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ABSTRACT

Context. Rotational mixing transports angular momentum and chemical elements in stellar radiative zones. It is one of the key pro-
cesses for modern stellar evolution. In the past two decades, an emphasis has been placed on the turbulent transport induced by the
vertical shear instability. However, instabilities arising from horizontal shear and the strength of the anisotropic turbulent transport
that they may trigger remain relatively unexplored. The weakest point of this hydrodynamical theory of rotational mixing is the as-
sumption that anisotropic turbulent transport is stronger in horizontal directions than in the vertical one.
Aims. This paper investigates the combined effects of stable stratification, rotation, and thermal diffusion on the horizontal shear
instabilities that are obtained and discussed in the context of stellar radiative zones.
Methods. The eigenvalue problem describing linear instabilities of a flow with a hyperbolic-tangent horizontal shear profile was
solved numerically for a wide range of parameters. When possible, the Wentzel–Kramers–Brillouin–Jeffreys (WKBJ) approximation
was applied to provide analytical asymptotic dispersion relations in both the nondiffusive and highly diffusive limits. As a first step,
we consider a polar f -plane where the gravity and rotation vector are aligned.
Results. Two types of instabilities are identified: the inflectional and inertial instabilities. The inflectional instability that arises from
the inflection point (i.e., the zero second derivative of the shear flow) is the most unstable when at a zero vertical wavenumber and a
finite wavenumber in the streamwise direction along the imposed-flow direction. While the maximum two-dimensional growth rate
is independent of the stratification, rotation rate, and thermal diffusivity, the three-dimensional inflectional instability is destabilized
by stable stratification, while it is stabilized by thermal diffusion. The inertial instability is rotationally driven, and a WKBJ analysis
reveals that its growth rate reaches the maximum value of

√
f (1 − f ) in the inviscid limit as the vertical wavenumber goes to infinity,

where f is the dimensionless Coriolis parameter. The inertial instability for a finite vertical wavenumber is stabilized as the stratifica-
tion increases, whereas it is destabilized by the thermal diffusion. Furthermore, we found a selfsimilarity in both the inflectional and
inertial instabilities based on the rescaled parameter PeN2 with the Péclet number Pe and the Brunt–Väisälä frequency N.
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1. Introduction

The combination of space-based helio- and asteroseismology has
demonstrated that stably stratified rotating stellar radiation zones
are the seats of efficient transport of angular momentum through-
out the evolution of stars. This strong transport leads to a uniform
rotation in the case of the Sun down to 0.2 R� (García et al. 2007)
and to weak differential rotation in other stars (e.g., Mosser et al.
2012; Deheuvels et al. 2012, 2014; Kurtz et al. 2014; Saio et al.
2015; Murphy et al. 2016; Spada et al. 2016; Van Reeth et al.
2016, 2018; Aerts et al. 2017; Gehan et al. 2018; Ouazzani et al.
2019). Four main mechanisms that transport angular momen-
tum and mix chemicals are present in stellar radiation zones
(e.g., Maeder 2009; Mathis 2013; Aerts et al. 2019, and refer-
ences therein): instabilities of the differential rotation (e.g., Zahn
1983, 1992), stable and unstable magnetic fields (e.g., Spruit
1999; Fuller et al. 2019), internal gravity waves (e.g., Zahn et al.
1997; Talon & Charbonnel 2005; Pinçon et al. 2017), and large-
scale meridional circulations (e.g., Zahn 1992; Maeder & Zahn
1998; Mathis & Zahn 2004). Important progress has been made
in their modeling during the last two decades. However, many
simplifying assumptions are still employed in the treatment of
these four mechanisms because of their complexity and of the
broad range of spatial and temporal scales they involve. For

instance, the complex interplay between rotation and stratifica-
tion for the study of vertical and horizontal shear instabilities
is partially treated. On the one hand, the action of the Coriolis
acceleration is not taken into account in the state-of-the-art mod-
eling of the vertical turbulent transport due to the instabilities
by radial differential rotation. On the other hand, the important
action of thermal diffusion has completely been ignored in the
studies of the horizontal turbulent transport induced by horizon-
tal and vertical shear instabilities (see e.g., Mathis et al. 2004,
2018, respectively). As a consequence, a lot of work is still
required to obtain robust abinitio prescriptions for transport pro-
cesses in stars and to reconcile stellar models and the observa-
tions (e.g., Eggenberger et al. 2012, 2019; Ceillier et al. 2013;
Marques et al. 2013; Cantiello et al. 2014). In this work, our aim
is to improve our understanding of horizontal shear instabilities
in rotating stellar radiation zones.

In his seminal article, Zahn (1992) built the theoretical
framework to study the turbulent transport induced by verti-
cal and horizontal shears in convectively stable rotating stellar
radiation zones. In such regions, turbulence can be anisotropic
because of the combined action of buoyancy and the Coriolis
acceleration, which control the turbulent motions along the
vertical and the horizontal directions, respectively (e.g.,
Billant & Chomaz 2001; Davidson 2013; Mathis et al. 2018).

Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0),
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As pointed out in Mathis et al. (2018), many theoretical works
have been devoted to providing robust prescriptions for the ver-
tical eddy diffusion associated with the instability of vertical
shear (e.g., Zahn 1992; Maeder 1995, 1997; Maeder & Meynet
1996; Talon & Zahn 1997; Kulenthirarajah & Garaud 2018).
Their predictions are now being tested using direct numeri-
cal simulations (Prat & Lignières 2013, 2014; Prat et al. 2016;
Garaud et al. 2017; Gagnier & Garaud 2018). However, very
few studies have examined the instabilities arising from hori-
zontal shear (e.g., Zahn 1992; Maeder 2003; Mathis et al. 2004).
The resulting prescriptions are based mostly on phenomenolog-
ical approaches and the results of unstratified Taylor–Couette
flow experiments (Richard & Zahn 1999) that do not take into
account the complex interplay of stratification, rotation, and
thermal diffusion, all of which play important roles in stel-
lar radiation zones. For instance, heat diffusion inhibits the
effects of the stable stratification for the vertical shear instability
(Townsend 1958; Zahn 1983). Mathis et al. (2018) studies the
combined action of stratification and rotation on the horizontal
turbulent transport. Their approaches to the turbulent transport
have been successfully implemented in several stellar evolution
codes (Talon et al. 1997; Meynet & Maeder 2000; Palacios et al.
2006; Marques et al. 2013). However, the neglect of the nona-
diabatic aspects of the problem and the focus only on the lat-
itudinal turbulent transport induced by the three-dimensional
motions resulting from the vertical shear instability constitute
weak points of the theory for the rotational mixing. Indeed, in
the formalism of Mathis et al. (2018), a stronger turbulent trans-
port is assumed along the horizontal direction than along the
vertical direction. This allows us to assume that the horizontal
gradients of the angular velocity (and of the fluctuations of tem-
perature and chemical composition) are smoothed out, leading to
the so-called “shellular” rotation, that only varies with the radius.
Such a radial variation of rotation is pertinent to the vertical shear
instability, which has been mostly studied on the local f -plane
with vertical stratification (see e.g., Wang et al. 2014). The hor-
izontal shear instability with stellar differential rotation in lat-
itudinal direction has also been studied (see e.g.,Watson 1980;
Garaud 2001; Kitchatinov & Rüdiger 2009), but the combined
impacts of the rotation, stratification, and thermal diffusion on
horizontal shear instability are not yet fully resolved. It is thus
mandatory to study the instabilities of horizontal shear in rotat-
ing and stably stratified stellar regions (Figs. 1a and b) while
taking into account their important thermal diffusion.

In classical fluid dynamics, theories of shear flow stability
in homogeneous fluids are well known (Schmid & Henningson
2001). According to Rayleigh’s inflection point criterion, an
inviscid unstable shear flow should possess an inflectional point
where the second derivative of the zonal flow velocity U van-
ishes (i.e., U′′(y) = 0, where y is the local latitudinal coordinate
and prime denotes the derivative with respect to y; see Fig. 1c).
For instance, a shear flow with a hyperbolic tangent velocity pro-
file can undergo this inflection point instability (Michalke 1964).
In geophysical fluid dynamics, this instability is also referred
to the barotropic instability (Kundu & Cohen 2001) as it can be
triggered by a two-dimensional horizontal perturbation with a
finite streamwise zonal wavenumber kx. However, general three-
dimensional perturbations with both kx and a vertical wavenum-
ber kz can also trigger the inflectional instability of the horizon-
tal shear flow. So, we use the terminology inflectional instabil-
ity hereafter. The stability analysis of such shear flow in strat-
ified fluids by Deloncle et al. (2007) revealed that the unstable
regime in the parameter space of zonal and vertical wavenum-
bers (kx, kz) is widely broadened for a horizontal shear flow U(y)

in strongly stratified fluids. This implies that perturbations with
a smaller vertical scale (i.e., large kz) can still be unstable with a
large Brunt–Väisälä frequency N. A selfsimilarity of the three-
dimensional inflectional instability is found for strong strati-
fication with a rescaled parameter Nkz (Deloncle et al. 2007).
However, they found that the most unstable perturbation is still
two-dimensional with a finite kx at kz = 0 independent of the
stratification.

The effects of both the stratification and rotation on horizon-
tal shear instability were studied by Arobone & Sarkar (2012).
They explored how the instability growth rate in the parameter
space (kx, kz) is modified as the stratification and rotation change.
And they found that the most unstable mode of the inflectional
instability is always found at finite kx and kz = 0 independent
of the stratification and rotation. Moreover, they also underlined
that there exists an inertial instability in a finite range of f0 which
is the Coriolis parameter defined as f0 = 2Ω cos θs where Ω is the
rotation of a star and θs is the colatitude. The origin of the iner-
tial instability is different from the inflectional instability: the
horizontal flow can become inertially unstable only in rotating
fluids if the Rayleigh discriminant Φ(y) = f0( f0 − U′) becomes
negative (Fig. 1d). This condition leads to the inertially-unstable
range 0 < f0 < max(U′) for the hyperbolic tangent shear flow
whose the maximum growth rate is found in inviscid limit as√

f0(max(U′) − f0). Such a mechanism is essentially equivalent
to that of the centrifugal instability for rotating flows with cylin-
drical geometry. And it is centrifugally stable if the cylindrical
Rayleigh discriminant Φr is always positive:

Φr =
1
r3

∂(ruθ)2

∂r
> 0, (1)

where uθ is the azimuthal velocity and r is the cylindrical radial
coordinate (Kloosterziel & van Heijst 1991; Park & Billant
2013). The stability condition can be extended by taking the
stratification of the entropy S into account. This results in the
Solberg–Høiland conditions:

Φr −
1

Cpρ
∇p · ∇S > 0,

∂p
∂z

(
∂(ruθ)2

∂r
∂S
∂z
−
∂S
∂r

∂(ruθ)2

∂z

)
< 0, (2)

(see also, Rüdiger et al. 2002). Moreover, the Goldreich–
Schubert–Fricke (GSF) criterion proposes the stability condition
which takes effects of the thermal diffusivity κ0 and viscosity ν0
into account:

Φr +
ν0

κ0
N2 > 0, (3)

where N is the Brunt–Väisälä frequency (Goldreich & Schubert
1967; Fricke 1968; Maeder et al. 2013). While these studies have
proposed stability conditions in the presence of the stratification,
rotation, and thermal diffusion, it is still not fully understood
how horizontal shear instabilities are modified by the thermal
diffusion, which has an essential importance for the dynamics of
stellar radiative zones.

In this paper, we investigate the linear stability of horizontal
shear flows in stably-stratified, rotating, and thermally-diffusive
fluids in the context of stellar radiation zones. In Sect. 2, equa-
tions for the linear stability analysis are formulated. In Sect. 3,
we compute numerical results of this analysis for both the inflec-
tional and inertial instabilities to characterize their main proper-
ties. In Sect. 4, these are compared with results from asymptotic
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Fig. 1. Panels a and b: horizontal shear flow U(y) on a local polar plane
rotating with angular speed Ω in the radiative zone of a rotating star. The
radiative and convective zones, colored as yellow and orange with the
transition altitude zc, are the configuration of low-mass stars; it should
be inverted for early-type stars. Panel c: horizontal shear flow profile
U(y) with an inflection point U′′ = 0 for the inflectional instability.
Panel d: Rayleigh discriminant Φ(y) = f0 ( f0 − U′) for the inertial insta-
bility configuration.

analyses by means of the Wentzel–Kramers–Brillouin–Jeffreys
(WKBJ) approximation for the inertial instability in order to
understand the important role of thermal diffusion in stably-
stratified rotating fluids. In Sect. 5, key scaling laws are derived
for both the inflectional and inertial instabilities as a function of
the stratification and thermal diffusivity. Finally, conclusions and
perspectives of this work are presented in Sect. 6.

2. Problem formulation

2.1. Governing equations and base equilibrium state

We consider the Euler equations under the Boussinesq approxi-
mation and the heat transport equation in the Cartesian coordi-
nate (x, y, z) in a local frame rotating with angular velocity Ω:

∇ · u = 0, (4)
∂u
∂t

+ (u · ∇) u + f × u = −
1
ρ0
∇p − αTθg, (5)

∂θ

∂t
+ u · ∇θ = κ0∇

2θ, (6)

where u = (u, v,w) is the velocity, p is the pressure, θ = T − T0
is the temperature deviation from the reference temperature T0,
f = (0, 0, 2Ω) is the Coriolis vector which is here antialigned
with the gravity g = (0, 0,−g), ρ0 is the reference density, κ0
is the reference thermal diffusivity, αT is the thermal expan-
sion coefficient, and ∇2 denotes the Laplacian operator. We
thus consider as a first step the traditional f -plane case cor-
responding to the horizontal shear flow on the pole (Fig. 1)
to compare with previous literature. In this setup, the action
of the latitudinal component of the rotation vector is filtered
out (Gerkema & Shrira 2005; Gerkema et al. 2008). The current
Cartesian coordinates (x, y, z) on the traditional f -plane is associ-
ated with the spherical coordinates (r, θs, ϕ) where r is the radial

coordinate and ϕ is the longitude. For instance, x is the longi-
tudinal coordinate with ex = eϕ where e denotes the unit vector
of the coordinate systems, y is the latitudinal coordinate with
ey = −eθs , and z is the vertical coordinate with ez = er.

To perform the linear stability analysis, we consider a steady
base velocity U = (U(y), 0, 0) in a hyperbolic tangent form

U = U0 tanh
(

y
L0

)
, (7)

where U0 and L0 are the reference velocity and length scale,
respectively. Such a base flow is balanced with the pressure gra-
dient as

f U = −
∂P̄
∂y
, (8)

where P̄ is the base pressure profile. We consider a base temper-
ature profile Θ̄(z) which increases linearly with height z:

Θ̄ =
∆Θ0

∆z
z, (9)

where ∆Θ0 is the base-temperature difference along the vertical
distance ∆z.

2.2. Linearized stability equations

Subject to the base state, we consider perturbations ũ = u −U =
(ũ, ṽ, w̃), p̃ = p − P̄, and T̃ = θ − Θ̄. Hereafter, we use dimen-
sionless parameters by converting the Eqs. (4)–(6) into a set of
dimensionless equations with the length scale as L0, the veloc-
ity scale as U0, the time scale as L0/U0, the pressure scale as
ρ0U2

0 , and the temperature scale as (L0∆Θ0)/∆z. For infinites-
imally small amplitude perturbations, we obtain the following
linearized perturbation equations

∂ũ
∂x

+
∂ṽ
∂y

+
∂w̃
∂z

= 0, (10)

∂ũ
∂t

+ U
∂ũ
∂x

+
(
U′ − f

)
ṽ = −

∂p̃
∂x
, (11)

∂ṽ
∂t

+ U
∂ṽ
∂x

+ f ũ = −
∂p̃
∂y
, (12)

∂w̃
∂t

+ U
∂w̃
∂x

= −
∂p̃
∂z

+ N2T̃ , (13)

∂T̃
∂t

+ U
∂T̃
∂x

+ w̃ =
1

Pe
∇2T̃ , (14)

where prime denotes the total derivative with respect to y, N is
the dimensionless Brunt–Väisälä frequency where

N2 =
αTgL2

0

U2
0

∆Θ0

∆z
, (15)

f is the dimensionless Coriolis parameter

f =
2ΩL0

U0
, (16)

and Pe is the Péclet number

Pe =
U0L0

κ0
· (17)

We note that N is equivalent to the inverse of the horizontal
Froude number Fh for the stratified horizontal shear flow in
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Deloncle et al. (2007). Also, N2 is similar to the Richardson
number Ri defined as Ri = N2

v /S
2
v where S v is the vertical shear

and Nv is the Brunt–Väisälä frequency used for the vertical shear
instability study (Lignières et al. 1999). The nondimensional f is
equal to the inverse of the Rossby number Ro = 1/ f .

To perform a linear stability analysis, we consider a normal
mode representation for the perturbation variables:(
ũ, p̃, T̃

)
= <

[(
û(y), p̂(y), T̂ (y)

)
exp

[
i (kxx + kzz) + σt

]]
, (18)

where i2 = −1, û = (û, v̂, ŵ), p̂, and T̂ are the latitudinal
mode shapes for velocity, pressure, and temperature perturba-
tion, respectively, kx is the horizontal wavenumber in streamwise
direction, kz is the vertical wavenumber, and σ = σr + iσi is the
complex growth rate where the real part σr is the growth rate and
the imaginary part σi is the temporal frequency. Expanding the
Eqs. (10)–(14) with these normal modes, we obtain the follow-
ing linear stability equations

ikxû +
dv̂
dy

+ ikzŵ = 0, (19)

(σ + ikxU) û +
(
U′ − f

)
v̂ = −ikx p̂, (20)

(σ + ikxU) v̂ + f û = −
d p̂
dy
, (21)

(σ + ikxU) ŵ = −ikz p̂ + N2T̂ , (22)

(σ + ikxU) T̂ + ŵ =
1
Pe
∇̂2T̂ , (23)

where ∇̂2 = d2/dy2 − k2 with k2 = k2
x + k2

z . Due to the symme-
try σ(kx, kz) = σ(kx,−kz) = σ(−kx, kz)∗ = σ(−kx,−kz)∗ where
the asterisk ∗ denotes the complex conjugate; we thus consider
only the positive wavenumbers kx and kz in this paper. For con-
venience and mathematical simplicity, we can simplify the set
of Eqs. (19)–(23) into a single ordinary differential equation
(ODE) for T̂ . Firstly, from the vertical momentum and tempera-
ture equations, we express ŵ and p̂ as a function of T̂ :

ŵ =

[
−(σ + ikxU) +

1
Pe
∇̂2

]
T̂ , (24)

p̂ =
i
kz

[
−(σ + ikxU)2 +

σ + ikxU
Pe

∇̂2 − N2
]

T̂ . (25)

From the horizontal momentum Eqs. (20) and (21), we can
express û and v̂ in terms of p̂:

û =
( f − U′) d p̂

dy + ikx(σ + ikxU) p̂

f (U′ − f ) − (σ + ikxU)2 , (26)

v̂ =
(σ + ikxU) d p̂

dy − ikx f p̂

f (U′ − f ) − (σ + ikxU)2 · (27)

Applying p̂ of (25) to û and v̂, we have the velocity perturbation
û = (û, v̂, ŵ) expressed by T̂ and the continuity Eq. (19) becomes
the single 4th-order ODE for T̂ :

d2T̂
dy2 +

(
4ss′

s2 − N2 −
Γ′

Γ

)
dT̂
dy

+

[
k2

z
Γ

N2 − s2 − k2
x + f

kxΓ
′

sΓ
+

2ss′

s2 − N2

(
U′′

U′
+

s′

s
−

Γ′

Γ

)]
T̂

+
1
Pe

( is
s2 − N2

) [
∇̂4T̂ +

(
s′

s
−

Γ′

Γ

)
∇̂2 dT̂

dy

+

{
s′

s

(
U′′

U′
−

Γ′

Γ

)
+ f

(
kxΓ

′

sΓ
−

k2
z

s2 (U′ − f )
)}
∇̂2T̂

]
= 0, (28)

where ∇̂4 = (∇̂2)2, s = −iσ+kxU is the complex Doppler-shifted
frequency, and Γ is the function defined as

Γ = s2 + f
(
U′ − f

)
. (29)

We note that Eq. (28) becomes the 2nd-order ODE in the non-
diffusive limit Pe → ∞ while it becomes independent of N for
the high-diffusivity case as Pe→ 0.

2.3. Numerical method

We solve the set of Eqs. (19)–(23) numerically by considering
an eigenvalue problem in a simplified matrix form:

A

 û
v̂
T̂

 = σB

 û
v̂
T̂

 , (30)

whereA and B are operator matrices expressed as

A =


A11 A12 0
ik2 f A22 N2kz

d
dy

ikx
d
dy kxkzU +

ikz
Pe ∇̂

2

 , (31)

B =

 −
d
dy ikx 0
0 i∇̂2 0
0 0 ikz

 , (32)

where

A11 = ikx

(
U′ + U

d
dy

)
− ikx f ,

A12 = k2
xU +

(
U′ − f

) d
dy

+ U′′,

A22 = kxU∇̂2 + f kx
d
dy
− kxU′′. (33)

The eigenvalue problem (30) is discretized in the y-direction
using the rational Chebyshev functions with the mapping ỹ =

y/
√

1 + y2 projecting the Chebyshev domain ỹ ∈ (−1, 1) onto the
physical space y ∈ (−∞,∞) (Deloncle et al. 2007; Park 2012).
Vanishing boundary conditions are imposed for y → ±∞ by
suppressing terms in the first and last rows of the operator matri-
ces (Antkowiak 2005). We note that the eigenvalue problem (30)
is identical to that of Arobone & Sarkar (2012) in the inviscid
limit and when the density perturbation analogous to −T̂ is con-
sidered. The numerical results are validated with those from
Deloncle et al. (2007) and Arobone & Sarkar (2012) in stratified
and rotating fluids.

3. General results

Horizontal shear flows in stably stratified and rotating fluids are
prone to two types of destabilizing mechanisms: the inflectional
and inertial instabilities. The inflectional instability occurs when
there exists an inflection point yi where U′′(yi) = 0. On the
other hand, the inertial instability can occur without an inflection
point when there is an imbalance between the pressure gradient
and the inertial force, the mechanism equivalent for the centrifu-
gal instability in cylindrical geometry (Kloosterziel & van Heijst
1991; Billant & Gallaire 2005; Wang et al. 2014). For the hyper-
bolic tangent shear flow (7) in stratified-rotating fluids, the
inflectional instability is always present while the inertial insta-
bility exists only in the range 0 < f < 1 (Arobone & Sarkar
2012).
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Fig. 2. Eigenvalue spectra at (a) (kx, kz) = (0.445, 0) and (b) (kx, kz) =
(0, 5) for f = 0.5, N = 1, and Pe = 0.1. The triangle in (a) and the
square in (b) denote the most unstable growth rates of the inflectional
and inertial instabilities, respectively.

Within this range, we display in Fig. 2 examples of eigen-
value spectra in the space (σi, σr) at f = 0.5, N = 1, and
Pe = 0.1 for two sets of (kx, kz): (a) (0.445, 0) and (b) (0, 5).
In Fig. 2a, the most unstable mode denoted by the triangle repre-
sents an inflectional instability mode. This mode has the growth
rate σr = 0.1897 and zero frequency σi = 0 as equivalently
reported in Deloncle et al. (2007) for the nondiffusive inflec-
tional instability mode. At kz = 0, we can derive a single 2nd-
order ODE for v̂ from the continuity Eq. (19) and momentum
Eqs. (20) and (21):

d2v̂
dy2 −

(
k2

x +
kxU′′

s

)
v̂ = 0, (34)

(see also, Deloncle et al. 2007). It is important to note that the
Eq. (34) does not depend on neither stratification, rotation, nor
thermal diffusion, and the two-dimensional inflectional instabil-
ity is consequently found to be independent of N (Deloncle et al.
2007) as well as f and Pe. We note that there also exist neutral
waves (i.e., σr = 0) with nonzero frequency lying collectively
in the range |σi| . kx = 0.445 as well as stable modes with
σr < 0. In this study, however, we will consider only the unstable
modes with zero frequency σi = 0. The eigenvalues in Fig. 2b at
(kx, kz) = (0, 5) show different spectral behaviors from those in
Fig. 2a: eigenvalues are distributed symmetrically with respect
to σr = 0 for unstable and stable modes while neutral waves lie
in the frequency range |σi| . f = 0.5. The most unstable mode
denoted by the square corresponds to the inertial instability mode
with the growth rate σr = 0.4378 and zero frequency σi = 0.

In Fig. 3a, we display contours of the most unstable growth
rate with thermal diffusion at Pe = 0.1 to locate the inflec-
tional and inertial instabilities in the parameter space (kx, kz)
for f = 0.5 and N = 1. The growth-rate contours are qualita-
tively similar to those in Arobone & Sarkar (2012), but we focus
on the small-Pe regime. The frequency σi of the most unstable
mode is zero thus not plotted as contours in the parameter space
(kx, kz). Furthermore, we numerically verified that the inflec-
tional instability is the most unstable in the two-dimensional
case at (kx, kz) = (0.445, 0) for any values of N and Pe in the
inertially-stable range ( f ≥ 1 or f ≤ 0). On the other hand, in
the inertially-unstable range 0 < f < 1, the growth rate increases
as kz increases at kx = 0.445 due to the inertial instability, and
the most unstable growth rate of the inertial instability is found
as kz → ∞ at kx = 0.

Figure 3b shows an example of the growth rate σr as a func-
tion of kz at kx = 0. There is not only one unstable branch
but a countless number of growth-rate branches (only the first
four branches are shown in Fig. 3b for clarity). We see that the
first branch is the most unstable and all the branches asymp-
tote to certain values as kz increases. Arobone & Sarkar (2012)
argues that the inertial instability growth rate approaches σmax =√

f (1 − f ). In the next section, the reasons why there is an infi-
nite number of branches and why they approach

√
f (1 − f ) as

kz → ∞ will be explained by means of the WKBJ approxi-
mation. Figure 3c shows σr versus kz at kx = 0.445. We see
that the first branch starts from σr = 0.1897 at kz = 0 due to
the inflectional instability, while other branches start at σr = 0
and increase with kz. The increase of the growth rate σr with
kz occurs only in the inertially-unstable regime (0 < f < 1)
since the inflectional instability is stabilized as kz increases in the
inertially-stable regime (see the dashed line in Fig. 3c for f = 0).

Figure 4 shows examples of modes for the inflectional insta-
bility at (kx, kz) = (0.445, 0) in panels a and b, and the iner-
tial instability at (kx, kz) = (0, 5) in panels c and d for the
same parameters used in Fig. 3. For both instability modes, the
mode shapes are normalized by the maximum of |v̂|. For Fig. 4,
we show v̂ as a representative for the inflectional instability to
be able to compare with the previous literature (Deloncle et al.
2007). For the inertial instability, we illustrate the behavior of T̂
since this is the quantity we will use for its asymptotic analysis in
Sect. 4. The mode shape v̂ of the inflectional instability decreases
exponentially as y → ±∞, and if plotted in physical space, we
see that the perturbation ṽ(x, y) is slightly inclined against the
direction of the shear (see also, Arobone & Sarkar 2012). On the
other hand, the mode shape T̂ of the inertial instability mode
shows there exists a zero crossing for the absolute part of T̂ at
y = 0 while decaying exponentially as y→ ±∞. The temperature
perturbation T̃ in the space (y, z) shows that the inertial instabil-
ity mode has a wave pattern with a zero-crossing at y = 0. One
zero-crossing corresponds to the first branch, which is the most
unstable branch for given kx and kz, and higher branches have
multiple zero-crossings accordingly.

4. WKBJ analysis for the inertial instability

The maximum growth rate of the inertial instability is proposed
to be σmax =

√
f (1 − f ) (Arobone & Sarkar 2012). We also ver-

ified numerically that the most unstable growth rate is reached
as kz → ∞ at kx = 0. But it is still not clear why this max-
imum growth rate σmax is attained as kz → ∞, and when the
inertial instability occurs in parameter ranges of kz, N, f , and
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Fig. 3. Panel a: contours of the maximum growth rate σmax in the parameter space of (kx, kz) for f = 0.5, N = 1, Pe = 0.1. Panels b and c:
corresponding growth rates σr versus vertical wavenumber kz at panel b: kx = 0 and panel c: kx = 0.445. For clarity, only the first four eigenvalue
branches are plotted. The dashed line in panel c denotes the growth rate for rotating case f = 0. Symbols denote the parameters for eigenvalues in
Fig. 2 and eigenfunctions displayed in Fig. 4.

Fig. 4. Examples of eigenmodes at (a, b) (kx, kz) = (0.445, 0) for the inflectional instability (triangle in Fig. 3) and (c, d) (kx, kz) = (0, 5) for the
inertial instability (square in Fig. 3). Panels a and c: mode shapes of v̂(y) and T̂ (y) (blue: real part, red: imaginary part, black: absolute value),
respectively. Panels b and d: perturbations ṽ(x, y) and T̃ (y, z) in the physical space, respectively.

Pe. In this section, we detail mathematical and physical interpre-
tations of the inertial instability using the WKBJ approximation
in the limit of large kz at kx = 0. Similar asymptotic analyses
have been performed to understand the instability mechanisms
in rotating shear flows (Park & Billant 2012; Park et al. 2017).
To understand the effect of thermal diffusion, we perform an
asymptotic analysis at two limits: Pe → ∞ (i.e., no thermal dif-
fusion) and Pe → 0 (i.e., high thermal diffusivity). It is notice-
able that the diffusion is often neglected by taking Pe → ∞ to
understand geophysical flows in the atmosphere and oceans of
the Earth (Yavneh et al. 2001; Park et al. 2018), while the high
thermal diffusivity case with Pe → 0 is studied in astrophys-
ical context for shear instability and mixing in stellar interiors
(Lignières et al. 1999; Prat & Lignières 2014). In the following
subsections, we provide explicit expressions of asymptotic dis-
persion relations for the inertial instability in stratified and rotat-
ing fluids in both limits of Pe.

4.1. The weak diffusion limit: Pe→ ∞

We first consider the 4th-order ODE (28) for kx = 0:

d4T̂
dy4 −

Γ′

Γ

d3T̂
dy3 −

[
k2

z

(
1 −

Γ

σ2

)
+ Pe

(
N2 + σ2

σ

)]
d2T̂
dy2

+

[
k2

z
Γ′

Γ
+ Pe

(
N2 + σ2

σ

)
Γ′

Γ

]
dT̂
dy
−

[
k4

z
Γ

σ2 + k2
z Pe

(
Γ

σ

)]
T̂ = 0.

(35)

In the limit Pe→ ∞, we can rearrange Eq. (35) as

d2T̂
dy2 −

Γ′

Γ

dT̂
dy

+ k2
z

Γ

N2 + σ2 T̂ = O
(

1
Pe

)
, (36)

where higher-order derivatives in the 3rd and 4th orders are also
of the order O (1/Pe). Provided that d/dy is of order unity, we
can neglect the term on the right-hand side as Pe → ∞, and the
Eq. (36) becomes the second-order ODE.

Applying the WKBJ approximation to (36) for large kz:

T̂ (y) ∼ exp

1
δ

∞∑
l=0

δlS l(y)

 , (37)

we obtain

δ =
1
kz
, S

′2
0 = −

Γ

N2 + σ2 , S ′1 =
Γ′

4Γ
· (38)

In this paper, we only consider the inertial instability mode
which has the zero frequency (i.e., σi = 0 and σ2 + N2 > 0)
thus the sign of Γ determines the behavior of the solutions. We
get evanescent solutions if Γ < 0:

T̂ (y) = (−Γ)1/4

A1 exp

kz

∫
y

√
−Γ

σ2 + N2 dy


+A2 exp

−kz

∫
y

√
−Γ

σ2 + N2 dy

 , (39)
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Fig. 5. Turning growth rates σ±(y) for f = 0.5 (black solid lines) and
an example of the growth rate σ = 0.348 at (kx, kz) = (0, 5) for N = 1
and Pe = ∞ (dashed line). White and gray areas represent the regions
where the solution is exponential and wavelike, respectively.

where A1 and A2 are constants, or wavelike solutions if Γ > 0:

T̂ (y) = Γ1/4

B1 exp

ikz

∫
y

√
Γ

σ2 + N2 dy


+B2 exp

−ikz

∫
y

√
Γ

σ2 + N2 dy

 , (40)

where B1 and B2 are constants. These exponential behaviors
depending on y change at turning points yt where Γ(yt) = 0. It is
also convenient to introduce the turning growth rates σ±:

σ± = ±<
[ √

f (U′ − f )
]
, (41)

which inform us where Γ = −σ2 + f (U′ − f ) becomes zero. For
instance, if the growth rate is σ = 0.348 that is a growth rate
obtained numerically for f = 0.5, N = 1, Pe = ∞, kx = 0, and
kz = 5, there exist two turning points: one at y = yt− = −0.56
and the other at y = yt+ = 0.56 (see Fig. 5). This implies that the
solution in the regions y > yt+ and y < yt− is evanescent while
the solution in the region yt− < y < yt+ is wavelike. We note
that σ± = ±<

(√
−Φ

)
so we can verify that the region where

the Rayleigh’s discriminant Φ(y) = f ( f − U′) is negative lies
between the two turning points yt±.

When the growth rate lies between the two turning growth
rates σ− < σ < σ+, this implies that the solutions are wave-
like with Γ > 0 (gray area in Fig. 5), while the solutions are
evanescent outside this range (white area in Fig. 5). For other
values of σ, we can decide whether we can construct eigenfunc-
tions. For example, if 0 < σ < max(σ+) or min(σ−) < σ < 0
like the case σ = 0.4232 < max(σ+) = 0.5 in Figs. 4c and
d, the solution is exponential outside the turning points yt± and
wavelike in between. In this case, we can construct an eigenfunc-
tion which decays exponentially as y→ ±∞ due to the presence
of two turning points. On the other hand, if the growth rate is
either σ > max(σ+) or σ < min(σ−), then there is no turn-
ing point and solutions are always evanescent for all y. There-
fore, we must impose A1 = 0 and A2 = 0 to make the solution
decaying with y → ∞ and y → −∞, respectively, and no eigen-
function can be constructed in this case. This also implies that
the growth rate does not surpass max(σ+) =

√
f (1 − f ) to con-

struct the inertial instability mode, which verifies the conjecture
of Arobone & Sarkar (2012).

For an unstable mode that has the growth rate in the range
0 < σ < max(σ+), we can further derive expressions for the

asymptotic dispersion relation by performing a turning point
analysis. We first consider the evanescent WKBJ solution that
decays exponentially for y > yt+:

T̂ (y) = A∞(−Γ)1/4 exp

−kz

∫ y

yt+

√
−Γ

σ2 + N2 dy

 , (42)

where A∞ is a constant. Around the turning point yt+, the WKBJ
solution (42) is no longer valid and we need to find a local
solution that matches with the WKBJ solution in the range
yt− < y < yt+. By considering a new scaling ỹ = (y − yt+)/ε
and an approximation Γ(y) ∼ Γ′t+εỹ where Γ′t+ is the derivative
of Γ in y at y = yt+, we obtain the following local equation

d2T̂
dỹ2 −

1
ỹ

dT̂
dỹ
− ỹT̂ = O(ε), (43)

where ε =
[
k2

z (−Γ′t+)/(N2 + σ2)
]−1/3

. The solution of this local
Eq. (43) can be expressed in terms of derivatives of the Airy
functions: T̂ (ỹ) = a1Ai′(ỹ) + b1Bi′(ỹ), where a1 and b1 are con-
stants to be matched from the asymptotic behavior of the WKBJ
solution (42) as y → yt+. From the asymptotic behaviors of the
Airy functions when ỹ→ +∞:

Ai′(ỹ)→ −
ỹ1/4

2
√
π

exp
(
−

2
3

ỹ3/2
)
,

Bi′(ỹ)→
ỹ1/4

√
π

exp
(

2
3

ỹ3/2
)
,

(44)

and when ỹ→ −∞:

Ai′(ỹ)→ −
(−ỹ)1/4

√
π

cos
(

2
3

(−ỹ)3/2 +
π

4

)
,

Bi′(ỹ)→
(−ỹ)1/4

√
π

sin
(

2
3

(−ỹ)3/2 +
π

4

)
,

(45)

(Abramowitz & Stegun 1972), we obtain the matched WKBJ
solution in the region yt− < y < yt+:

T̂ (y) = Γ1/4

C+ exp

ikz

∫ y

yt+

√
Γ

σ2 + N2 dy


+C− exp

−ikz

∫ y

yt+

√
Γ

σ2 + N2 dy

 , (46)

where

C+ = exp
(
−i
π

4

)
A∞, C− = exp

(
i
π

4

)
A∞. (47)

Similarly, the evanescent solution in y < yt− that decays expo-
nentially as y→ −∞:

T̂ (y) = A−∞(−Γ)1/4 exp

kz

∫ y

yt−

√
−Γ

σ2 + N2 dy

 , (48)

matches with the following solution in yt− < y < yt+ after the
local solution around yt− is considered:

T̂ (y) = Γ1/4

B+ exp

ikz

∫ y

yt−

√
Γ

σ2 + N2 dy


+B− exp

−ikz

∫ y

yt−

√
Γ

σ2 + N2 dy

 , (49)
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where

B+ = exp
(
i
π

4

)
A−∞, B− = exp

(
−i
π

4

)
A−∞. (50)

Matching the wavelike solutions (46) and (49):

B−
B+

exp

−2ikz

∫ yt+

yt−

√
Γ

σ2 + N2 dy

 =
C−
C+

, (51)

that is

exp

2ikz

∫ yt+

yt−

√
Γ

σ2 + N2 dy

 = exp (−iπ) , (52)

we obtain the dispersion relation in the form of a quantization
formula:

kz

∫ yt+

yt−

√
Γ

σ2 + N2 dy =

(
m −

1
2

)
π, (53)

where m is the branch number with a positive integer. This quan-
tized dispersion relation implies that there exist an infinite num-
ber of discrete growth-rate branches for the inertial instability, as
verified in our numerical results (Figs. 3b and c).

The integral on the left-hand side of (53) should become zero
as kz → ∞ since the right-hand side term is fixed with a finite
m. This implies that the two turning points should approach each
other as kz goes to infinity while Γ→ 0 (i.e., yt− → yt+ → 0). In
addition to this property and the Taylor expansion of Γ around
y = 0:

Γ ' −σ2 − f 2 + f U′|y=0 +
f U

′′′

|y=0

2
y2, (54)

we also assume that the growth rate can be expanded as σ =

σ0−σ1k−p
z +O(k−2p

z ) where p is a positive integer. Applying this
growth-rate expansion to the dispersion relation (53), we find
that

p = 1, y2
t± =

2σ0σ1

f kz
, σ0 =

√
f (1 − f ), (55)

and we obtain the first-order term σ1, which leads to a more
explicit dispersion relation for very large kz:

σ = σ0 −
σ1

kz
+ O

(
1
k2

z

)
, (56)

where

σ1 =

√
f

σ0

(
m −

1
2

) √
f (1 − f ) + N2. (57)

Since σ1 is a positive value, we see that the maximum growth
rate σmax = σ0 =

√
f (1 − f ) is achieved at kz → ∞ for any val-

ues of m. The dispersion relation (56) also implies that the iner-
tial instability only exists in the range 0 < f < 1 to have a pos-
itive real σ0. While the maximum growth rate σmax is indepen-
dent of N, the term σ1 depends on the stratification and increases
as N increases; the growth rate thus decreases with N. We see in
Fig. 6 that the asymptotic dispersion relation (56) matches well
with the numerical results as kz increases.

The asymptotic dispersion relation (56) is a rich source of
information regarding the inertial instability that covers a wide
range of parameters f and N. In Fig. 7, we see how the growth
rate contours change in the parameter space ( f ,N) for Pe = ∞,

0 5 10 15 20
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0.2

0.3

0.4

0.5

Fig. 6. Growth rates of the first branch for Pe = ∞ (solid line) and
Pe = 0.01 (dashed line) at f = 0.5 and N = 1 with predictions from the
WKBJ dispersion relations (56) for Pe = ∞ (solid with filled circles)
and (72) for Pe→ 0 (dashed with empty circles).
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Fig. 7. Growth rate contours in the parameter space ( f ,N) for Pe = ∞,
kx = 0, kz = 20 (solid lines), and predictions from the WKBJ dispersion
relation (56) (dashed lines).

kx = 0, and kz = 20. At a fixed f , the growth rate decreases
with N. The contours of the asymptotic growth rate match very
well with our numerical results especially for higher values of
the growth rate. The better agreement at higher growth rates fol-
lows from our expansion of (53). Specifically, the turning points
are assumed to be close to each other, which is equivalent to
assuming that the growth rate is close to its maximum value.

4.2. The strong diffusion limit: Pe→ 0

Now we investigate the limit Pe→ 0 for high thermal diffusivity.
The 4th-order ODE (35) can be expressed as

d4T̂
dy4 −

Γ′

Γ

d3T̂
dy3 − k2

z

(
1 −

Γ

σ2

)
d2T̂
dy2 + k2

z
Γ′

Γ

dT̂
dy
− k4

z
Γ

σ2 T̂ = O(Pe).

(58)

Applying the WKBJ approximation (37), we obtain the follow-
ing relations at leading order:

δ =
1
kz
, S

′4
0 −

(
1 −

Γ

σ2

)
S
′2
0 −

Γ

σ2 = 0, (59)
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and at first order:

S ′1

[
4S

′2
0 − 2

(
1 −

Γ

σ2

)]
+

S
′′

0

S ′0

(
6S

′2
0 − 1 +

Γ

σ2

)
+

Γ′

Γ
(1− S

′2
0 ) = 0.

(60)

The terms S 0 and S 1 satisfy

S
′2
0 = −

Γ

σ2 , S
′

1 =
Γ′

4Γ
−

Γ′

Γ + σ2 , (61)

or

S
′2
0 = 1, S

′

1 = 0. (62)

The general WKBJ solution with S ′20 (y) = 1 is

T̂ (y) = D3 exp(kzy) + D4 exp(−kzy), (63)

but it has no turning point and the two solutions are always expo-
nentially decaying or increasing as y → ±∞. Therefore, we
must impose D3 = D4 = 0 to construct an eigenfunction. With
S ′20 = −Γ/σ2, the WKBJ solution is wavelike if Γ > 0:

T̂ (y) =
Γ1/4∣∣∣σ2 + Γ

∣∣∣
D1 exp

ikz

∫
y

√
Γ

σ
dy


+ D2 exp

−ikz

∫
y

√
Γ

σ
dy

 , (64)

or evanescent if Γ < 0:

T̂ (y) =
(−Γ)1/4∣∣∣σ2 + Γ

∣∣∣
E1 exp

kz

∫
y

√
−Γ

σ
dy


+ E2 exp

−kz

∫
y

√
−Γ

σ
dy

 . (65)

These solutions in (64) and (65) now have turning points where
Γ = 0, which is the same as in the case without thermal diffusion
at Pe = ∞. Therefore, the turning growth rates σ±(y) of the solu-
tions (64)–(65) are essentially the same as the expression (41),
and we can construct an eigenfunction if the growth rate σ lies
in the ranges min(σ−) < σ < 0 or 0 < σ < max(σ+).

For Pe → 0, we can also perform a turning point analysis in
order to obtain the asymptotic dispersion relation. We consider
the WKBJ solution that decays exponentially for y > yt+:

T̂ (y) = E∞
(−Γ)1/4∣∣∣σ2 + Γ

∣∣∣ exp
−kz

∫ y

yt+

√
−Γ

σ
dy

 . (66)

Around the turning point yt+, we apply a new scaled coordinate
ỹ = (y − yt+)/ε and obtain the following local equation

ε
d4T̂
dỹ4 −

ε

ỹ
d3T̂
dỹ3 − k2

z ε
3 d2T̂

dỹ2 +
k2

z ε
3

ỹ
dT̂
dỹ

+
k4

z ε
6(−Γ′t+)
σ2 T̂ = 0. (67)

Here, we take ε =
[
k2

z (−Γ′t+)/σ2
]−1/3

to balance the equation,
and the 3rd- and 4th-order derivatives become negligible since
they are of order O(ε). The final local equation becomes the
same as (43) thus the local solution is the sum of derivatives of
the Airy functions. By matching the solution around yt+ using
the asymptotic behaviors of the Airy functions as ỹ → ±∞

(Abramowitz & Stegun 1972) similar to in the previous section,
we obtain the WKBJ solution for yt− < y < yt+

T̂ (y) =
Γ1/4∣∣∣σ2 + Γ

∣∣∣
F+ exp

ikz

∫ y

yt+

√
Γ

σ
dy


+F− exp

−ikz

∫ y

yt+

√
Γ

σ
dy

 , (68)

where

F+ = exp
(
−i
π

4

)
E∞, F− = exp

(
i
π

4

)
E∞. (69)

By matching the solution (68) with the solution for y < yt−:

T̂ (y) = E−∞
(−Γ)1/4∣∣∣σ2 + Γ

∣∣∣ exp
kz

∫ y

yt−

√
−Γ

σ
dy

 , (70)

we obtain the following dispersion relation in a quantization
form

kz

∫ yt+

yt−

√
Γ

σ
dy =

(
m0 −

1
2

)
π, (71)

where m0 is the positive integer indicating the branch number.
Similarly to the previous section, we Taylor-expand the growth
rate σ and we obtain an explicit asymptotic dispersion relation
for σ as a function of kz:

σ = σ0,0 −
σ1,0

kz
+ O

(
1
k2

z

)
, (72)

where

σ0,0 =
√

f (1 − f ), σ1,0 =

(
m0 −

1
2

) √
f . (73)

We see in Fig. 6 that a numerical result at small Pe = 0.01
matches very well with the asymptotic growth rate (72) in the
limit Pe → 0 as kz increases. It is important to note that the
expression of the maximum growth rate is the same as (56)
in nondiffusive fluids, and the inertial instability in stratified-
rotating fluids with high thermal diffusivity also occurs in the
regime 0 < f < 1. In contrast to the nondiffusive case, the term
σ1,0 is independent of the stratification N.

4.3. Comparison of the growth rates

It is noteworthy that the asymptotic dispersion relation (72)
in fluids with high thermal diffusivity is independent of the
stratification, and the expression (56) without thermal diffusion
becomes identical to (72) as N → 0. This implies that high
thermal diffusivity suppresses the effect of the stable stratifica-
tion. Thus, stratified fluids with high thermal diffusivity behave
like unstratified fluids. The term σ1,0 at the first order is always
smaller than σ1 in (57); therefore, the ratio γ1 between the two
terms at first order is always larger than unity for positive N if
we consider the same branch m = m0:

γ1 =
σ1

σ1,0
=

√
f (1 − f ) + N2

f (1 − f )
> 1. (74)

The growth rate of inertial instability in thermally-diffusive flu-
ids is therefore always larger than that in nondiffusive fluids.
The effect of high thermal diffusivity has already been reported
in previous literature for the vertical shear instability (Lignières
1999; Prat & Lignières 2013) but the above expression shows
explicitly and quantitatively how much the inertial instability is
destabilized by a high thermal diffusivity as shown in Fig. 6.
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Fig. 8. Growth rate σr versus vertical wavenumber kz at kx = 0.445 for different Péclet numbers Pe: Pe = ∞ (black solid line), Pe =
{100, 10, 5, 1, 0.5, 0.1, 0.01} (gray solid lines) and other parameters: panel a: N = 2, N/ f = ∞, panel b: N = 2, N/ f = 0.1, panel c: N = 0.5,
N/ f = 1. Dashed lines denote the growth rate for unstratified case N = 0 at panel a: f = 0, panel b: f = 20, panel c: f = 0.5. Arrows indicate the
direction of decreasing Pe.
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Fig. 9. Growth rate of the inflectional instability versus panel a: Pe and
panel b: PeN2 for different values of N at kx = 0.445, kz = 1, and f =
0. Blue line represents the growth rate computed from the eigenvalue
problem (81) under the small-Pe approximation.

5. Parametric study

5.1. Effects of Pe on the inflectional instability

While the inertial instability is accessible by the WKBJ approxi-
mation, the inflectional instability should be investigated numer-
ically since it occurs at low kx and kz. In Fig. 8a, we see the
growth rate σr of the inflectional instability as a function of kz
for different values of the Péclet number Pe at kx = 0.445, N = 2,
and f = 0, the regime where only the inflectional instability
exists. While the two-dimensional growth rate at kz = 0 remains
the same regardless of Pe, the growth rate σr decreases with kz

for any values of Pe, and the stabilization occurs faster as Pe
decreases to zero (i.e., as the thermal diffusivity increases). We
see that growth-rate curves (solid lines) approach the growth-rate
curve for the unstratified case at N = 0 (dashed line) as Pe goes
to zero. This implies that high thermal diffusivity suppresses the
effect of stratification on the inflectional instability. The suppres-
sion of the three-dimensional inflectional instability by the ther-
mal diffusion is also found in fast rotating regime at N/ f = 0.1
(Fig. 8b). We see that the instability is sustained at smaller kz for
the fast rotation with small N/ f , while the stabilization with kz
is faster as the thermal diffusivity increases.

In Fig. 9, we investigate the effects of both Pe and N on the
three-dimensional inflectional instability in the inertially-stable
regime at f = 0, kx = 0.445, and kz = 1. We see in Fig. 9a that the
growth rate increases as the stratification becomes strong while
the strong thermal diffusion with small Pe suppresses the insta-
bility. For strong stratification N ≥ 10, it is also observed that the
shape of growth-rate curves is similar and they just have differ-
ent onsets of stabilization at lower Péclet numbers (i.e., higher
diffusivity) as N increases. Due to this resemblance of growth-
rate curves for strong stratification, we plot again the growth
rate σr versus the rescaled parameter PeN2 in Fig. 9b. We see
that the rescaled growth rate curves collapse well for high N.
This selfsimilarity represented by the rescaled parameter PeN2 is
reminiscent of the Richardson–Péclet number RiPe in the small-
Péclet-number approximation used for vertically sheared flows
in stratified and thermally-diffusive fluids (Lignières et al. 1999;
Prat & Lignières 2013).

Following the small-Pe approximation (Lignières 1999), we
introduce the rescaled temperature deviation θ̂:

θ̂ =
T̂
Pe
· (75)

In the limit of small Pe, we obtain the set of linear stability equa-
tions at leading order:

ikxû +
dv̂
dy

+ ikzŵ = 0, (76)

(σ + ikxU) û +
(
U′ − f

)
v̂ = −ikx p̂, (77)

(σ + ikxU) v̂ + f û = −
dp̂
dy
, (78)

(σ + ikxU) ŵ = −ikz p̂ + PeN2θ̂, (79)

ŵ = ∇̂2θ̂. (80)
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Fig. 10. Inertial instability growth rate versus panel a: Pe and panel b:
PeN2 for different values of N/ f at kx = 0.445, kz = 1, and f = 0.5.
Blue line denotes the growth rate computed from (81) in the small Pe
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Equations (76)–(80) can be simplified into an eigenvalue prob-
lem for v̂ and θ̂:

C

(
v̂
θ̂

)
= σD

(
v̂
θ̂

)
, (81)

where

C =

[
C11 C12
C21 C22

]
, D =

 −ikz
d
dy k2∇̂2

i
(
k2

x −
d2

dy2

)
kz∇̂

2 d
dy

 , (82)

C11 = kxkz

(
U′ − f − U

d
dy

)
, (83)

C12 = k2
xPeN2 − ikxk2U∇̂2, (84)

C21 = kx

[
U

(
k2

x −
d2

dy2

)
+ U′′

]
, (85)

C22 = −ikxkz

[
U∇̂2 d

dy
+ (U′ − f )∇̂2

]
. (86)

We now see that the dependence of the problem on Pe and N2

can be studied with the single parameter PeN2 in the small-Pe
limit. As illustrated in Fig. 9b, the growth rate in the limit of
small Pe computed from the eigenvalue problem (81) (blue line
in Fig. 9b) agrees very well with collapsed growth-rate curves
plotted against the parameter PeN2 for large N.

5.2. Effects of Pe on the inertial instability

The WKBJ approximation provides explicit dispersion rela-
tions for the inertial instability. They show how the growth rate
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Fig. 11. Growth rate contours in the parameter space (N/ f ,Pe) for f =
0.5, kx = 0, kz = 20. The white triangle on the axis denotes the critical
N/ f from (87) as Pe→ ∞.

depends on the stratification in the limit Pe → ∞ and how
the growth rate in stratified fluids becomes equivalent to that in
unstratified fluids as Pe → 0. Nonetheless, it is imperative to
investigate whether this argument is valid for any kx and finite
Pe since the WKBJ analysis in this paper is only applied for
kx = 0 in the two extreme limits: Pe → ∞ and Pe → 0. In the
inertially-unstable regime f = 0.5 where both the inflectional
and inertial instabilities are present (Fig. 8c), we see that the
growth rate in the range kz > 0.6 is increased while the growth
rate in the range kz < 0.6 is decreased as Pe decreases to zero.
For both cases, we clearly see that the growth-rate curves in dif-
fusive fluids (solid lines) asymptote to the curve for unstratified
case at N = 0 (dashed line) as Pe → 0. From this asymptotic
behavior, we can verify that the growth rate at small wavenum-
ber kz < 0.6 corresponds to the inflectional instability that is
stabilized as Pe→ 0, while the growth rate at large wavenumber
kz > 0.6 corresponds to the inertial instability that is destabilized
as Pe→ 0.

Picking up the growth rate of the inertial instability at
(kx, kz) = (0.445, 1), we show in Fig. 10 the effects of the Péclet
number Pe on the inertial instability for different values of the
ratio N/ f at f = 0.5. For weakly stratified cases with low
N/ f < 1, the growth rate remains constant as σr ' 0.239 for
a wide range of Pe. On the other hand, the growth rate decreases
as Pe increases and asymptotes to σr ' 0.190 for high N/ f .
Similar to Fig. 9a, the shape of growth-rate curves for high ratio
N/ f > 10 resemble with different onsets of stabilization as Pe
increases. As the rescaled parameter PeN2 is applied for growth
rate curves (Fig. 10b), we see that the curves for large values of
N/ f collapse and match with a stability curve computed from
the eigenvalue problem (81) under the small-Pe approximation
(blue line in Fig. 10b), similarly to the purely inflectional insta-
bility case in Fig. 9b.

Figure 11 shows contours of the growth rate σr in the param-
eter space (N/ f ,Pe) at kx = 0, kz = 20, and f = 0.5, a typical
parameter set for the inertial instability. We see that for a fixed
N/ f , the inertial instability destabilizes as the thermal diffusiv-
ity increases (i.e., as Pe → 0), similarly to what is observed
in Fig. 10. For a fixed Pe, the growth rate decreases as N/ f
increases (i.e., the stratification stabilizes the system at a fixed
rotation). This can be mathematically predicted from the case
for nondiffusive fluids as Pe → ∞ by the asymptotic dispersion
relation (56) as the term σ1 increases with N (i.e., the growth
rate decreases with N). We can further derive from (56) the criti-
cal value of the ratio N/ f in the limit Pe→ ∞ where the growth
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Table 1. Summary table for the growth rate and its variation with parameters Pe, N, f , and (kx, kz) for the three-dimensional inflectional instability
(i.e., kz ≥ 0) and the inertial instability.

Instability type Pe ↓ (κ0 ↑) N ↑ Values of max(σr) Corresponding wavenumbers

Inflectional ↓ ↑ 0.1897 (independent of f ) kx = 0.445, kz → 0
Inertial ↑ ↓

√
f (1 − f ) (maximum at f = 0.5) kx = 0, kz → ∞

rate σ becomes zero:

N
f

∣∣∣∣∣
crit

=

√
(1 − f )2k2

z

(m − 1/2)2 f
−

(
1 − f

f

)
· (87)

We see in Fig. 11 that the asymptotic prediction (87) for the crit-
ical value of N/ f lies in the stable regime obtained from numer-
ical results. Also, it is notable from the Eq. (87) that for a fixed
f , the critical ratio N/ f increases with the vertical wavenum-
ber kz. This implies that the characteristic vertical length scale
λz = 2π/kz decreases as the ratio N/ f increases, as observed in
other stratified-rotating flows (see e.g., Caton et al. 2000).

6. Conclusion

This paper investigates the instabilities of horizontal shear flow
in stably-stratified, rotating, and thermally-diffusive fluids cor-
responding to stellar radiative regions. On the one hand, the
inflectional shear instability always exists for the horizontal
shear flow in a hyperbolic tangent profile whose maximum
growth rate σmax = 0.1897 is attained at kx = 0.445 and
kz = 0 independently of the stratification, rotation, and thermal
diffusion. For the three-dimensional inflectional instability for
nonzero vertical wavenumber kz > 0, the stable stratification that
is inhibited by thermal diffusion has a destabilizing action. This
is the opposite of the case of the vertical shear instability, which
is inhibited by the stable stratification but favored by thermal dif-
fusion that again diminishes its effects (e.g., Zahn 1983, 1992).
On the other hand, the inertial instability is present in the range
of 0 < f < 1 and its maximum growth rate σmax =

√
f (1 − f )

is reached as kz → ∞ in the inviscid limit for both nondiffusive
and high-diffusivity fluids. The analysis on the inertial instabil-
ity for the case kx = 0 and large kz has been elaborated fur-
ther through the WKBJ approximation in two limits: Pe → ∞
and Pe → 0 (i.e., for low and high thermal diffusivity, respec-
tively), and explicit expressions for asymptotic dispersion rela-
tions are provided in both limits. For Pe → ∞, the growth
rate decreases with N thus the stratification stabilizes the iner-
tial instability, but the maximum growth rate σmax at infinite kz

remains as
√

f (1 − f ) independently of N. In the limit Pe → 0,
the growth rate is no longer dependent on the stratification and
becomes identical to the inertial instability growth rate for the
unstratified case at N = 0. Detailed numerical studies confirm in
the general parameter space (kx, kz) that both the inflectional and
inertial instabilities in thermally-diffusive fluids asymptote to
those of the unstratified case as the thermal diffusivity increases
(i.e., Pe → 0). The selfsimilarity of the growth rate in stratified-
rotating fluids is also found such that the instabilities depend on
the parameter PeN2 for small Pe and strong stratification N. As a
summary, we describe in Table 1 the growth rate and its variation
with parameters Pe, N, f , kx and kz.

The present work brings to light two horizontal shear insta-
bilities that probably occur in stellar radiative zones but that had
not been considered thoroughly before in stellar astrophysics,

especially for the case of inertial instability on a local f -plane
with the effects of thermal diffusion. The particularity of the stel-
lar regime is that the high thermal diffusivity can weaken the
stabilizing effect of the stratification for the inertial instability
thus to enhance its development, while the three-dimensional
inflectional instability is suppressed by the high thermal diffu-
sivity and the inflectional instability mode becomes dominantly
two-dimensional. We first investigated the linear instabilities in
the polar regions but their nonlinear saturation and the resulting
anisotropic turbulent transport of angular momentum and chemi-
cals in both the horizontal and vertical directions has to be quan-
tified. To derive the associated prescriptions for stellar evolu-
tion models, it is imperative to study the effects of the complete
Coriolis acceleration on the instabilities at any co-latitude
using the so-called nontraditional f -plane approximation
(Gerkema et al. 2008). This will be done in the next article of
the series.
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