of state for
the gas:

T = T0

1 +

(
ρ

ρc

)γ−1 (6)

in which T and ρ are the temperature and density of the gas,
T0 = 10 K, ρc = 10−13 g cm−3 is the critical density, and γ = 1.4
is the adiabatic index.

Since we wanted to study the effect of asymmetrical grav-
itational collapse, we broke the symmetry of the cloud by
introducing random density perturbations in the dense core.
To roughly mimic the physics of the interstellar gas, we based
the probability distribution of the density perturbations on that
of the turbulence (see for example Chapter 3 of Hennebelle &
Falgarone 2012 for a review on turbulence in interstellar clouds).
In the Fourier space, the perturbations spectrum matches with
the power spectrum of the velocity for Kolmogorov turbulence3,
and the phases are randomly chosen. We can thus write the
density of each cell i of the prestellar core as:

di = d0(1 + A.δρi) (7)

where d0 represents the mean density of the prestellar core, δρi
is the value of the perturbation at the considered point, and
A ∈ [0, 1] is an internal parameter allowing us to control the
amplitude of the perturbation. To ensure that the density stays
positive everywhere, it is necessary that δρi ∈ ]−1, +∞[. To
satisfy this condition, we modified all of the values of δρi < −1
to bring them to −0.99.

To assure that the mean density of the prestellar core stay
constant when varying A, we renormalized4 the value of di
defined in Eq. (7) in each cell, so:

〈di〉i = d0 (8)

where the operator 〈.〉i represents the mean value over all of the
cells i of the prestellar dense core. As the mean value of δρi is not
null, this operation warrants that we can change the amplitude
of the perturbations without modifying the mean value of the
density.

Lastly, we call the “perturbation level” the ratio between the
root mean square value of the perturbations and the mean value
of the density, which we express as the following percentage:

ε = 100

√〈
(di − d0)2

〉
i

d0
. (9)

An example of initial conditions, including density perturba-
tions constructed as described above, is presented in Fig. 1. We
stress that unlike most of the previous dense core collapse stud-
ies, which attempted to form and study disks, we have no rotation
or turbulence initially.

3.3. Choice of a time reference

Since the free-fall time depends on the density, it can slightly
vary from a level of perturbation to another. As the grid is

3 Pv(k) ∝ k−11/3.
4 The operation is simply : di,af = di,be

d0
〈di,be〉i with be and af referring to

before and after the renormalization operation, which naturally leads to
〈di,af〉i = d0.
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Fig. 1. Column density map along the y-axis of the simulation box, rep-
resenting the initial conditions with a perturbation level of 50%. These
perturbations in density are based on a Kolmogorov turbulent spec-
trum. Initially all of the velocities are set to zero so that the angular
momentum in the box frame is initially null.

initially coarse, the first time-steps of the simulation are much
larger than the ones just after the collapse occured, correspond-
ing to a higher level of refinement. These two effects lead to a
bad description in time at the beginning of the simulation. We
were thus compelled to choose a time reference from which
the ages were computed. We based our time reference on the
maximum density inside the simulation box. For time reference,
we used the moment when the maximum density reaches
10−13 g cm−3. It corresponds to the limit density beyond which
the compression of the dense gas changes from isothermal to
adiabatic (Larson 1969).

4. Results

4.1. Formation of a disk

The main result of this study is, as we expected from our theoreti-
cal development, the formation of a disk within our simulations.
We show a sequence of images of the disk growing with time
in the simulation with 50% of density perturbations in Fig. 2.
This disk is very similar to those found in many studies (Bate
et al. 2003; Matsumoto & Hanawa 2003; Goodwin et al. 2004a;
Hennebelle & Fromang 2008; Gray et al. 2018). As can be seen,
it presents prominent spiral arms that transport angular momen-
tum. To verify that this structure is a disk, we made sure to check
that the structure that formed is rotationally supported. In order
to keep our model as simple as possible, we did not use sink par-
ticles (Krumholz et al. 2004; Bleuler & Teyssier 2014) in our
simulations that are presented in this section and analyzed in
Sects. 4.2 and 4.3. As a consequence, the dense gas accumu-
lates in the disk, making it self-gravitating. Thus, the azimuthal
velocity profile shows substantial deviations from the Keplerian
profile, but the structure is still rotationally supported, as the
azimuthal velocity is much larger than the radial velocity inside
the disk, typically by a factor of 50. However, we also show that
disks form in simulations with sink particles (see Sect. 4.4) and
we verified that the structures that formed match the Keplerian
profile very well.

We ran a set of simulations that only differ by their perturba-
tion level, from 10 to 60%. In all of these simulations, we observe

the formation of a protostellar disk. The comparison with theory,
which is studied in detail for the simulation with 50% of density
perturbations in Sect. 4.2, gives clues to assess the trust level of
our simulations; for the other levels of perturbation, the results
are visible in Appendix B. For the simulations over 20% of per-
turbations, the comparison shows that the formation of the disk
can be trusted. For the simulations with low perturbation level,
which is typically less than 20%, the agreement with theory is
not as good and the numerical errors are higher.

4.2. Comparison with theory

We show in Sect. 2.2 that a rotational structure should emerge
from an asymmetric gravitational collapse, even without any
initial motion. To compare this theoretical prediction with our
simulations, we refer to Eqs. (3) and (4). The first expression
simply expresses the numerical way to compute the total angular
momentum in the simulation (in the frame R′, with respect to
the point C, what we will not mention anymore). We name this
quantity σnum. The second one is the analytic expression of the
same quantity. It is equivalent to the first one if a set of hypothesis
is verified (see Appendix A.1), which is the case in our simula-
tions. We refer to this quantity as σan. The equality of the two
quantities σnum and σan ensures that we are observing the phys-
ical phenomenon we described. The differences could be due to
numerical errors. Initially, we numerically verified the equality:

σnum =
∑

i

miCMi ∧ dCMi

dt
?
= MGC ∧ dOC

dt
= σan.

(10)

The comparison between σnum and σan is represented on the
top panel of Fig. 3 for the simulation with 50% of perturba-
tions. The slight relative difference, which is roughly less than
2%, shows that the equality of these two quantities is numer-
ically consistent. Furthermore, the relative difference does not
maintain the same sign during the temporal evolution. It shows
that this difference is not a systematic error for one of the two
quantities.

We note |∆σ| = |σnum − σan|. To be entirely sure that the disk
that formed in our simulation is not a numerical artifact, we ver-
ified that the angular momentum it contains is larger than |∆σ|.
In the most pessimistic scenario where |∆σ| would be entirely
concentrated in the disk, this ensures that |∆σ| is not sufficient in
explaining the presence of the disk. The angular momentum con-
tained in the disk is computed as σnum, but in the restricted area
of the simulation corresponding to the disk5. The comparison
between |∆σ| and the angular momentum in the disk is visible
on the bottom panel of Fig. 3. As |∆σ| is smaller than the angular
momentum in the disk, and as ∆σ switches signs over the tem-
poral evolution of the system, it confirms that the formed disk
is the result of the physics described in Sect. 2.2. For the other
levels of perturbations, the results are presented in Appendix B.

4.3. Analysis of velocity gradients

In this section we analyze our simulations from an observa-
tional point of view to highlight whether or not our model
succeeds in describing some features of real observations. Since
the rotation emerges from the asymmetrical gravitational col-
lapse in our model, it is not straightforwardly inherited from
5 To belong to the disk, we consider that a cell has to have a high
enough density and an azimuthal velocity that is larger than twice the
radial velocity.
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Fig. 2. Column density in the simulation with 50% of perturbations at three different times. Left: face-on projection. Right: edge-on projection. The
rotation axis zd of the disk does not overlap with any simulation box axis. We see that a disk forms and grows in spite of the fact that the angular
momentum is null initially.

larger scales. This lack of connection between disk and envelope
scales leads to important features. We computed three quantities
at different scales that are accessible to observations: the direc-
tion and amplitude of velocity gradients and the specific angular
momentum.

To compute the direction and amplitude of the velocity gra-
dients at a scale R, we followed the method of Goodman et al.
(1993). We considered a cube with a side of 2R around the disk,
aligned with the three main axis of the simulation. We consid-
ered these three main axis as our lines of sight to compute maps
of projected velocities that are weighted by density with a depth
of 2R. Then we fit these maps with a solid-body rotation profile:

vLSR = v0 + a∆x + b∆y (11)

in which v0 is the systemic velocity of our object and ∆x and
∆y are the vertical and horizontal dimensions of our map of

projected velocities. The magnitude of the velocity gradient is
thus Ω =

√
a2 + b2 and its direction is given by θ = arctan a

b .
The specific angular momentum at a scale R is thus given by
j = R2Ω.

In an axisymmetrical model with initial rotation, velocity
gradients at small and large scales are perfectly aligned. In our
model, due to the lack of initial rotation, it is interesting to see
how velocity gradients at different scales are organized. The
top panel of Fig. 4 shows the angular variation of velocity gra-
dients according to the probed scale, relative to the velocity
gradient at the disk scale. Velocity gradients in the disk and in
the envelope are misaligned. For the y projection, the velocity
gradient in the envelope is even reversed in comparison to the
small scale gradient; whereas for the x projection, the velocity
gradients make a complete turn from the disk to the envelope
scales.
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Fig. 3. Analysis of the simulation with 50% of perturbations. Top: σnum
(see Eq. (3)) in blue, and the relative difference between σnum and σan
(see Eq. (4)) in purple for each output. Bottom: momentum in the disk
(in violet) compared to the absolute value of the difference between
σnum and σan (in beige). We see that ∆σ

σ
is less than 2.5% and that this

difference is smaller than the momentum contained in the disk. The disk
thus results in the physics we describe in Sect. 2.2.

The amplitude of the velocity gradient at different scales is
shown in the mid panel of Fig. 4. In the three projections, the
amplitude profile from a hundred astronomical units roughly fol-
lows a power law of Ω ∝ R−1.8. It shows that these gradients are
detectable in real observations since the choice of appropriate
molecular lines allows one to detect gradient amplitude about
1 km s−1 pc−1 in a solar type star-forming core at a distance of
200 pc.

Once we computed the amplitude of these gradients, we were
able to determine the specific angular momentum. The evolution
of this quantity at different scales is presented on the bottom
panel of Fig. 4. This figure shows that for the three main lines of
sight of the simulation, the specific angular momentum does not
vary so much through the different scales, except for some peaks
that correlate to abrupt changes in angular direction of veloc-
ity gradients. Furthermore, this quantity is roughly constant in
the envelope, at the scale of a hundred and thousands of astro-
nomical units, with a mean value of about 3 × 10−4 km s−1 pc.
In the discussion section, we compare the projected kinematics
properties of our modeled core to observations in protostellar
envelopes.
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Fig. 4. Analysis of velocity gradients at different scales in the simulation
with 50% of perturbations. In each panel, the three curves correspond
to the three main projections of the simulation. Top: angular direction
of velocity gradients. The origin of the angular direction corresponds
to the direction of the disk scale gradient. Mid: amplitude of velocity
gradients. Bottom: specific angular momentum as computed in analyses
of observations.

To determine the origin of these velocity gradients, we com-
puted the maps of projected velocities along the line of sight
by only taking the radial part of the velocity into account with
respect to the disk center, on the one hand, and the orthoradial
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Fig. 5. Angle between radial and total velocity gradients (∆θrad, solid
lines) and between orthoradial and total velocity gradients (∆θorthorad,
dashed lines), for different levels of perturbation ε. For the simulation
with 10 and 20% of perturbations, the total gradient directions follow
the ones of the radial velocity gradients over all scales. For the simu-
lations with more perturbations, ∆θrad is higher for scales larger than
400 AU and ∆θorthorad gets lower.

part of the velocity on the other hand. We computed the velocity
gradient directions over the different scales for the radial and
orthoradial part of the velocity as we did for the total veloc-
ity gradients. We compared the angular deviation between the
total velocity gradient and the radial velocity gradient, ∆θrad, and
between the total velocity gradient and the orthoradial velocity
gradient, ∆θorthorad. The results for different levels of perturba-
tion that were taken at similar times are visible in Fig. 5. For the
simulation with 10% of perturbations, the total and radial veloc-
ity gradient directions are very close over the probed scales6.
As the level of perturbation increases, the radial and total gra-
dients begin to misalign, and |∆θrad| increases, for scales larger
than 400 AU; whereas the orthoradial and total gradient direc-
tions get closer, and |∆θorthorad| decreases. These results depend
on the line of sight chosen to compute the projected velocity, and
to a lesser extent on the evolutionary stage of the simulations.
What is a common feature is that for the small perturbation lev-
els, the radial and total velocity gradient directions are very close
over all of the probed scales.

4.4. Size of formed disks

We had not introduced any sink particle in our simulations until
now. As a consequence, the gas cannot collapses at a smaller
scale than our maximal resolution. This compels the gas to accu-
mulate in the center of the disk; this causes the disk to become
autogravitating and leads to the apparition of the spiral arms,
which are visible in Fig. 2, to transport angular momentum inside
the disk. As this accumulation of dense gas in the disk is not
physical – the gas should continue to collapse to the stellar scales
– it is not correct to compute the disk radius in these simula-
tions. To handle this issue, we ran simulations with sink particles
that were introduced when the density reaches the threshold of
1014 cm−3. The disk grows, but it is less massive than before,

6 The smallest scale probed is 50 AU, which is a bit more than the disk
radius at the moment the gradients were computed.

and it matches the Keplerian profile very well. At some point,
the disk fragments. Figure 6 shows the disk at an advanced
stage, shortly before fragmentation. The disk reaches a radius
of about 125 AU, which is large in comparison to observed disk
radii (Maury et al. 2010, 2019; Tobin et al. 2015; Segura-Cox
et al. 2016). To compute the disk radius in our simulations, the
first step was to isolate what belongs to the disk. This selec-
tion was based on density and velocity criterion: a cell has to
be dense enough and the orthoradial component of its velocity
has to be at least two times larger than the radial one. Once this
selection was completed, we looked at the maximum distance
projected in the equatorial plane for a large number of angular
sectors. The mean of these distances over the different angular
sectors was taken as the disk radius. Figure 7 shows the evo-
lution of the disk radius over time for several simulations. The
three green curves show the radius of the disk in the simula-
tions with a 10, 20, and 50% perturbation level. It appears that
in these three simulations, the disks grow to reach radii around
200 AU in 20–30 kyr, before fragmenting. The disk size does not
depend much on the perturbation level in the range of 10–50%
of perturbations.

4.5. Effects of initial rotation

To see the influence of initial rotation on our results, we ran
four simulations in which a solid-body rotation velocity profile
is imprinted in the initial conditions. We ran simulations with
ε = 20 and 50%, and for each of these perturbation levels, we
chose two rotation levels7 β = 0.25 and 1%. The evolution of
the disk radius in these simulations is visible in Fig. 7, which
is represented by the four curves from red to yellow. For these
four simulations, the evolution of the radius is similar. These
disk grows rapidly before fragmenting between 2 and 7 kyr at
a radius around 100 AU. This evolution is different from those
of the disks in the simulation without initial rotation, in partic-
ular, because the disk forms earlier and grows faster. Whereas,
when there is no rotation, it takes about 15 kyr to get a disk that
is bigger than 100 AU; this only takes 3–5 kyr when rotation is
included.

In these simulations, we conducted the same analysis of
velocity gradients as in Sect. 4.3. The results for the simulation
with ε = 50% and β = 1% are shown in Figs. 8 and 9. In the top
panel of Fig. 8, we see that the angular deviations of the veloc-
ity gradients are less pronounced than in the case without initial
rotation. Only the face-on projection exhibits large deviations,
but the amplitude Ω in this projection is much smaller than in
the two edge-on projections by a factor of around 10. The result-
ing specific angular momentum is visible in the bottom panel of
Fig. 8. For the two edge-on projections, it exhibits values that
are larger than in the case without initial rotation and also those
that were deduced from observations. We also see that j ∝ Rα

with α ' 0.5 while observations revealed that in the inner few
thousands of astronomical units, α ' 0 (see Belloche 2013 for
a review). The most recent observations by Gaudel et al. (2020)
reveal α ' 0.3 ± 0.3 under 1600 AU.

Here, we also computed the decomposition of the velocity in
its radial and orthoradial components and conducted the same
analysis of velocity gradients with these two components. The
results are visible in Fig. 9 for the full velocity gradients, the
radial velocity gradients, and orthoradial velocity gradients in
the simulation with ε = 50% and β = 1% for the edge-on pro-
jection 1. The top panel shows the angle using the same arbitrary
7 β is the ratio of rotational over gravitational energy.
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Fig. 6. Column density in the simulation with 50% of perturbations and with sink particle (red circle). Left: face-on projection. Right: edge-on
projection. At this time, the sink particle has a mass of 0.64 M�. The disk is large with a radius of nearly 125 AU.
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Fig. 7. Temporal evolution of disk size for a set of simulations. The three
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profile, with different levels of perturbations and rotation β. The curves
stop when the disk fragments. All of the plotted curves were smoothed
by a sliding median.

reference for the three gradients, whereas the middle and bottom
panels show the amplitude and the specific angular momentum
deduced from these gradients, respectively. The joint analysis
of the top and middle panel shows that for R < 102 AU and
R > 3 × 103 AU, the orthoradial velocity gradient is dominant
since it is much larger in amplitude than the radial one and
it is much closer to the full velocity gradient in angular posi-
tion than the radial one is. This means that at a large scale, the
full velocity gradient traces the rotation of the envelope. For
102 AU < R < 3 × 103 AU, the contribution of the radial and
orhoradial component are of the same order of magnitude in
amplitude, which leads to the full velocity gradients to be mis-
aligned with both the radial and orthoradial gradients at those
scales. In the face-on projection, the effect of the rotation is

nearly invisible and the results are similar to the ones presented
Sect. 4.3. The results are comparable for the four simulations
introduced in this section and, therefore, the other cases are not
shown for conciseness.

4.6. Effects of the magnetic field

For the sake of completeness, we finally added a magnetic field8

in our simulations to see its effects on the formed disk. The
magnetic field is treated under the ideal MHD approximation.
In these simulations, a disk still forms even in the absence of
initial large scale rotation. Figure 10 shows the appearance of
the disk at the same time as in Fig. 6. Clearly the two disks are
qualitatively very different. In the purely hydrodynamics case,
the disk is big and massive, with sharp edges, whereas in the
MHD case, the disk is smaller and less massive (smaller column
density).

In the MHD case, it is hard to define a disk’s radius prop-
erly. In fact, when looking at Fig. 10, the disk is buried in a
very filamentary structure that has the same order of magnitude
in column density as the outer part of the disk. At some places
these filaments verify the velocity criteria set out in Sect. 4.4 to
define the belonging to the disk. Here, we are confronted with a
definition problem. In hydrodynamics simulations, the disk has
sharp edges and it is clear as to what belongs to the disk or not
by the naked eye. In MHD simulations, it is really hard to do
so and, therefore, we do not attempt to present a quantitative
comparison here.

In spite of this difficulty, the comparison between Figs. 6
and 10 reveals that in the MHD case, the disk is much smaller.
For the MHD simulation without initial rotation, the disk stops
growing after 20 kyr and does not fragment like in the hydro-
dynamics case. For the simulation with initial rotation, the disk
grows more rapidly but it also stabilizes at the same size between
40 to 70 AU depending on the definition of what belongs to the
disk. We believe that this is the signature of the magnetic braking
that occurs in magnetized disk.
8 We set a magnetization of µ = 0.3. For the MHD simulation with
initial rotation, the axis of the magnetic field and the axis of rotation are
aligned.
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Fig. 8. Analysis of velocity gradients at different scales in the simulation
with 50% of perturbations and β = 1%. On each panel, the three curves
correspond to two edge-on and one face-on projections. Top: angular
direction of velocity gradients. The origin of the angular direction cor-
responds to the direction of the disk scale gradient. Middle: amplitude
of velocity gradients. Bottom: specific angular momentum as computed
in observation analysis.

5. Discussion

From a very simple model, we show that the angular momentum
computed in the frame of the disk in relation to the center of the

102 103 104

Radius (AU)

−25

0

25

50

75

100

125

150

A
n

g
le

(°
)

Time = 4299 years ε = 50% β = 1%

Full velocity

Radial component

Orthoradial component

Fig. 9. Analysis of velocity gradients for the full velocity (in purple
dashdotted), the radial component (in blue dashed), and the orthoradial
component (pink dotted). These quantities are represented at different
scales in the simulation with 50% of perturbations and β = 1%, for the
edge-on projection 1. Top: angular direction of velocity gradients. The
origin of the angular direction corresponds to the direction of the disk
scale gradient. Middle: amplitude of velocity gradients. Bottom: specific
angular momentum as computed in observation analysis.

disk is not a conserved quantity. This is due to the non-Galilean
nature of the frame, which is provoked by the nonaxisymmetrical
gravitational collapse. This collapse leads to the formation of
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Fig. 10. Column density in the MHD simulation with 50% of perturbations and with sink particle (red circle), at the same time than Fig. 6. Left:
face-on projection. Right: edge-on projection. At this time, the sink particle has a mass of 0.40 M�. It is hard to define a proper disk radius in this
case.

a protostellar disk. In our system, the angular momentum that
forms the disk is not a mere conservation of preexisting large
scale angular momentum. The rotation can be generated locally
by the asymmetry of the collapse. This result is in agreement
with the early work by Peebles (1969). This mechanism, which is
responsible for the formation of spiral galaxies, is thus also able
to account for the formation of protostellar disks. Thereby, the
conservation of a preexisting angular momentum at large scales
might not be the only mechanism responsible for protostellar
disk formation, and the assumption that small scale rotation is
being inherited from the large scales may not be correct, at least
for some systems.

The disks that formed in the simulations with sink parti-
cles reach a radius that is larger than a hundred astronomical
units until they fragment. As these simulations start with no
angular momentum and only require moderate density pertur-
bations, which are expected to be present in real cores, this
study gives a sort of “minimal hydrodynamic radius” that a
disk should reach in a hydrodynamics collapse. As most of the
observed disks are much smaller (Maury et al. 2010, 2019; Tobin
et al. 2015; Segura-Cox et al. 2016), this implies that angu-
lar momentum extraction processes are at work in real disks.
In the traditional picture of axisymmetric collapse, the size of
the disk directly depends on the initial rotation. The presence
of small disks in observations could therefore be interpreted
as being due to low rotation levels. In the present study, we
show that in the nonaxisymmetric case, even modest levels of
density perturbations lead to the formation of large disks that
have a size of about a hundred astronomical units. The latter
appears to be the natural outcome of the gravitational dynam-
ics and local conservation of angular momentum. These disks
are thus generic features. Therefore, the most natural way to
reconcile these observations with the generic nature of big
hydrodynamical disks is to invoke the presence of magnetic
braking, which we know is operating in cores (Li et al. 2014;
Hennebelle & Inutsuka 2019). Our MHD simulation starting
from the same initial conditions but just adding a magnetic
field shows that the outcoming disk is much smaller and it
does not fragment, which is as expected from these previous
studies.

The magnitudes of the velocity gradients from our modeled
core do not depend much on the chosen projection, although
a dip is observed in the z projection at scales of 600 AU (see
mid panel of Fig. 4), which is the result of a reversal in angu-
lar direction of velocity gradients. Their amplitude is roughly
consistent with velocity gradients observed in protostellar cores
using dense gas tracers (see, for example, Chen et al. 2007;
Belloche & André 2004 who recover amplitudes from 0.1 to
10 km s−1 pc−1 in protostellar cores at scales of 5000 AU) and
also with the recent results of Gaudel et al. (2020) who probe
inner regions of Class 0 envelopes down to a hundred astro-
nomical units. The specific angular momentum j in our modeled
core, which was computed from the velocity gradients following
a similar methodology as the one extracting j from observations,
has a roughly constant value of about 3 × 10−4 km s−1 pc between
102 and 103 AU (see bottom panel of Fig. 4). This order of mag-
nitude is similar to typical specific angular momentum values
recovered from observations in solar-type protostellar cores: see
Yen et al. (2015a) for observations in seven Class 0 protostars
and the work of Gaudel et al. (2020) in 12 Class 0 protostars
that give a specific angular momentum of 5 × 10−4 km s−1 pc
below 1400 AU. The few observational constraints on the spa-
tial distribution of specific angular momentum in prestellar cores
and protostars suggest a scenario where local specific angular
momentum follows a power-law R1.6 in starless structures at
scales larger than 6000 AU, while it is constant and conserved
within collapsing star-forming cores (see Belloche 2013 for a
review). However, Yen et al. (2015b) find that the decreasing
trend of j(R) observed at large scales propagates down to radii
that are smaller than 5000 AU. Gaudel et al. (2020) resolved the
break radius around 1600 AU where it stabilizes with a weak
dependence on radius j ∝ R0.3±0.3 between 50 and 1600 AU.
These observations are very well matched by the properties
of specific angular momentum in our simulations with density
perturbations and no rotation. Our model shows a dependency
of Ω along a R−1.8 power-law, which translates9 to a j ∝ R0.2

power-law that is centered on the value of 3 × 10−4 km s−1 pc,
coinciding with the recent observational results cited earlier.

9 We note that j = R2Ω.
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However, the analysis of velocity gradients also reveals a
large dispersion of the gradient directions between the disk and
envelope scales. Depending on the viewing angle, the observed
velocity gradients in the envelope can be very misaligned with
respect to the small-scale gradient resulting from disk rotation.
The projected kinematics can even produce a complete reversal
of the gradient at some scales. For example in the top panel of
Fig. 4, the y projection (red curve) shows a gradient about 200°
from the disk scale gradient at scales of 2000 AU. Since the
rotation is generated locally in our model, it is not surprising
that small and large scale gradients are unrelated and hence mis-
aligned. In our model, there is no large scale rotation, suggesting
that observations of strongly misaligned gradients in protostellar
cores could be due to nonaxisymmetric gravitational collapse,
rather than to global rotational motions of the core. Such a
scenario could explain, for example, the reversal of velocity
gradients observed in the L1527 protostar (Tobin et al. 2011) or
our recent findings that the rotation of the small-scale disk in the
low-luminosity protostar IRAM 04191 (Maury et al., in prep.)
is opposite to the large-scale gradient at 2000 AU scales in the
envelope, which is interpreted as core rotation (Belloche &
André 2004). This observation of a “counter-rotating” disk
is incompatible with simple axisymmetrical collapse models
in which the disk would have simply formed because of the
conservation of a large scale angular momentum in a rotating
core. Tsukamoto et al. (2017) developed MHD models, includ-
ing the Hall effect, that form counter-rotating envelopes at the
upper region of a pseudo-disk under some conditions about the
alignment between the magnetic field and initial rotation. This
thin counter-rotating layer is located close to the pseudo-disk,
typically between 50 and 200 AU, and they are thus unable to
explain counter-rotation in the outer envelopes, at scales larger
than 1000 AU, while it is a natural feature of our model.

The analysis of the radial and orthoradial part of the veloc-
ity and their contribution to the total velocity gradient directions
shows that for small perturbation levels (typically less than 20%),
the radial and total velocity gradient directions are very close
over all of the probed scales, whereas the orthoradial compo-
nent is misaligned. As the perturbation level increases, for scales
larger than 400 AU the radial component is more and more mis-
aligned; whereas the orthoradial one tends to be closer to the
total velocity gradient direction. These features depend on the
choice of the line of sight. A common point, which seems inde-
pendent from the choice of a line of sight, is that for small
perturbation levels, the radial component is very close to the
total velocity gradient direction. Since the simulations start with
no global rotation, this analysis shows that the notion of radial
and orthoradial though as infall and rotation is less and less
clear as the level of perturbations increases, which means as the
deviation from axisymmetry grows. With a small perturbation
level, the deviation from axisymmetry is low and the velocity
gradients are mainly due to infall motions. With large pertur-
bation levels, the deviation from axisymmetry is high and the
velocity gradients result from the complex dynamics of the self-
gravitating gas.

When adding global rotation to the initial conditions, we
found that the formed disks grow more rapidly and fragment
earlier. In analyzing the kinematics of the gas in those simula-
tions with initial rotation, we show that the angular deviations
are lower than in the case without initial rotation, which is less
in agreement with the observational results from Gaudel et al.
(2020). From this analysis, the inferred specific angular momen-
tum exhibits a slope and a mean value larger than in the case

without initial rotation. As for the angular deviation, this result
is in agreement to a lesser extent with observations than in the
case without initial rotation.

6. Conclusion

We show that protostellar disks can emerge from a nonaxisym-
metrical gravitational collapse in which there is no rotation
initially. We ran purely hydrodynamical simulations of a col-
lapsing dense core starting from an initial condition where all
the cells are at rest, and we broke the symmetry of the prob-
lem by adding density fluctuations over a flat profile. We show
analytically that the angular momentum in the frame of the
accretion center and with respect to the accretion center is not
a conserved quantity due to the non-Galilean character of the
frame. This leads to the possibility of the formation of a disk and
we demonstrate numerically that a disk indeed forms in these
simulations.

We then analyze our simulations from an observational point
of view by computing the velocity gradients at different scales,
as is done with real observations, and by deducing the amplitude
of these gradients and the specific angular momentum over the
different scales. The results we obtained for the value of the spe-
cific angular momentum matches the ones from Belloche (2013)
and Gaudel et al. (2020).

This study then suggests a new paradigm as to the forma-
tion of protostellar disks, but it does not replace the current
one regarding the conservation of preexisting angular momen-
tum at a large scale. It shows that even if this conservation of
angular momentum is absolutely correct in an axisymmetrical
model, it is more complicated when the axisymmetry is broken
since the accretion center frame becomes non-Galilean. In the
extreme case we studied in which every cell is initially at rest, it
shows that even without initial rotation, the formation of a pro-
tostellar disk is possible. The formation of these disks in our
model no longer depends on the specificities of large scales, but
it results in a more generic process that is only due to the den-
sity fluctuations of the gas. We show that the different features
of the model based on the analysis of velocity gradients are real-
istic. This model could thus help in understanding the features
observed in some objects as the angular deviation of velocity
gradients at different scales. It also helps in understanding the
formation of a disk within progenitors, which do not seem to
contain enough angular momentum at large scales to form a disk
by conservation of the angular momentum during the collapse.
We find that these models without initial rotation are in better
agreement with observational results than the models with initial
solid-body rotation.

Our model uses the following minimal physical ingredients:
hydrodynamics, thermodynamics, gravity, and density fluctua-
tions. It is thus robust in the sense that all of these ingredients
are always present in dense cores. In particular, we find that
a disk forms even for density perturbations as low as 10%.
Protostellar disks appear to be natural features of a gravitational
collapse as soon as it is not axisymmetric. Since large disks are
formed in this new scenario, we stress the necessity to evoke
processes extracting angular momentum to lead to the formation
of smaller disks, as found with observations. We show that the
presence of a magnetic field reduces the size of the formed disk,
which is in agreement with past studies (Hennebelle et al. 2016;
Maury et al. 2018).
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Appendix A: Full theoretical development

A.1. Development from the angular momentum in the box
frame

In this annex, we reused the notations and definitions found in
Sect. 2.2. The frame R of the simulation box is Galilean and
there are not any external forces that are applied on the system of
material points. The angular momentum σO|R that is computed
in R in relation to O is thus conserved. For the entire develop-
ment, we consider an initial condition where all of the points are
motionless in R, this ensure that σO|R is equal to zero and that it
stays null through the temporal evolution of the system.

σO|R =
∑

i

miOMi ∧ dOMi

dt
= 0. (A.1)

From this expression, we can include the accretion center C:∑
i

miOC ∧ dOC
dt

+
∑

i

miCMi ∧ dOC
dt

+
∑

i

miOC ∧ dCMi

dt
+

∑
i

miCMi ∧ dCMi

dt
= 0.

(A.2)

By involving the expression of the total mass M =
∑
i

mi, by using

the definition of the center of mass G that implies
∑
i

miCMi =

MCG, and by recognising10 that the fourth term of the expression
above if the angular moment σC|R′ defined Eq. (3), we obtain:

MOC ∧ dOC
dt

+ MCG ∧ dOC
dt

+ MOC ∧ dCG
dt

+ σC|R′ = 0.

(A.3)

By rewriting the second term, the point G appears as follows:

MOC ∧ dOC
dt

+ MCG ∧ dOG
dt

+ MCG ∧ dGC
dt

+ MOC ∧ dCG
dt

+ σC|R′ = 0.
(A.4)

In reuniting the first term with the fourth one, and then with the
second one, we obtain:

MOG ∧ dOG
dt

+ MCG ∧ dGC
dt

+ σC|R′ = 0. (A.5)

We can apply the inertia center theorem to the whole system of
material points in R. In the lack of external force, it gives:

M
d2OG

dt2 = Fext = 0 =⇒ dOG
dt

= cte = 0

because the velocity in each point is initially null. Then only two
terms remain in the Eq. (A.5), which can be rewritten in the form
of the Eq. (4):

σC|R′ = MGC ∧ dGC
dt

. (A.6)

This expression is equivalent to σC|R′ = MGC ∧ dOC
dt due to the

fact that dOG
dt = 0.

10 We chose R′ to be in translation with respect to R in order to have the
equality of the temporal derivative operators in the two frames, without
loosing any generality.

A.2. Interpretation with the inertial force

We consider the problem from the frame R′. The latter is not
Galilean, and we chose it to be in translation with respect to
R, without loosing any generality, in order to have the equal-
ity of the temporal derivative operators in R and R′. We can thus
rewrite the evolution equation of the angular momentum σC|R′
in the absence of external forces:

d σC|R′
dt

=
∑

i

MC (Fie→i) , (A.7)

where MC (Fie→i) is the torque of the inertial force that is
exerted on each point i, in relation to the point C. For the given
conditions of R′, this force can be written as:

Fie→i = −mi
d2OC

dt2 . (A.8)

We can thus write the momentum of Fie→i in relation to the point
C as:

MC (Fie→i) = −miCMi ∧ d2OC
dt2 . (A.9)

By reusing the definition of the center of mass and the fact that
dOG

dt = 0, the right side of Eq. (A.7) becomes:

∑
i

MC (Fie→i) = −
∑

i

miCMi ∧ d2OC
dt2 = MGC ∧ d2GC

dt2 .

(A.10)

Equation (A.7) then becomes :

d σC|R′
dt

= MGC ∧ d2GC
dt2 . (A.11)

This expression is the same as the one obtained by taking the
derivative of Eq. (A.6), but it allows us to understand that the
nonconservation of the angular momentum σC|R′ is due to the
non-Galilean character of the frame R′.

Appendix B: Numerical validity

In this annex, we reuse the notations found in Sect. 4.2. We
show in Sect. 4.2 that in looking at the difference between σnum
and σan and in comparing this difference to the momentum in
the disk, this gives us a simple way to estimate the trust level
of our simulations. The results for all of the perturbation lev-
els we studied are given in Fig. B.1. The left panel shows the
relative difference between σnum and σan. Except for the simula-
tion with ε = 10%, this difference is less than a few percent. For
the simulation with 10% of perturbation, this difference grows
higher.

In order to conclude on the trust level on the simulations, we
have to compare |∆σ| = |σnum − σan| to the angular momentum
|σdisk| contained in the disk. This relative comparison is visible
in the right panel of Fig. B.1. A value close to 1 means that ∆σ
is negligible compared to the momentum in the disk. A value
of 0 or lower means that |∆σ| is equal or higher than |σdisk|.
In this latter case, we cannot exclude the worst scenario where
all of the numerical errors would be concentrated at the same
location, resulting in the formation of a disk that is then a numer-
ical artifact. The right panel of Fig. B.1 shows the results until
the disk starts to fragment since our disk isolation algorithm
gives correct results only when a single disk is present in the
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Fig. B.1. Analysis of numerical errors in the simulations with different levels of perturbations ε, without sink particle. The legend is the same
for both panels. To improve visibility, the results have been smoothed. Left: relative difference between σnum and σan. Right: relative difference
between the momentum in the disk |σdisk| and |∆σ| = |σnum − σan|. We only calculated the momentum in the disk when the disk is not fragmented.
The simulation with 10% of perturbations shows a non negligible amount of numerical errors, whereas all of the other simulations can be trusted.

simulation box. These results show that the simulation with
ε = 50% is the best in terms of trust level. For the other lev-
els of perturbation, the trust level is lower, but as this relative

difference remains higher than 0.1, even the worst scenario can-
not explain the amount of angular momentum present in the disk
in terms of numerical errors.
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