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How much does the part impact the whole?

Ways to approach the problem:

O stability & transport in vicinity of a given plasma state
» constrain profiles (local or global) = nonlinear fluxes, fluctuations
» rich physics (EM, k-space multiscale, ...)
» problems: near marginal stability (slow dynamics & multiscale interaction in
real space); artificial source/sink/boundary conditions;

® whereby plasma reaches nonlin. state & self-organisation of transport
» prescribe (non-adaptive) sources/sinks & bound. conditions

— the rest is output: nonlinear fluxes,
fluctuations & profiles

> heavy; long times required: multiple
scales interplay (Fourier & real space)
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Ways to approach the problem:

O stability & transport in vicinity of a given plasma state
» constrain profiles (local or global) = nonlinear fluxes, fluctuations
» rich physics (EM, k-space multiscale, ...)
» problems: near marginal stability (slow dynamics & multiscale interaction in
real space); artificial source/sink/boundary conditions;

® whereby plasma reaches nonlin. state & self-organisation of transport
» prescribe (non-adaptive) sources/sinks & bound. conditions

— the rest is output: nonlinear fluxes,
fluctuations & profiles

> heavy; long times required: multiple
scales interplay (Fourier & real space)

This talk: ToreSupra limiter & SOL
SOL < edge < core interplay? NM'sL?




Adding simplified SOL physics. . .

without resolving sheath boundary & neutrals
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L» E, well develops @separatrix

[Caschera JPCS 18]
e weak edge transport barrier

e core: ITG or TEM dynamics

e SOL: electron parallel dynamics; miss convection — particule source




Orbit drift: an important player in the establishment

of E, well & edge/SOL dynamics
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» consistent w. common observations: deeper E, well in favourable B x VB drift
» top vs bottom limiter: clear impact on poloidal distribution of fluctuations. ..

» ...no visible impact on overall (surface-averaged) fluxes (so far?)



Staged & nonlinear sequence of destabilisations leads to

a globally organised turb. state
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@ core unstable; edge stable = shortfall = solution w/o limiter  [Holland PoP 11]



Staged & nonlinear sequence of destabilisations leads to

a globally organised turb. state
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@ core unstable; edge stable = shortfall = solution w/o limiter

® edge destabilised OLCFS (inside —closed field lines) ; core ~unaffected
— complex spreading pattern, mostly inward  [Kadomtsev 65; Garbet NF 94, Hahm PoP 05]



How does then turbulence contaminate the stable edge?

— combine near-separatrix instability & inward spreading

e drift & limiter = poloidal asymmetry — instab. near limiter @separatrix

e fluct. advected by flow; complex fill-in pattern [limiter = top — mid-plane]

e turb. “contamination” of (marginally) stable edge

o _ 0 R f2
— +Veg= | [nl]+V-T =Inj—Diss. ; T(r,0,t)=vnl)= VEB r—
at ’ ag 3 Fl\/l

[Mattor PRL 94; Gurcan NF 13]

spreading flux

red = outwards

blue = inwards

e later: edge-enhanced core spreading [edge fluct.: channel for core emptying]
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Staged & nonlinear sequence of destabilisations leads to

a globally organised turb. state
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O core unstable; edge stable = shortfall = solution w/o limiter

® edge destabilised OLCFS (inside —closed field lines) ; core ~unaffected
— complex spreading pattern in edge, mostly inward

® edge & core turb. meet — core starts "emptying” — spreading in & out



Staged & nonlinear sequence of destabilisations leads to

a globally organised turb. state
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O core unstable; edge stable = shortfall = solution w/o limiter

® edge destabilised OLCFS (inside —closed field lines) ; core ~unaffected

— complex spreading pattern in edge, mostly inward
® edge & core turb. meet — core starts "emptying” — spreading in & out
® SOL becomes unstable OLCFS (outside) = turb. spreads outwards in SOL
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Staged & nonlinear sequence of destabilisations leads to
a globally organised turb. state
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O core unstable; edge stable = shortfall = solution w/o limiter

® edge destabilised OLCFS (inside —closed field lines) ; core ~unaffected

— complex spreading pattern in edge, mostly inward
® edge & core turb. meet — core starts "emptying” — spreading in & out
® SOL becomes unstable OLCFS (outside) = turb. spreads outwards in SOL
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Conclusions

» penalised limiter = simplified SOL: e~ || dynamics; miss convection & neutrals

» interplay btw SOL, edge & core — key for edge, impacts core & SOL

— spontaneous weak transport barrier = E, build-up;

— steepness E, affected by ion B x VB drift wrt limiter poloidal position

— staged development of turbulence = clarifies spreading controversy
o limiter: edge — core ; core — edge ; SOL unstable & core/edge — SOL
e edge stable w/o limiter;
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Flux-driven approach: goal is to allow for phase space

exploration, preserving dynamic feedback loops

[Grandgirard JCP 06 ; CPC 16]
0
» 2 (Fo) —[H. F.]=[Q(F.) +/S(F:) & Zion; + Zdnz =[on.]

» 2 species; kin. trapped e™; adiab. sources; circular B geom.; electrostat.

E, dynamics is key — preserve it E, —vrB, + v,Br = Vp/ne

e consistent profile evolution

o large fluct. in edge
e equil. grad. length ~ few tens of p;

scale separation assumption
breaks down, especially in edge

e collisional damping: v, & vt
3 synergies: non additive [Dif-Pradalier PRL 09;

Abiteboul PoP 11; Grierson NF13; Idomura PoP 14; Parra PPCF
14; Vernay PoP 12; Oberparleiter PoP 16; McDevitt PRL 13]

e open field line = Scrape-Off-Layer
» plasma-wall interaction = E, ~ —AVT
» ion orbit losses — polarization E,

» neoclassics| = v,, vy « VT
> TrETETE———T TR e
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Differences in turbulence behaviour with isotope mass:

connected to SOL turbulence?
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Staged & nonlinear sequence of destabilisations leads to
a globally organised turb. state




Staged & nonlinear sequence of destabilisations leads to

a globally organised turb. state
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@ core unstable; edge stable
® edge destabilised OLCFS (inside —closed field lines) ; core ~unaffected
— complex spreading pattern in edge
® edge & core turb. meet — core starts "emptying”
@ SOL becomes unstable OLCFS (outside) = turb. spreads outwards in SOL
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[ongoing...] Combination of near-separatrix PVG

& inward spreading

linear stability with QuaLiKiz

[Bourdelle PPCF 15] 0 — 0 _ Y
e core is near-marginal (t + vEﬁ&g) (nl)+V-T; = Inj—Diss.

e edge [p = 0.8 — 1] lin. stable
e near-limiter: PVG unstable

[Gurcan NF 13]

PVG stability in edge-SOL
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Motivation: a universal trend in fluctuation measurements

...a generic problem

> turb. “contamination” of marginally stable zones [Liewer '85, Ritz ‘89, Bravenec '92
penetration/overshoot [.... Zahn 91, ...] Fonck '92, Paul '92, Durst '93, Cima '95,

H ) Mazzucato '96, Deng '98, Demers '01
v.s. spreadin Hahm '01, ... , g '98, ,
P g  [Hahm ] McKee '01, Zweben '02, Sabot '06]

> self-advection of turbulence

100 GP| - Zweben 02
Alcator C-mod
...and an old controversy w0 | DD 4
— BES - McKee 014/
= where does the turb. come from? £ ToraSopra 4
. . < 1 | Reflectometry - /
> local linear instab?  [Furth '63,... Bourdelle '12] = -Clairet 06 sl Tore Supra
i) m— “Reflectometry
> Scrape-Off-Layer based instability? [Berk '93] 01 | -Sabot 06
> ‘“core invasion”  [Mattor '94]
0.01 + + + + + + + + + +
> ‘“edge invasion”  [“tail wagging the dog” ..., Garbet '94] 0 010203 04 0506 070809 10 11

normalised radius

Gerbaud ’
... the symptom of an uneasy problem (Gerbaud 108]

= easy to under-predict fluct. levels in the edge
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Symptom of an uneasy problem: when the ‘cure’ is debatable

[Holland PoP 11]
Sn/n (%) (70-300 kHz)
| (high «, low )
B Experiment
® GYRO

@

P, /MW
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e stiffness symptom: large variability of flux response to modest grad. change

e ‘“cure’ to shortfall? [waltz APs 17]

or alerting sensitivity = predictability?

Different perspective: what ingredients are responsible for edge fluctuations?
in particular: how much do core & edge interplay? [flux-driven]



Edge—core interplay = ‘contamination’ on a global scale:

edge (b.c.) is not a mere bound. condition for core

“Academic”: 2 different comput., both flux-driven, with different turb. drive
adiab. electrons: density fixed, temperature evolves = Vn controls drive

[ S

N=(VT/T) / (vnin)
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08

spreading of turbulence from core not significant with low core drive

edge boundary impacts core plasma transport & self-organisation
[Dif-Pradalier PFR 2017]

1.0
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Turbulence levels in edge: Scrape-Off-Layer (SOL)

boundary conditions are key

T T T T
Experimental

Cut-off layer
=0 reflexion
/ 2] mid-plane
----------- 0=0 = 4°

Antennas
— >

S eme=d S gpatial
o localisation

RMS of &n/n [in %)

0 1 L 1 1
0.2 0.4 06 0.8

. . Normalised radius
e high-quality fast-swept reflectometry P

[Clairet RSI 2011]

e mimic conditions TS #45511 = T, # T;, ne, q, S, Vs, Sheat, 75% P«
L, synth. diag. for GYSELA: 6 = 0 £ 4°
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Turbulence levels in edge: Scrape-Off-Layer (SOL)

boundary conditions are key

[ synthetic =0 = 4° T '
p-=1/316 Experimental

GYSELA
SOL &
limiter

mid-plane
B=0 = 4°

RMS of &n/n [in %)

0 1 L 1 1
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e mimic conditions TS #45511 = T, # T;, ne, q, S, Vs, Sheat, 75% px«
L, synth. diag. for GYSELA: 6 = 0 £ 4°
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Turbulence levels in edge: Scrape-Off-Layer (SOL)

boundary conditions are key

2.0+ Tp.=1316 T
SOL &
15+ Limiter

mid-plane
Ol = 4°

RMS of &n/n [in %)
& 5

el
o

Normalised radius p
e mimic conditions TS #45511 = T, # T;, ne, q, S, Vs, Sheat, 75% px«
L, synth. diag. for GYSELA: 8 = 0 £+ 4°
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Turbulence levels in edge: Scrape-Off-Layer (SOL)

boundary conditions are key

[ synthetic =0 = 4° T '
p- = 1/316 Experimental

GYSELA
SOL &
mid-plane limiter
Bel) = 4°

RMS of &n/n [in %)

1 1
0.2 0.4 06 0.8

Normalised radius p

e mimic conditions TS #45511 = T, # T;, ne, q, S, Vs, Sheat, 75% px«
L, synth. diag. for GYSELA: 8 = 0 £+ 4°

e inclusion of SOL bound. cond. instrumental

... long story short:
& y escan T., T;, ne, q, b.c. = whence comes the turb.?
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Stable edge not destabilised through combination of

core spreading @ modification of local parameters

No cure observed with: 157 p = 1316 '
H H —_ experimental
e increased resolution £ | nosoL
o /' T./T; ratio p
e\ safety factor g [\, magn. shear] s
z
(=]
o\, Vn; 2 05
r
T T T
15 _ pe= 15316 experimental 00
£ | nosoL 120
1= an § vn
e 10 @
E 2.5-3 = 10+ i
5 ]
5 % 8 o, no SOL
Qos = 2 _
= B 08 -=- experimental L]
o c +10% ) -
@ +20% Y
[a] +30% N
p.oTL_GYSELA | L L 06 —— +40% NS
0.2 0.4 0.6 08 1.0 o +60%
Normalised radius p [TG] p.= 1316 — +80% \
0.4 | 1 1 |
- - 0.2 04 0.6 0.8 1.0
How to explain fluct. levels with SOL? Normalised radius p
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Dynamics of E, key — attention to its sources

vspace-6pt

Critical sources for E,

Core (confined) plasma:

Radial force balance = E, ~ Vp/en

Turbulence self-generated flows (Zonal Flows):

Large fluctuations at the edge — large E, ?

Unconfined region (" Scrape-Off Layer”):

plasma-wall interaction = E, ~ —AVT

lon orbit losses = plasma polarization E,

Magnetic geometry: X-point

Unbalanced vertical charge sep. = E,

Collisional damping:

neoclassics = vy = K(v4,€)V T /eB

neutrals = collisional friction

Common assumption of scale separation breaks down at the edge
Equilibrium gradient length can reach a few tens of p;
Neoclassical & gyrokinetic theories need being revisited
Flux-driven approach looks appropriate 27



