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Towards the Optimal Design of
Numerical Experiments

Stéphane Gazut, Jean-Marc Martinez, Gérard Dreyfus, Senior Member, IEEE, and Yacine Oussar

Abstract—This paper addresses the problem of the optimal
design of numerical experiments for the construction of nonlinear
surrogate models. We describe a new method, called learner
disagreement from experiment resampling (LDR), which borrows
ideas from active learning and from resampling methods: the
analysis of the divergence of the predictions provided by a pop-
ulation of models, constructed by resampling, allows an iterative
determination of the point of input space, where a numerical
experiment should be performed in order to improve the accuracy
of the predictor. The LDR method is illustrated on neural network
models with bootstrap resampling, and on orthogonal polynomials
with leave-one-out resampling. Other methods of experimental
design such as random selection and -optimal selection are
investigated on the same benchmark problems.

Index Terms—Active learning, bagging, bootstrap, -opti-
mality, neural networks.

I. INTRODUCTION

ALTHOUGH numerical simulation tends to be ubiquitous
in today’s engineering, computation time often limits its

use, despite the ever increasing power of computers. A common
technique for circumventing that limitation is the design of
surrogate models, i.e., analytical functions that approximate
the input–output mapping performed by the simulation model.
Still, the estimation of the parameters of the surrogate models
requires the availability of results obtained by the simulation
model that it is intended to approximate; therefore, whenever
numerical experiments are costly, it is important to select them
as efficiently as possible in order to minimize their number.
In statistics, the selection of experiments is known as optimal
experimental design (OED), see, for instance, [1] and [2], while
it is known as active learning in the machine learning literature.

Optimal experimental design has been widely developed for
models that are linear in their parameters, such as polynomials.
The observations of a given quantity are assumed to be real-
izations of a random variable that is the sum of a deterministic
function (the regression function, assumed to be linear in its pa-
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rameters) and of a random variable with zero mean. By con-
trast, in this work, the existence of the latter random variable is
not assumed: in other words, repeated experiments will provide
identical results. Such is the case when the data to be modeled
is generated by a deterministic computer simulation. Moreover,
we relax the assumption that the model is linear in its param-
eters. Therefore, we describe a generic alternative approach to
experimental design, based on resampling techniques.

Sections II and III are intended to put optimal experimental
design and active learning into the perspective of the present
work. The two subsequent sections describe two variants of
the method that we advocate in the context of numerical ex-
periments. Finally, those approaches are compared on classical
benchmark problems.

II. BACKGROUND: -OPTIMALITY IN EXPERIMENTAL DESIGN

The mainstream development of optimal experimental design
dealt with linear-in-their-parameters models, starting with the
work of Kiefer [3], Kiefer and Wolfowitz [4], Fedorov [1], or
Wynn [5]. Vila [6], MacKay [7], Cohn [8], and more recently
Issanchou and Gauchi [9] and Witczak [10], described applica-
tions of optimal experimental design techniques to the training
of neural networks.

A. Training Models From Data

We consider an unknown function in a domain .
We denote by a finite set of
observations, where is drawn from a probability distribution

, and where .
We consider a family of parameterized functions ,

within which we seek the “best” approximation of the unknown
function , given the available data . To that effect, the
loss function is defined,
which expresses the discrepancy between function and
its approximation . The parameters of the model are
estimated by minimizing a cost function which is the sum, over
all examples of a data set called training set, of ;
we denote by the vector of parameters for which the cost
function is minimum

(1)

B. Linear Framework

In the linear framework, -optimal experimental design con-
sists in organizing the experiments in order to minimize the vari-
ance of the estimated parameters, by maximizing the Fisher ma-
trix determinant , where is the experimental ma-
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Fig. 1. Confidence area for two parameters.

trix, whose element is the value of variable observed in
experiment . is a matrix, where is the number of
observations and is the number of variables. We denote by

the pseudoinverse of .
Let be the least squares estimator of the unknown

function parameters for the data set . The model is pos-
tulated to be linear in its parameters. In the probabilistic frame-
work, under the hypothesis of uncorrelated centered residuals
with variance , the variance–covariance matrix of the param-
eters is

(2)

The Fisher matrix depends on the distribution of the
experimental values of the variables. It is, therefore, natural to
seek a distribution of points that reduces the variance of the
parameters to the largest extent. Under the additional hypothesis
of Gaussian residual error, the confidence area of the estimated
parameters is a hyperellipsoid centered in and defined, for a
confidence level , by [11]

(3)

where is the chi-square quantile with degrees of
freedom.

Many optimality criteria may be considered. We will describe
the main optimal experimental design techniques that make use
of the spectral properties of the dispersion matrix .

The confidence area, or, more generally, the volume of the
confidence ellipsoid as shown on Fig. 1, can be acted upon by
decreasing the following :

• the length of the main axis of the ellipsoid, i.e., the largest
eigenvalue of ( -optimality criterion);

• the sum of the lengths of the axes of the ellipsoid, i.e., the
trace of ( -optimality criterion);

• the volume of the ellipsoid, i.e., the determinant of
( -optimality criterion).

Various algorithms [1], [12] are available for finding exact
solutions satisfying the previous optimality criteria, for postu-
lated models that are linear in their parameters. In that context,

the solution depends only on matrix ; therefore, it does not
depend on the model, insofar as it is postulated to be linear in
its parameters. In other words, experimental planning can be
performed prior to modeling in that context. That is no longer
true for models that are nonlinear in their parameters, as will
be shown in Section II-C, which describes a -optimal experi-
mental design methodology for such models.

C. Nonlinear Framework

In the nonlinear case, useful results are frequently obtained
by performing a first-order Taylor expansion of the model, in
parameter space, in the neighborhood of the parameter vector

for which the least squares cost function is minimum

(4)

where is the Jacobian matrix of the model

(5)

is the vector of variables for the th observation, and is
the th parameter of model with parameter vector . is
an matrix, where is the number of observations and

is the number of parameters of the model. This provides a lo-
cally linear approximation of the model, whose variables are the
partial derivatives of the model with respect to its parameters.
Therefore, the Jacobian matrix of the model plays the same
role as the experimental matrix does for linear-in-their-pa-
rameters models. Actually, if the model is linear in its parame-
ters, matrices and are identical.

By contrast to matrix , matrix depends on the parame-
ters of the model. That technique allowed, for instance, the esti-
mation of confidence intervals [13], of the tangent-plane lever-
ages and of the generalization error [14] of nonlinear models. In
the same spirit, Issanchou and Gauchi [9] proposed, in the ho-
moscedastic case, an optimal experimental planning technique
based on the minimization of the approximate volume of the
confidence ellipsoid, proportional to .

Since the Jacobian matrix depends on the parameters of
the model, experimental planning cannot be performed prior
to modeling. Therefore, a two-step procedure is necessary.
Before the construction of the -optimal design, an initial set
of experiments must be available, e.g., by Latin hypercube
sampling (LHS)1; from that initial data set, a first estimate of
the parameters of the nonlinear model is obtained, allowing the
computation of the Jacobian matrix.

The algorithms that are available for the construction of
-optimal experimental design can be applied simply, re-

placing matrix by matrix , in order to obtain -optimal
experiments that can be used in addition to the initial ones.
Local -optimality is often denoted as -optimality,
where represents the parameter vector for which the least
squares cost function is minimum.

1The LHS method was developed to generate a distribution of experiments
from a multidimensional distribution [15]. A square grid is a Latin square if
there is only one sample in each row and each column. A Latin hypercube is the
generalization of a Latin square in an arbitrary number of dimensions. The LHS
sampling provides an efficient sample placement in the input space of variables.
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D. Algorithmic Construction of -Optimal Experimental
Designs

There are many algorithms for the construction of optimal ex-
perimental designs; see, for instance, [5], [12], or [16]. We de-
scribe here Fedorov’s algorithm [1], which is probably the most
popular and easiest to code. The purpose is to select experi-
ments, in a set of candidates, which maximize the determi-
nant of the Fisher matrix for linear-in-their-parameters
models, or for nonlinear-in-their-parameters models.
Step 1) Choose experiments randomly in a set of can-

didate experiments, which are typically the nodes of
a “fine” grid.

Step 2) Perform all possible exchanges of an experiment
of the initial design with an experiment of the
candidate experiments; there are dif-
ferent exchanges (repeated experiments are not al-
lowed in the context of numerical experiments since
repeated numerical experiments yield identical re-
sults); compute the determinants of the
corresponding Fisher matrices.

Step 3) Perform the exchange that increases the determinant
of the Fisher matrix by the largest amount. Iterate to
Step 2) if the termination criterion is not satisfied.

To compute the determinant at the current iteration, the fol-
lowing theorem can be used [11].

After the exchange of with at iteration , the new informa-
tion matrix is

(6)

As a consequence, the determinant is

(7)

with

(8)

where is the element of the hat matrix

(9)

Various termination criteria may be considered. For instance,
the algorithm may be stopped when the increase of the deter-
minant is smaller than a chosen value. As usual with greedy al-
gorithms, local optima exist in general, so that the solution thus
obtained may be suboptimal.

III. ACTIVE LEARNING BACKGROUND

In contrast to classical learning (passive learning), the active
learner selects the most useful experiments to be added to the
initial data set. The learner chooses the best instances from a
given set of unlabeled examples (pool-based sample selection
[17], [18]).

The active learning strategy can be summarized by the fol-
lowing three steps:

• train the learner using the current training set;
• choose a point in the pool of candidate experiments;

• measure or compute the corresponding quantity of interest
y and add the point to the training set.

This procedure is an incremental strategy, which adds new
training points iteratively.

The main question in active learning is how to choose the
point in the second step. Various strategies may be considered,
such as the following:

• adding experiments where data is missing;
• adding experiments where confidence in model predictions

is low [19];
• adding experiments in order to minimize the generaliza-

tion error of the model; see, for instance, [20] for sup-
port vector machine, or [21], where the expected integrated
squared difference (which is an estimation of the general-
ization error in a Bayesian framework) is minimized.

IV. DESIGN OF EXPERIMENTS BY LDR BAGGING

In this section, we describe a new method called learner dis-
agreement from experiment resampling (LDR). As explained in
Section II-A, we denote by the vector of the parameters for
which the cost function is minimum

(10)

Clearly, different optimal parameter vectors will be derived
from different training sets; that variability can be investigated
by resampling methods such as bagging (bootstrap aggregation)
[22]; we first describe that method, which is central to our ex-
perimental planning technique.

A. Bagging

Given a training set , the aggregated predictor is defined by

(11)

where is the expectation value of the predictions of the
model, for variable vector , for all possible training sets of
identical size; the expectation value is estimated by the average,
hence the subscript .

The prediction provided by the aggregated predictor is more
accurate than the average of the predictions provided by the in-
dividual predictors of the same family on the same data set

(12)

(13)

An estimation of can conveniently be obtained by the
bootstrap [23], a statistical resampling method: examples are
drawn randomly with replacement from the original data set
of size , thereby generating an ensemble of data sets of iden-
tical size . Denoting by the bootstrap sample (or replicate)
, the estimated expectation by bootstrap (hence the subscript
) with replicates is

(14)
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TABLE I
LDR ALGORITHM

B. Active Learning by LDR Bagging

Similarly to estimating the expectation value of the predic-
tions, their variance can be estimated by bootstrapping of the
original data set

(15)

The approach to active learning, or experimental planning,
that we advocate here consists in adding new experiments in
the regions of variable space where the bootstrap estimate of
the variance of the predictions is the largest, i.e., where the pre-
dictors constructed from data sets obtained by bootstrap resam-
pling disagree most. That can be viewed as a paradigm of a
teacher–classroom interaction, where each student learns from
a part of the data, the teacher asks questions, the classroom pro-
vides answers, and new questions are asked in the area where
the greatest disagreement between all possible answers arises.

Therefore, our method can be summarized as follows.
• Find the point of maximal prediction variance

new (16)

• Perform a numerical experiment, i.e., compute new ,
and include the experiment [ new and new ] in the initial
sample in order to obtain the new sample

new new (17)

This active strategy is terminated when the decrease of the
prediction variance is not significant, or when the predefined
maximum number of additional experiments is reached (see the
LDR algorithm in Table I).

The generation of the bootstrap aggregated predictor (step 2)
involves the training of the model by an appropriate procedure.
For linear-in-their-parameters models, the procedure may be or-
dinary least squares; for non-linear-in-their-parameters models,
such as neural networks, training is performed by minimizing

the chosen cost function. In the latter case, the main source of
variability should be the resampling process, rather than the ex-
istence of local minima of the cost function; to that end, for each
bootstrap sample, several models are trained, and a single model
is selected, as explained in Section VI-A.

C. Simple Didactic Example

We illustrate the previous procedure by the simple example of
. The initial training set features ten experiments, not

uniformly distributed in variable space. The bootstrap estimates
of the prediction variance over all candidate points of a grid
are computed, and the point with maximum prediction variance
estimate is included in the initial training set, as shown in Fig. 2.

The estimated prediction variance decreases significantly at
each step in the vicinity of the new points, and decreases glob-
ally in the domain. The active strategy is terminated when the
decrease of the predictive variance is not significant (we would
have stopped the heuristic at the fifth step). Fig. 3 compares the
generalization error of models that learned on data selected by
LDR and on data sets generated randomly. The generalization
error is estimated by an integration Monte Carlo method which
provides an estimate of

(18)

It shows that the generalization error in the LDR case de-
creases significantly with the number of new experiments.

Note that we compare the generalization performance of
LDR-designed models with the generalization performance
of models obtained by training from a single random data
set. Section VI reports comparisons between LDR designed
models, -optimality designed models, and models trained
from 500 different random data sets.

V. ACTIVE LEARNING BY LDR LEAVE-ONE-OUT

The prediction variance may also be estimated by leave-one-
out, especially when the models are linear in their parameters:
in that case, the variance of the parameters can be computed
explicitly. The application of that technique to a benchmark [24]
is described in Section VI.

The models were sought within the family of linear combina-
tions of functions resulting from the tensorization of orthog-
onal Legendre polynomials. The family of orthogonal Legendre
polynomials provides a well-conditioned information matrix

(19)

The parameters are computed by ordinary least squares,
as described in Section II-A or by singular value decomposi-
tion (SVD). We denote by the parameter vector obtained by
removing example from the training set, by , the leverage
of observation [the th diagonal element of the hat matrix

], and by , the residual of example when
it is present in the training set. The parameter vector is ob-
tained explicitly by [11]

(20)
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Fig. 2. Active learning with LDR bagging. (a) First iteration. (b) Second iteration. (c) Third iteration. (d) Fourth iteration. (e) Fifth iteration. (f) Sixth iteration.

Fig. 3. Comparison of generalization error between models that learned on
LDR-generated data sets and on random data sets.

We denote by the quantity by , the ma-
trix of elements , and by

, the pseudoinverse of . The estimated prediction
variance is given by

(21)

Since the prediction variance can be computed exactly
(within numerical roundoff errors) from the pseudoinverse

, the new point new can be obtained without resorting to
resampling

new (22)

The new point is chosen in a set of candidate experiments.

VI. RESULTS

In this section, the efficiencies of -optimality, LDR active
learning, and random sampling of variable space are compared
on three different problems.

A. Homma–Saltelli Benchmark [24]

The method was validated on the Homma–Saltelli bench-
mark. The data-generating function is

with (23)

The 100 experiments were obtained by LHS, thereby generating
the initial data set.

In the following, the models are feedforward neural networks
[multilayer perceptrons (MLPs)] with a single layer of hidden
neurons. With the initial data set of 100 examples, we trained
several MLPs with different numbers of hidden neurons. The
generalization error of each MLP was estimated by the Monte
Carlo integration method mentioned in Section IV-C. Models
with 12 hidden neurons gave a good bias-variance tradeoff. The
purpose of experimental planning was to supplement the initial
training set of 100 examples with 60 additional examples. The
generalization error was also estimated by the Monte Carlo in-
tegration method.

1) Results for LDR-Bagging Method:
• Comparison between -optimality, LDR active

learning, and random sampling of variable space:
We compared -optimality, LDR active learning, and
random sampling of variable space in order to estimate the
accuracy of the first two planning techniques with respect
to the accuracy of a random strategy. Since the random
strategy is not representative with only one data set, 500
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Fig. 4. Comparison between D-optimal design, LDR design, and random
strategy.

random data sets were generated in order to provide a
robust statistic of the random strategy accuracy.
Since neural network training depends on initial weights,
we trained the MLP 50 times with different random weight
initialization, allowing for a maximum number of cycles
for each training. After these 50 trainings, we selected
the MLP that had the smallest training error.2 That time
will be further reduced in the future by application of the
method described in [25], based on the correlation between
the MLP performance at convergence and its performance
early in the training process, which allows discarding a
model even before its training has been completed.
Fig. 4 shows the histogram of the estimated generalization
errors of the 500 neural networks. The two lines are the esti-
mated generalization errors of neural networks that learned
on the -optimality and the LDR-Bagging data sets.
As expected, both experimental design techniques led
to better results than a random selection of experiments:
models built on -optimal training sets outperformed the
random strategy in 86% of the cases, and the LDR method
outperformed random selection in 91% of the cases.

• Comparison between D-optimality and LDR active
learning: Because the cost function of neural networks has
local minima, a statistical comparison between two exper-
imental planning methods requires training the network
with different initial values of the parameters. The 1000 dif-
ferent neural networks were trained on each data set. Each
neural network was selected on its training mean square
error among 50 different neural networks. Fig. 5 shows
the distribution of the generalization error estimates.
For the LDR method, the average generalization error is

. For -optimal design, the average is
. The models that learned on LDR sam-

ples appear to be more efficient than the -optimal ones.
Indeed, 73% of the LDR models have a generalization error
smaller than against 26% in the -optimal case.

2The mean square error on the training set is correlated with the generalization
error when no measurement uncertainty is present.

Fig. 5. Generalization error distribution of 1000 MLPs trained on D-optimal
and LDR data sets.

Fig. 6. Comparison between LHS and LDR selection. To approximate the
Homma–Saltelli function, the models were sought as linear combinations of
Legendre polynomials of degree six. The prediction variance was estimated by
(virtual) leave-one-out. For LHS strategy, in every iteration k = 1; . . . ; 150,
50 LHS samples of size 100 + k were generated. The mean and the standard
deviation are shown. For LDR strategy, a single point is added at each iteration.
The selected point is the point for which the prediction variance is maximum.

2) Results for LDR-Leave-One-Out Method: We compared
the generalization error, estimated by Monte Carlo, of models
constructed on several samples of the same size (100–250 ex-
periments), generated by LDR leave-one-out and by LHS. In
order to obtain a robust comparison, we used 50 LHS samples
for each sample size, and we computed the average and the stan-
dard deviation of the generalization error.

Fig. 6 shows the average evolution of the generalization error,
and its standard deviation, of models that learned on both LHS
and LDR samples. In real applications, the initial samples (100
experiments) would be based on low-discrepancy mathematical
series, which are more robust, on average, than the LHS sam-
ples [26].

In that case, the LDR-leave-one-out active learning appears
to be more efficient than LHS. For samples of identical size, the
generalization error of models that learned on LDR samples is
smaller than the average generalization error of LHS by at least
the standard deviation of LHS generalization error.
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Fig. 7. Comparison between D-optimal design, LDR design, and random
strategy.

B. Friedman Benchmark

In that case, the data-generating function is the Friedman
function

with

and

(24)

An initial data set of 100 experiments was generated by LHS.
For this benchmark, we used the same test procedure used in

Homma–Saltelli benchmark. In the following, the models are
feedforward neural networks (MLPs) with a single layer of six
hidden neurons.3 The purpose of experimental planning was to
supplement the initial training set of 100 examples with 30 addi-
tional examples. The generalization error was estimated by the
Monte Carlo integration method (see Section IV-C).

1) Results for LDR-Bagging Method:
• Comparison between -optimality, LDR active

learning, and random sampling of variable space:
We estimated the accuracy of the -optimality and the
LDR active learning planning techniques with respect to
the accuracy of a random strategy with 500 random data
sets. In each case, we used an accurate neural network se-
lected on its training mean square error among 50 different
neural networks.
Fig. 7 shows the histogram of the estimated generalization
errors of the 500 neural networks. The two lines are the esti-
mated generalization errors of neural networks that learned
on the -optimality and the LDR-bagging data sets.
As expected, both experimental design techniques led
to better results than a random selection of experiments:
models built on -optimal training sets outperformed the
random strategy in 94.8% of the cases, and the LDR method
outperformed random selection in 96.7% of the cases.

3Models with six hidden neurons gave a good bias-variance tradeoff.

Fig. 8. Generalization error distribution of 1000 MLPs trained on D-optimal
and LDR data sets.

• Comparison between -optimality and LDR active
learning: We performed a statistical comparison between

-optimality and LDR active learning. The 1000 different
neural networks were trained on each data set. Each neural
network was selected on its training mean square error
among 50 different neural networks. Fig. 8 shows the
distribution of the generalization error estimates. In that
case, both experimental design techniques have the same
accuracy.

C. Engineering Application

For this application, we used a data set of more than 2000 real
examples generated by a simulation model of a physical process.
The quantity to be predicted is the multi-keV x-ray conversion
efficiencies in the context of multi-keV x-ray production from
prepulsed germanium foils.

An initial data set of 35 experiments was generated by LHS.
For this benchmark, we used the same test procedure used in
Homma–Saltelli and Friedman benchmarks.

In the following, the models are feedforward neural networks
(MLPs) with three variables and a single layer of six hidden neu-
rons. The purpose of experimental planning was to supplement
the initial training set of 35 examples with 36 additional exam-
ples. The generalization error was estimated by the Monte Carlo
integration method (see Section IV-C).

1) Results for LDR-Bagging Method:
• Comparison between -optimality, LDR active

learning and random sampling of variable space:
In the previous cases, the efficiency of -optimal plan-
ning and of LDR active learning were compared to the
efficiency of a random strategy with 500 random data sets.
In each case, we used an accurate neural network selected
on its training mean square error among 50 different neural
networks.
Fig. 9 shows the histogram of the estimated generaliza-
tion errors of the 500 neural networks. The two lines are
the estimated generalization errors of neural networks that
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Fig. 9. Comparison between D-optimal design, LDR design and random
strategy.

Fig. 10. Generalization error distribution of 1000 MLPs trained onD-optimal
and LDR data sets.

learned on the -optimality and the LDR-bagging data
sets.
As expected, both experimental design techniques led
to better results than a random selection of experiments:
models built on -optimal and LDR training sets outper-
formed the random strategy.

• Comparison between -optimality and LDR active
learning: We performed a statistical comparison between

-optimality and LDR active learning. The 1000 different
neural networks were trained on each data set. Each neural
network was selected on its training mean square error
among 50 different neural networks. Fig. 10 shows the
distribution of the generalization error estimates.
The models that learned on LDR samples appear to be
more efficient than the -optimal ones.
For finding the point of maximal prediction variance, the
computational burden is the following: train 50 MLPs for
selection and train 200 MLPs for computing the prediction
variance with 200 replicates. The planning of an experi-
ment takes a few minutes on a today’s personal computer

(PC), which is a negligible overhead with respect to the
time necessary for performing the numerical experiment
itself.

VII. CONCLUSION

A new active learning strategy (LDR), intended for use in the
context of the planning of numerical experiments, has been de-
scribed. The traditional optimal methods for experimental de-
sign give optimum data sets by minimizing the variability of the
parameters due to experimental noise. In a context of numerical
experiments, no experimental noise is present, so that the tra-
ditional approaches are not relevant. In order to generate a data
set, the LDR method estimates the variance of the prediction of
several models around the bagged predictor, and plans a new ex-
periment at the location, in the space of variables, where the es-
timated prediction variance is maximal. The procedure is some-
what computer intensive, because it is based on resampling, but
the computation time necessary for planning an experiment is
negligibly small as compared to the computation time required
by the experiment itself. A comparison between the prediction
errors of models that learned on data sets designed by LDR and

-optimal design leads to the conclusion that the LDR method
gives promising results in terms of quality of models that learned
on such designs.
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