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Abstract

Several types of nuclear reactors rely on lattices of fuel rods, where
the fuel cells constitute the basic units of energy production by the
nuclear reactions and of energy removal by the flowing coolant. The
coolant channel is physically identified by the volume within adjacent
fuel cells, being the fundamental purview of design and safety studies
resolving coupled thermo-hydraulic and neutron problems. Although
channels are generally opened for optimal heat transfer, its closed ver-
sion is often in use to describe representative channels in boxed fuel
assemblies, or simply faster predictive modelling. This work aims to
find a solution to the coupled closed channel problem without solv-
ing separately for the different physics in an iterative scheme. The
new methodology developed hereafter is demonstrated on a realistic
PWR channel with UO2 fuel, and compared against the traditional
one based on operator-splitting. The simple model presented in this
work serves both research and educational purposes.
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1 Introduction

The determination of the thermal power generated in a nuclear reactor is a coupled multi-
physics problem, involving neutron physics and thermal-hydraulic models. The solution of
the whole problem is generally addressed by separate linearized problems coupled through
successive iterations up to a fixed point [1].

The nuclear reactor is modelled as a compact structure of connected regions, where the
geometry is usually Cartesian and regular, and coarse meshes are employed. The computa-
tional cells are filled with homogenized material data. Here, the neutron solver computes
the thermal power from fission provided a distribution of input nuclear cross sections,
whose homogenization has already been prepared and validated. Next, the thermal power
is used to feed a thermal-hydraulic model in order to determine maps of thermo-dynamics
and fluid properties in the core. Homogenized cross sections are modelled as dependent
on a few thermal-hydraulic properties to reproduce the physical feedback on the neutron
reactivity. Hence, the new maps of thermal-hydraulic properties are used to update cross
sections and to start new neutron calculations. This iterative process is continued up to
convergence on all unknowns of the problem: the neutron flux and cross sections yielding
the reaction rates, and all maps of thermal-hydraulic properties considered for the cross
section update.

The setup of this kind of schemes in real reactor problems is in general cumbersome
due to possible stability issues and to the sensitivity to the initialization of the unknowns.
Successive relation with parameters less than 1/2 can be necessary requesting many ex-
pensive calculations with several calls to the different physical solvers. It must be noted
that the majority of the core simulators works with schemes based on successive itera-
tions. Steady state problems are typical of design studies, whereas transients are mostly
dedicated to safety in both accidental and operational conditions.

The goal of this article is to present an alternative methodology to solve the coupled
problem, possibly avoiding linearization and combination of separate physical solutions.
The problem is firstly restrained to the simpler closed channel model without friction and in
steady state conditions with this preliminary work. The heat transfer model presented here
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covers the PWR physics only, postponing to later works the extension of the methodology
to other reactor types.

The interest in this topic follows after recent works by Dellacherie et Al. [2, 3, 4],
who first addressed the problem under a mathematical point of view. However, their
physical assumptions limit the applications in real problems. Specifically, the numerical
case presented by Dellacherie in [4] assumes implicitly prior knowledge about the solution
of the coupled problem by providing nuclear data as functions of the only coolant enthalpy.
Our approach is different in the form and keeps the full non-linearity of the problem.
Neutron diffusion is used with the one-group energy formalism. A numerical demonstration
of the solution is analyzed in a realistic engineering case.

2 The closed channel model

The closed channel model is a simple thermal-hydraulic model which basically considers
only the enthalpy rise of the coolant in the channel along the direction of flow [5]. This
model is suited to represent boxed fuel assemblies as in BWRs. Energy, mass and momen-
tum transfers on the transverse motion directions of the coolant flow are neglected. This
model is the starting point to build more realistic and more complex models.

The mass-specific enthalpy h (J/kg) of the flow moving through the channel is deter-
mined by the energy balance in an infinitesimal axial element dz:

qdzh = Pl, (1)

where q is the mass flow rate of the coolant (g/s) and Pl is the linear heat rate (W/cm)
generated by fissions. A closed channel implies also mass conservation with a constant
q all along the channel: q = u%Ac with u as the coolant speed (cm/s), % as the coolant
density (g/cm3) and Ac as the wetted area of the channel (cm2). Given a physical channel
of cell pitch lc, Ac = l2c − πrc,out, where rc,out is the outer clad surface radius.

Once the thermo-dynamical state of the coolant is known, the coolant speed u can be
calculated at any position z since dzq = 0. Similarly, the dynamic pressure $ follows after
the integration of the momentum equation:

dz(%u
2 +$) = %g,

with the volume-specific gravity force at RHS. This model is also referred as low Mach
number model by Dellacherie et Al. [2].

Pl is determined in cylindrical polar coordinates as:

Pl(z) =

∫ ∞
0

dE

∫
Sf

2πr dr dθ [σκφ](θ, r, E), (2)

with Sf as the fuel heating area, σκ as the energy production cross section (J/cm), φ as
the neutron flux (particles/cm2/s). The integration in energy accounts for contributions
of neutrons traveling at any speed. Pl is determined by the sum of the heat flux at the
outer cladding surface and the power deposited in the coolant by gamma radiation. For
stationarity, the energy produced in the fuel is directly transferred to the fluid at each axial
position by means of the heat flux Φ = Pl/(2πrc,out) (W/cm2). Enthalpy at the entrance
of the channel is hi = h(z = zi = 0), whereas at the top it is ho = h(z = zo = H).

Both, as well as the thermal power produced in the whole channel, i.e. P =
∫H
0
Pl dz (W),
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are given as input data as customarily used to design the reactor. Besides, the following
expression must be fulfilled:

ho = hi + P/q. (3)

It is interesting to notice the integration on all neutron energies in Eq. 2 to obtain the
total thermal power which contributes to the enthalpy rise across dz of q. This projection
suggests to start with one-group theory for the resolution of the neutron problem. The
integral operator will be examined later, when treating the common multi-group formalism
of the neutron population.

Hence provided one-group nuclear data, the reaction rate of energy production is
assumed as proportional to the fission reaction rate hereafter:

Pl = κσfφ, (4)

where σf is the one-group fission cross section homogenized in the fuel pin cell and at a
given height z, and κ is the average energy produced per fission (σκ = κσf ). The flux φ is
here considered as volume-integrated. Because of Eq. 1 and the positivity of the neutron
production, the enthalpy h is a monotone increasing function.

About the neutron balance, we use here the diffusion approximation largely adopted
in reactor core physics. Its form will be introduced in section 3.

3 One-group neutron diffusion

The one-group neutron diffusion equation is (using standard notation):

[−dzDdz + σa]φ = λνσfφ, (5)

with all nuclear data as dependent on the total neutron flux φ and on the coolant enthalpy h
at the axial position z. The dependence on the flux sustained by a unique local power level,
which changes the fuel temperature indeed, reproduces the thermal Doppler feedback. The
dependence on the coolant enthalpy reproduces the moderator effect instead. Because of
Eqs. 1 and 4, the flux is here proportional to the first derivative in z of the enthalpy.

The coefficient λ ensures the degeneracy of the global operator of Eq. 5, so that a
non-trivial solution can be obtained to operate the system at critical conditions. Nuclear
engineers are used to introduce an eigenvalue into the general linear form of the Boltzmann
equation for neutrons, whenever critical conditions are requested to operate the reactor.
But here, λ becomes a simple constant parameter leaving the adjustment on degeneracy
to the dependence of cross sections on the macroscopic thermo-dynamical properties. This
is an important remark. Eq. 5 does not model external neutron sources, but they could
be added after providing a sub-critical configuration to the system.

Zero incoming current is used as boundary condition for Eq. 5 by means of extrapo-
lated lengths at the bottom and at the top of the heated channel. This entails

dzφ = ±ε−1φ (6)

respectively at the inlet zi and at the outlet zo, with the extrapolation length ε = 2D by
diffusion theory [6]. Note also that ε = 0 can reproduce vanishing flux at the boundary,
whereas axial reflection comes with ε → +∞. The problem is considered purely mono-
dimensional disregarding any gradient across the neighboring channels.
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3.1 Reformulation for the coupling

A new formulation of the problem coupling the one-group neutron diffusion equation, Eq.
5, and the thermal energy balance, Eq. 1, is sought in this section by determining the
dependence of the neutron flux on the coolant enthalpy.

Still by means of Eqs. 1 and 4, and using the chain rule to replace the differentiation
in z to h, we rewrite the neutron balance as:

−Pl
q

d

dh

(
D
Pl
q

dφ

dh

)
=

(
λ− 1

k∞

)
νσfφ = (ρ∞ − ρ)

ν

κ
Pl. (7)

The introduction of the static reactivity, i.e. ρ = 1−1/k, allows writing λ−k−1∞ = ρ∞−ρ,
with the multiplication constant in the infinite medium k∞ = νσf/σa.

After some simplification and provided a constant neutron multiplicity ν, a new
second-order ordinary differential equation arises:

−dhD̃dhφ2 = ζ(ρ∞ − ρ), (8)

with the new dimensionless quantity D̃ = Dσf and the known constant ζ = 2ν(q/κ)2. The
system reactivity ρ remains an unknown constant, instead. Its role is supposed to calibrate
the solution in order to satisfy the target power production and removal in the channel
within the given active height. In these terms, it is still a critical parameter to operate
the system. Although the modifications do not remove non-linearity, the original coupled
problem is now contained in a single equation. Remarkably, this is not an eigenvalue
equation anymore.

In diffusion D ≈ λt/3, where λt = 1/σt is the mean free path of migrating neutrons,
equal to the inverse of the total cross section σt. D̃ is then proportional to the probability
that once a neutron suffers a collision event, this last ends in a fission. As ρ∞, it depends
on the local enthalpy and on the flux level, whose same behavior in enthalpy constitutes
indeed the solution of the coupled problem.

Eq. 8 must be complemented by new boundary conditions obtained from Eq. 6. The
same chain rule yields (with now ε = 2D):

φdhφ = ± q

2κD̃
φ, (9)

at the channel inlet and outlet, respectively. This becomes (2κD̃)dhφ = ±q on condition
that the flux does not vanish at the boundary. If the flux vanishes instead, there is no
power generation at the boundary and the coolant conserves its enthalpy (at least for
the infinitesimal dz) due to dzh = 0. Since dzh = dzφdφh = 0, it follows that dφh = 0
or dhφ → +∞. This warns for a (half) cusp singularity of φ(h) when approaching the
boundary. Finally, reflection writes dzφ = 0 = dzhdhφ, requiring dhφ = 0 to allow for any
possible power value at the boundary.

Eq. 8 is a boundary value problem, generally non-linear and in-homogeneous; linearity
can only be attained with specific forms of D and ρ∞, see appendix A for instance. The
nuclear data present in Eq. 8 must be functionalized on enthalpy and on the neutron flux.
Simple linear approximations are calculated in section 5.1 by means of several independent
lattice calculations, where the temperature values in the pin cell are determined by the
heat transfer from section 4. This allows to find the solution as a function of the system
reactivity. Sure, any function approximation of the physical data that offers analytical
solutions to Eq. 8 is strongly advised.
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Eventually by Eq. 1, the reactivity is determined by constraining the generated ther-
mal power over the given active height H, as:

q

∫ ho

hi

dh′

Pl
= H, (10)

provided that Pl(h) > 0, for h ∈ (hi, ho). Since our problem assumes that σf never
vanishes on the same interval, and that the flux may only become zero on the boundary,
Eq. 10 can still be resolved as improper integral, that is taking the limit of the definite
integral on the integral bounds. We also note that the same integral equation allows to
return to the original problem in the axial coordinate z, with the solution h(z) as upper
bound of:

z =
q

κ

∫ h

h0

dh′

σfφ(h′)
. (11)

Once enthalpy is known at a given position z, all other physical data follow accordingly.
The change of variable demands the enthalpy to be a strictly increasing function of z, that
is the power cannot vanish within the domain. Eq. 8 does not hold for regions without
fissile materials, like the reflector for instance, where σf = 0. In such regions, the enthalpy
remains unchanged under the formulated hypothesis that no friction or other dissipative
forces act on the fluid. Furthermore, different independent variables for the cross section
data characterizing these regions may be needed, on a case-dependent base.

4 Heat transfer in the fuel cell

The distribution of the power production in the pellet depends on the local thermo-
dynamical state characterizing the response of the matter with the colliding neutrons.
Specifically, the fuel temperature and at least two state variables for the (single-phase)
coolant are needed to setup the neutron calculation. We use only the coolant enthalpy
for the assumed constant pressure along the channel, determining the other quantities like
the density by the state functions. Hence, the fuel temperature corresponding to a given
linear power and enthalpy of the coolant must be determined.

A simplified thermal-hydraulic model derived from FRAPCON-4.0 is explained in this
section to approximate the temperature profile in the fuel pin [7]. This model provides
realistic values, avoiding to recur to more sophisticated calculations with the thermal-
hydraulic and the fuel performance computer codes.

Provided a bulk temperature in the moderator Tm, the heat transfer in the film washing
the clad is reproduced either by forced convection or by nucleate boiling to determine the
cladding wall temperature Tw. The selection between the two regimes follows using the
minimum value between Tm + ∆Tf and Tsat + ∆TJL, being Tsat the coolant saturation
temperature, ∆Tf the forced convection film temperature drop and ∆TJL the nucleate
boiling temperature drop. Temperature are here in K, and the presence of possible crud
or oxide layers is neglected for simplicity.

Because of the steady-state condition, the thermal heat flux leaving the rod is ana-
lytically determined as Φc,out = Pl/(2πrc,out) (W/m2), where rc,out is the outer cladding
radius. The forced convection temperature drop is calculated as ∆Tf = Φc,out/hf , with
the film conductance by the Dittus-Boelter correlation:

hf = 2.3× 10−2
k

De
Re0.8Pr0.4,
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De is the channel hydraulic diameter (m), whereas Re and Pr are respectively the Reynolds
and the Prandtl numbers (dimensionless):

De = 2
Ac

πrc,out
,Re =

q De

Ac µ
and Pr =

cpµ

k
.

The other properties are the thermal conductivity of the coolant k (W/m/K), the dynamic
viscosity µ (Pa·s) and the mass-specific heat cp (J/kg/K).

The temperature drop in case of nucleate boiling is calculated by the Jens-Lottes
correlation:

∆TJL = 60(Φc,out/106)0.25 exp (−6.2× 10−6p),

with the system coolant pressure p in Pa.
The cladding temperature drop is computed by the thermal energy balance without

any heat source in the annular cylinder and by Fourier law (∇·Φ = 0, Φ = −kc∇T ); using
a uniform thermal conductivity kc (W/m/K, from MATPRO and valid for T < 2098K),
it is [8]:

∆Tc = Φc,out
rc,out
kc

ln

(
rc,out
rc,in

)
,

kc = 7.51 + 2.09× 10−2T − 1.45× 10−5T 2 + 7.67× 10−9T 3.

A likely open-gap conductance value of hg = 3.40× 103 W/m2/K is assumed to esti-
mate the temperature Ts = T (rs) at the outer surface of the pellet, with the temperature
drop in the gap as ∆Tg = Φc,outrc,out/(rc,in hg). This assumption greatly eases the reso-
lution of the thermal rod problem, thus removing the main source of non-linearity for the
gap physics.

Lastly, a volume-averaged value of the fuel temperature Tf is sought gathering further
simplification for heat conduction in the pellet. Specifically, the parabolic temperature
profile in the heated cylinder is used with uniform radial power distribution and constant
conductivity kf (W/m/K) computed at the same temperature Tf :

T (r) = Ts +
Pl

4πkf (Tf )

(
1− r2

r2s

)
,

whose volume average yields:

Tf = Ts +
Pl

8πkf (Tf )
.

The root of this transcendental equation provides the requested fuel temperature value.
The approximation on the fuel thermal conductivity allows to solve for a linear conduction
equation indeed, and serves here the simplification purpose.

These temperature values are used in the input file of the lattice transport calculations,
to allow for proper interpolation of nuclear data from the evaluated data libraries. They
are uniformly set in the cells of the spatial mesh.

5 Numerical results

The mono-dimensional coupled problem is here solved numerically with both formulations
presented in section 3, based on Eq. 8 and Eq. 5. Their solutions computed with the
same data of the closed channel defined in section 5.1 are then compared.
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5.1 Preparation of nuclear data

The diffusion coefficient and the macroscopic cross sections employed in the conservation
equations are generated with several transport calculations performed by a development
version of APOLLO3 R© [9]. They are prepared by homogenizing the calculated reaction
rates on a typical UO2 pin cell of the fuel assembly 17 × 17 AFA 3G, used in the French
900MWe PWR unit. All design data are provided by Coppolani [10], and briefly resumed
here in Tab. 1. In order to reproduce all physical conditions of the fuel cell in the channel,
the calculations are performed at different moderator temperatures and linear power levels.

Table 1: Specifications of the UO2 fuel pin type used in the AFA 3G fuel
assembly (HMM is heavy metal mass in fresh fuel).

cell pitch 12.588

(mm)
fuel pellet diameter 8.192
inner clad diameter 8.528
outer clad diameter 9.500

fuel enrichment 3.25 w/o 235U
cladding material Zircaloy-4

linear power 178.00 (W/cm)
active core height 366.00 (cm)
channel mass flow 334.38 (g/s)

power per g of HMM 39.70 (W/g)

The inlet and outlet temperatures of the coolant are assumed at 291◦C and 325◦C,
and using a primary pressure p of 155 bar with the IAPWS-IF97 water tables [11] in the
single-phase regime, this yields respectively enthalpies of 1289.42 and 1484.25 (kJ/kg).
Fresh fuel at beginning of cycle is modelled, with a boron dilution of 1400 PPM in the
moderator.

About each transport calculation, the cross sections of 234U, 235U, 238U and 91Zr
are self-shielded by the fine structure formalism (also known as the Livolant-Jeanpierre
method) [12] after cylindrisation of the cell with volume conservation. After, the neutron
distribution is obtained by the MOC solver∗ with 281 energy groups. Finally, spatial
homogenization over the whole pin cell and condensation to one energy group provide the
sought nuclear data for the coupled problem.

The physical data for Eqs. 8 and 11 are shown in Figure 1, confirming the trend
expected from the thermal feedback. We functionalize these data by ordinary least squares
regression. Tab. 2 reports the fitting coefficients of a linear fit of the kind:

v = θ0 + θ1 · x+ θ2 · y (12a)

after feature scaling and normalization, that is using the reduced variables:

x = (h− h̄)/∆h, y = (φ− φ̄)/∆φ, (12b)

∗MOC is method of characteristics, solved by the TDT solver implemented in the
APOLLO3 R© code system.
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where ∆(·) refers to the difference between the max and the min values of the features

used in the fit and (̄·) stands for the arithmetic mean†. The fit uses 132 samples with the
fuel pin calculated at BOC, and at each combination of the following linear power and
moderator temperature values:

• Pl = [i/10 · PNl , for i = 0, 1, . . . , 11] (W/cm);

• Tm = [286, 291 + j/τ ·∆T, 330, for j = 0, 1, . . . , τ | τ = 8] (◦C);

with PNl as the nominal linear heat rate at HFP, PNl = 178 (W/cm), and ∆T = To − Ti
with the inlet temperature Ti = 291◦C and the outlet temperature To = 325◦C. Again,
primary pressure is considered as fixed to 155 bar. The total neutron flux corresponding
to the simulated conditions is plotted in Fig. 2.
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Figure 1: One group nuclear data homogenized in the fuel pin cell, as func-
tions of the coolant enthalpy h and the neutron flux φ.

The additional non-linearity introduced by these functions prevents in general to find
analytical solutions as φ(h, ρ) with a parametric dependence on the neutron reactivity. A
simple case offering an analytical solution is presented in appendix A. Its solution can be
used as initial guess for iterative techniques using some linearisation on Eq. 8. In any
case, the system reactivity has to be determined as root of Eq. 10. The reason behind
this approximated form of the original equation comes from the dimensionless quantity D̃,
which changes of only a few percents over the tested range of values.

†This holds for all features but the intercept, and it is required for their very different
scales.
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Table 2: Fitting coefficients θ-s determined by ordinary least square regres-
sion on one-group nuclear data; the arithmetic mean and the standard devia-
tion of the error are available in percent as ē and σe, respectively. Features are
reduced with ∆h = 253.805 and h̄ = 1385.197 (kJ/kg), ∆φ = 6.57426e + 14
and φ̄ = 3.09667e+ 14 (n/s). ν = 2.458 and κ = 198.959 Mev/fiss.

θ0 θ1 θ2 R2 ē σe

D 8.67107e-01 9.53613e-02 5.09408e-04 0.99598 -2.341e-04 0.215
ρ∞ 1.54041e-01 -4.15553e-03 -1.35487e-02 0.99641 -3.224e-04 0.168
σa 2.23081e-02 -2.15623e-03 1.06451e-04 0.99832 -2.519e-04 0.123
σf 1.07106e-02 -1.09602e-03 -1.21641e-04 0.99792 -3.502e-04 0.148

D̃ 9.27716e-03 6.45038e-05 -1.00213e-04 0.99281 -1.048e-05 0.032
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Figure 2: Total neutron flux φ computed at different combinations of the
enthalpy of the moderator h and of the power heat rate Pl, whose values in
W/cm are inline.
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5.2 Numerical solution of the non-linear problem

The numerical schemes of the two formulations solving the coupled problem are detailed
in this section. Both uses the technique of successive substitutions to resolve their non-
linearities. That is the non-linear terms are linearized provided a best-guessed solution
from the previous iteration and the new approximation of the solution will serve for the
linearization at the next step. The new formulation resolving the flux in the enthalpy
variable embeds the non-linearity in the neutron equation, taking advantage of the fact
that the coefficients of the equation, i.e. the diffusion constant and the cross sections, are
all defined as functions of the enthalpy and of the flux itself. Instead, the substitution of
the same functional dependencies into the original diffusion equation in z is not worthy
since any consequent linearisation would use at least the enthalpy approximation from the
previous call to the coolant equation. This demands necessarily to resolve the coupled
equations separately with successive updates of the unknowns through iterations, like
in the operator-splitting solving technique explained hereafter. Lately, other techniques
to resolve the multi-physics coupled problems have been documented to cope with the
stability and slow convergence properties of operator-splitting. However, we choose this
technique in the present work to comply with the current practice in nuclear industry to
simulate the reactors by computer codes.

The derivative of the diffusion Eq. 5 in the i-th node is discretized by central finite
differences:

− dz(Ddzφ)|i ≈ −2
(Ddzφ)|i+1/2 − (Ddzφ)|i+1/2

∆i+1 + ∆i

≈ − 2

∆i+1 + ∆i

[
Di+1/2

∆i+1
φi+1 −

(
Di+1/2

∆i+1
+
Di−1/2

∆i

)
φi +

Di−1/2
∆i

φi−1

]
with Di+1/2 =

Di+1 +Di

2
(13)

for i = 1, . . . , I−1. The volume-averaged diffusion constant is set at the cell midpoints. An
equidistant axial mesh of I intervals is here used, therefore the central differences yields
a second-order approximation. The equations for the zero incoming current boundary
conditions (also known as vacuum) are derived from dzφ|i/o = ±φ/(2D)|i/o at inlet and
outlet, respectively as:

φ1 − φ0
∆1

≈ φ0
2D0

and
φI−1 − φI

∆I
≈ φI

2DI
. (14)

The reflective boundaries are simply approximated by φ0 = φ1 or φI−1 = φI . These
conditions are only first order approximations.

The coefficients from the discretization are casted in the tridiagonal matrix A. The
sum of the absorption cross section on the main diagonal makes the matrix diagonally
dominant, and one can use the Thomas algorithm to solve efficiently the matrix system
equations, in about O(I) operations [13]. The critical problem is resolved by the power
method:

A~φ(n+1) =
1

k(n)
νF~φ(n), k(n+1) = k(n)

~φ(n+1) · F~φ(n+1)

~φ(n+1) · F~φ(n)
, (15)

with the diagonal production matrix F = diag( ~σf ) and ~σf = [σf,i, i = 1, . . . , I − 1]. The

flux vector ~φ always undergoes the normalization to fulfill the total power production in
the channel: ~φ← φ[P/(κ ~σf · ~φ)].
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Integration by the trapezoidal rule on the i-th interval of Eq. 1 yields the enthalpy in
the (i+ 1)-th node:

hi+1 = hi +
κ

2q
(σf,i+1φi+1 + σf,iφi) (zi+1 − zi), (16)

for i = 1, . . . , I and h(zi) = hi as known input data. As well, the flux normalization must
always verify h(zo) = ho. This numerical integration is expected to underestimate the
true value since the thermal power has always negative concavity upon the whole domain.

The cross sections and the diffusion constant are written as functions of the local
enthalpy and flux according to Eqs. 12, see Tab. 2. Under-relaxation is mandatory
to stabilize the coupling. Using the new iteration index m to represent the numerical
solutions obtained by Eqs. 15 and 16, this means:

σ ← ωσ(φ(m+1), h(m+1)) + (1− ω)σ(φ(m), h(m)),

where σ stands generally for D, σa and σf . The unique damping parameter of ω = 0.495
is used on all coefficients not to bias the neutron balance. This value results as optimal
from extensive numerical tests, in absence of a stronger theoretical demonstration about
the spectral radius of the global operator. Further relaxation on the flux and enthalpy is
discouraged to avoid the additional burden of finding the optimal settings, possibly also
ending in false convergence issues. Iterations stop when the residuals between the new
and old estimates at the m-th and (m− 1)-th iterations fall below the target tolerances‡.

As already mentioned, the new formulation combines the coupled equations in a unique
equation, Eq. 8, where the function approximations of the nuclear data is exploited in
the discretized form too. Moreover, the dependence of these coefficients on the unknowns
of the problem can be simplified further in order to obtain an analytical solution used as
initial guess, see appendix A. This is expected to improve stability significantly, and to
approach faster the fixed point solution.

A change of variable for the flux is convenient after noticing the very different scales
in magnitude of the quantities in Eq. 8. So we solve for φ ← φ(κ/q), since the flux is
O(q/κ). We discretize similarly the streaming term to then resolve the following equation:

− dh(D̃dhφ
2)|i ≈ −2

(D̃dhφ
2)|i+1/2 − (D̃dhφ

2)|i+1/2

∆i+1 + ∆i

≈ − 2

∆i+1 + ∆i

[
D̃i+1/2

∆i+1
φ2i+1 −

(
D̃i+1/2

∆i+1
+
D̃i−1/2

∆i

)
φi +

D̃i−1/2
∆i

φ2i−1

]

= ζ(ρ∞,i − ρ) with D̃i+1/2 =
D̃i+1 + D̃i

2
, (17)

for i = 1, . . . , I − 1, and again with the volume-averaged pseudo-diffusion constants at
the midpoint of the intervals. The coefficients in Eq. 17 are now replaced by the linear
expressions of the kind σi = θ0 + θ1hi + θ2φi, i = 0, . . . , I, with the constants θ’s from
Tab. 2. For the numerical solution, the flux dependence in each D̃i is given by the last
estimates from the previous iteration, say (m − 1), whereas the corresponding term of

ρ∞ is moved to the LHS and modified as (ζθρ∞,2/φ
(m−1)
i ) along the main diagonal of the

‡Tolerances of 1.E-7 are used in our numerical experiments for all relative residuals,
including flux, enthalpy and cross section data.
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new tridiagonal matrix. This ensures diagonal dominance, allowing for new calls to the
Thomas algorithm. Also, the source terms of the system equations at RHS do not need
any update while iterating. The vacuum boundary conditions become:

φ
2,(m)
1 − φ2,(m)

0

∆1
≈ φ

2,(m)
0

D̃0φ
(m−1)
0

and
φ
2,(m)
I−1 − φ

2,(m)
I

∆I
≈ φ

2,(m)
I

D̃Iφ
(m−1)
I

, (18)

requesting the same kind of update. The squared flux is readily forced to be equal at
the two neighboring points close to the boundary in case of reflection, as above. These
modifications are justified by recognizing the squared flux as the new unknown. For sake
of completeness, we remind that zero flux at the boundary does not need any additional
closure relation. The rank of the matrix A is always (I − 1).

In substance, the new formulation obtains first the solution on the enthalpy mesh,
which is reverted after onto the z axial mesh, still by means of Eq. 16. Instead, the
classical diffusion equation provides already the solution on the axial coordinate, but
requires to solve Eq. 1 many times in order to get new enthalpy distributions and cross
sections update. Notably, Eq. 5 implies the resolution of an eigenvalue problem which is
computationally more expensive than a fixed source problem.

Integration of the inverse power in Eq. 11 requires to handle carefully the boundary
with zero flux. If a primitive function was possible, the integration would be resolved
by means of an improper integral, since we known that the power is produced within a
finite active length. Numerical shrewdness is compelling to treat this integration on the
boundary cells also in case of vacuum, that shows steep flux gradients too. According
to appendix A, the flux behaves for instance like h

√
h at inlet. Therefore, the simple

trapezoidal rule is not recommended for the integration of the inverse power. The quadratic
Simpson’s rule could be an alternative, but arrangements would still be needed at these
boundaries for the manifest loss of smoothness. Eventually, rational splines could be a
valid option. Here, we use Eq. 16 with both formulations, accepting to deal with finer
meshes to increase the accuracy. Consistently, when the difference (zi+1 − zi) is to be
determined, Eq. 16 is divided by the average power in the (i+ 1)-th cell.

About Eq. 16, equidistant axial meshes in enthalpy may generate high error where
the power is lower, that is near boundaries in our problem. Hence, we refine the enthalpy
mesh at the boundaries according to the formula:

hi =
1

2

[
(ho + hi)− (ho − hi) cos

(
hi − hi
ho − hi

π

)]
. (19)

Apart from the numerical errors, the solutions of the two formulations can differ
because they employ different coefficients, with their own given functions indeed. For
instance differences arise yet when recalculating ρ∞ by the standard one-group definition,
see Fig. 3. A smart redefinition of these coefficients is suggested to verify and to compare
their results. In fact, all data can be determined by σf , D̃ and ρ∞:

D = D̃/σf , σa = (1− ρ∞)νσf ,

still provided the constant neutron multiplicity ν. A verification against an analytical
solution is then possible using the problem in appendix A.

Both solving techniques need iterations to update sequentially the coefficients of their
neutron balance equation. Because of criticality, there are at least two possible levels of
iterations. The former level looks for the couple of critical parameter (the reactivity) and
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Figure 3: Differences between the fitted ρ∞ and the values computed by
using ρ∞ = 1− 1/k∞, with k∞ = νσf/σa.

fundamental flux§. The latter level finds the right match between the neutron flux and
the coolant enthalpy all along the active height of the channel, resulting in the final cross
section data satisfying the neutron equation. The order of the iteration levels is reversed
with the new formulation, retrieving first the flux as a function of enthalpy and then
finding the reactivity as a root of Eq. 11. In any case, iterations for criticality always
require to solve the neutron equation at each step, but the new formulation avoids to recur
to eigenvalue problems.

The two methods introduced so far were implemented in a Python2.7 module delegat-
ing all numerical calculations to the Numpy v1.14.0 package, offering high-performance
array manipulation. The use of Python is also motivated by the educational purpose of
this work, aiming to a quick comprehension of the code. The results in the channel with
zero incoming current boundary conditions at both inlet and outlet are presented in the
following.

The convergence rates of the main unknowns are plotted in Fig. 5 for increasing num-
bers of spatial elements up to I = 5000 (bottom plot). These rates are determined with
the results computed by the new formulation based on the non-linear diffusive solver, con-
firming the expected (almost) second-order trend. Maximum relative differences between
the solutions obtained by the two formulations are shown in the figure on the top. They
are due to the different spatial meshes used for the calculations, always being equi-spaced
when solving in z and cosine-distributed for the non-linear solver in h. These differences
fall very fast, suggesting meshes of the order of a few centimeters when comparing the
methods. A number of cells I = 100 is already enough to get reactivity differences below
the pcm and power differences lower than 0.1%. The corresponding differences between
the computed cross section data are reported in Fig. 6. The integration by the trapezoidal
rule should be changed with a higher order method if more accurate approximations of the

§This couple becomes an eigenpair of a generalized eigenvalue problem with Eq. 5.
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steeper power gradients towards the boundaries are requested. This is expected to reduce
the observed fluctuations in the same figure. Finally, the axial profiles of the computed
data follow in Fig. 7. As anticipated by the thermal feedback on the cross sections, the
power is peaked in the lower part of the channel, where the coolant is colder and denser,
favoring neutron thermalization. The search of the critical reactivity ρc corresponding to
the target active core height HT is plotted in Fig. 4. The neutron reactivity increases with
H since ∆H = HT −H(ρ), approaching asymptotically the limit of the infinite medium
(see θ0 of ρ∞). Monotone trends are so observed for both the reactivity and the flux distri-
bution, tending to a vanishing flux in longer channels to fulfill the given power constraint.
Conversely, more neutrons are needed in shorter channels.
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Figure 4: Search of the critical reactivity (left) with the flux distributions
(right) corresponding to the states marked by the empty dots.

The supercriticality of the channel is due to a low boron content set in water when
preparing the cross sections by the lattice calculations. The use of fresh fuel usually
requires strong concentrations of neutron absorbers, either diluted in the coolant or mixed
in the fuel, to control and operate the reactor.

Although the problems were solved through an interpreted language which is formally
preventing detailed estimates of runtime performances, much shorter calculations were
noticed when choosing the non-linear solver. The search of the root reactivity can be
included in the iterative solver itself, without any extra cost for several eigenvalue problems
to resolve.
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6 Conclusion

The closed channel is a fundamental model to study the multiphysics coupling between
neutronics and thermo-hydraulics. It offers a solid frame for both research and educational
programs. In this preliminary work, a new formulation to resolve this coupled problem is
explored with its simplest version, that is using incompressible flow without any dissipative
friction, and one-group neutron diffusion theory.

This technique is actually suggested by the fact that the coefficients of the coupled
equations are generally pure functions of the main unknowns. Hence, the functional de-
pendencies are recovered in a new equation with the goal to determine the neutron flux
as a pure function of the coolant enthalpy. A change of variable is at the base of this
new derivation, and it holds as far as there is thermal power generated by fission in the
channel. Non-fissile regions, like reflectors, require instead additional dedicated models to
reproduce their influence on the active part of the channel. This means de facto a different
problem definition, to be addressed in future works. The intended solutions along the axis
of the channel is obtained by searching for the critical reactivity, which allows to match
the target power constrained to the given active height of the core.

This new formulation is discussed and demonstrated on a subchannel problem, de-
rived from a regular UO2 fuel pin cell typical of PWR. Its performance and results are
compared to the traditional solving technique based on operator-splitting and successive
substitutions, which is the most used in the nuclear industry. This last does not change
the original equations to find the fixed point solution, with the advantage of using general
computer codes specifically developed to resolve a single physics. However, its resolution
of the coupled problem can not avoid several calls to expensive eigenvalue solvers used in
reactor physics for the neutron balance. Noticeably, the new technique does not share this
drawback, also embedding the possible non-linearities of the cross sections functionaliza-
tion in a unique equation.

The preparation of the cross sections data is illustrated in order to support the nu-
merical test. A new parameterization is advanced in opposition to the common use of the
temperature to characterize the physical states of the fuel and of the moderator. A simple
thermal model is then described to explain the relation between the radial temperature
profile in the fuel rod, the coolant enthalpy and the generated power.

Despite the simplicity of the coupled problem, the current technique can be proposed
as a preconditioner for the more complex tri-dimensional problems of core design. Exten-
sion to the multi-group neutron formalism and the integration of more realistic hydraulic
models are advocated for future development.

Acknowledgement

The author would like to thank Dr. Emiliano Masiello for his constructive criticism of this
work.

A Simplified model without Doppler feedback

A simplified model derived from Eq. 8 is resolved analytically in this section. The solution
is used in this work as initial guess of the iterative technique solving the original non-linear
coupled problem.
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The diffusion constant and the fission cross section are assumed constant over the
all active height, whereas the dependence of the infinite reactivity on the neutron flux is
dropped. These simplifications disregard the Doppler feedback of the fuel temperature on
the neutron flux (and generated thermal power). But they are also aimed to obtain an
analytical solution after recovering a linear equation by the substitution u = φ2:

d2hu = a0 + a1h, with

a0 =
ζ

D̃
(ρ− c0 + c1

h̄

∆h
), a1 = − ζ

∆h
c1,

(20)

for ρ∞ = c0 + c1(h− h̄)/∆h. This assumption is motivated by the dimensionless quantity
D̃ that is almost constant over the tested range of values.

The solution of the linear ODE is in the form:

u = C1 + C2h+
1

2
a0h

2 +
1

6
a1h

3, (21)

with the two real constants C1 and C2 by fulfilling the boundary conditions. It must be
noted that the same modulus of the flux derivative in enthalpy at both inlet and outlet
in case of zero incoming current eases the calculation of the constants, see Eq. 9. It
must be noted that the solution does not exist if reflection is applied at both boundaries,
unless c1 = 0. As an example, the flux distribution corresponding to the channel problem
outlined in section 5.1 and computed with the data from Tab. 2 is plotted in Fig. 8. Zero
flux boundary conditions are intentionally set to show the cusp singularities, that do not
prevent however to retrieve the solution in z.

The need of a fully positive solution for u in a purely multiplying medium may demand
formally for a0 + a1h ≤ 0 at any position hosting a non-vanishing neutron flux. At the
same time, the sign of the derivative at the bottom and at the top of the channel is also
specified by the physics of the problem, thus requiring that: (a0hi + 1/2a1h

2
i ) > −C2 >

(a0ho + 1/2a1h
2
o).

Finally, we only keep the positive root φ =
√
u as physical solution. The system

reactivity is obtained numerically as root of Eq. 10. The square root introduced when
retrieving the solution of the neutron flux may not allow in general an analytical solution
for the primitive of the integral.

Eq. 20 becomes a parametric Poisson equation if c1 = 0. As well, the infinite medium
is reproduced by the vanishing curvature of the flux in all points of the domain, implying
necessarily ρ = c0 = ρ∞. Still with c1 = 0 and when both boundary conditions are not of
the reflection type, the reactivity must be sought in the semi-plane ρ < c0.
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