DE LA RECHERCHE À L'INDUSTRIE

Ceaden

Extraction kinetics of uranium(VI) and plutonium(IV) by N,N-dialkylamide

towards the kinetics regime determination thanks to 3 technics

R. Berlemont¹, <u>A. Lélias</u>¹, M. Miguirditchian¹, J.-P. Simonin²

1- CEA Marcoule, 2- UPMC

CEA Marcoule, Nuclear Energy Division Radiochemistry & Processes Department Modelling and Process Chemistry Separation Service Conception of Extraction Processes Laboratory

Cea den

Introduction

- Innovative processes for Plutonium multi-recycling based on a monoamide extractant [1-3]
 - Thermodynamical data acquired
 - Hydrodynamic and hot tests carried out

- Simulation of counter-current test in mixer-settlers or pulsed columns
 - ⇒ Determination of mass transfer coefficients of U(VI) and Pu(IV) extraction
 - ⇒ Determination of the kinetics regime
- Mass transfer theory applied to liquid-liquid extraction

$$J = k_o(C_o^i - C_o) = k_a(C_a - C_a^i) = k_f C_a^i - k_r C_o^i$$

$$\frac{1}{K_a} = \frac{1}{k_a} + \frac{1}{D.k_o} + \frac{1}{k_f}$$

k_o, k_a: diffusion rate constants
 k_f, k_r: chemical rate constants
 D: distribution ratio

- [1]: C. Musikas, P. Zorz, Process for the extraction of uranium (VI) and/or plutonium (IV), US 5132092, 1992
- [2]: Prabhu, D.R., et al., J. Radioanal. Nucl. Chem., 1997, 224(1-2) 113-117.
- [3]: Pathak, P.N., et al., Solvent Extr. Ion Exch., 2009, 27(5-6) 683-694.

Comparison of 3 technics

Techniques with constant interfacial area [4]

Determination of the kinetics regime

EXTRACTION KINETICS WITH U(VI): NITSCH CELL

Restricted stirring speed within the solvent : Chemical plateau unreached

Location of the transfer resistance

2,5E-06

> stirres speed adjusted separately to keep a fixed Reynolds number₅ine one phase

300 200 400 Organic phase: N,N-dialkylamide/TPH, HNO₃ 1M Aqueous phase: 40 g.L⁻¹ U(VI) HNO₃ 5M

Temperature: 25°C

- Variation in aqueous phase
 - Fraction No. 10 Sept. No. 2 Page 12 Page 1
- Variation in organic phase
 - → High Impact: K_α^{aq} ≈ 6.5 ± 0.3 10⁻⁶ m.s⁻¹
- Resistance of the U(VI) transfer located in the solvent

EXTRACTION KINETICS WITH U(VI) AND PU(IV): ROTATING MEMBRANE CELL

Direct determination of the chemical constant, k_f:

Measure of the proportion (P) of the solute transferred from A to B

Organic phase: N,N-dialkylamide/TPH, HNO₃ 1M Aqueous phase 1: 40 g.L⁻¹ U(VI) HNO₃ 5M Aqueous phase 2: 50 mg.L⁻¹ Pu(IV) HNO₃ 5M Temperature: 25°C

- Extraction of U(VI) at 300 and 600 rpm
 - \checkmark k_f (m.s⁻¹)= 1.9 ± 0,5 x10⁻⁵
- Molecular diffusion seems to control the U(VI) transfer
- \square Pu(IV) under study but $\mathcal{D}(Pu(IV))$ to be acquired

EXTRACTION KINETICS WITH U(VI) AND PU(IV): SINGLE-DROP TECHNIQUE

Determination of $K_{\alpha}(Aq \text{ or Org})$ depending on

- the continuous phase
- the drop diameter

Falling drop configuration (COP)

- ✓ Increase of the K_g U(VI), Pu(IV) with the drop size
- internal circulation inside the aqueous droplets supposed

Rising drop configuration (CAP)

- ✓ Lower effect on K_g U(VI), Pu(IV) of the Organic drop size
- > High resistance to the transfer

EXTRACTION KINETICS WITH U(VI) AND PU(IV): SINGLE DROP

Influence of the solvent viscosity on global transfer coefficient

Solvent loaded with [U(VI)] in macroconcentration (40, 80 and 100g.L⁻¹)

Continuous organic phase (Falling drop) at 25°C

Aqueous drop 1: $40 \text{ g.L}^{-1} \text{ U(VI) HNO}_3 5\text{M}$

Aqueous drop 2: 50 mg.L⁻¹ Pu(IV) HNO_3 5M

Drop size : 2.3 \pm *0.1mm*

- ✓ Similar trend of the mass transfer constants: the higher the organic uranium concentration, the lower the K^g of U(VI) and Pu(IV)
- Increase of the boundary layer of the organic phase (drop interface) with the organic phase viscosity (7 to 33 μm)

⇒ diffusional transfer

3 times slower than TBP/TPH but reliable data to implement the model

COMPARISON OF THE 3 TECHNICS

- Transfer resistance located the organic phase
 - Nitsch cell unsuitable ique for the monoamide solvent
- Molecular diffusion seems to control the transfer
- Value of k_f of U(VI) on the same order of magnitude than the Single drop one
 - Mixed regime or data to be confirmed?
- Values in agreement with the extraction model

STRIPPING KINETICS WITH H+, U(VI) AND PU(IV): SINGLE DROP

Application to hot test

Pulsed column + mixer-settler tests in stripping conditions: U(VI) faster than Pu(IV)

Continuous organic phase (Falling drop) at 25°C 80 g.L⁻¹ U(VI), 40 mg.L⁻¹ Pu(IV) HNO₃ 0.15M Aqueous drop: HNO₃ 0.1M; $d=3.4\pm0.1$ mm

	U(VI)	Pu(IV)	H+
K _g ^{Aq} (m.s ⁻¹)	6.2 x10 ⁻⁶	5.8 x10 ⁻⁷	6.8x10 ⁻⁷

- ✓ U(VI) transfer 10 times faster
- Consistency with counter-current test observations (CBP facility)
 - More information with the Atal2016 236 and 241 presentations

CONCLUSION AND OUTLOOKS

- ☐ Single drop method: most complete study
- □ U(VI) and Pu(IV) seem to have **similar behavior** during the extraction process but new experiments have to confirm that trend
- Mass transfer probably controlled by the diffusional resistance in organic phase
- Data reliable enough to implement the model
 - Determination of the mass transfer constants by micro devices

Acknowledgements

Romain Berlemont

Justine Cambe

AREVA for financial support

Jean Pierre Simonin and Binh Dinh for helpful discussions

DTEC/SGCS/LGCI

YOU for your attention

Commissariat à l'énergie atomique et aux énergies alternatives Centre de Marcoule | BP17171 | 30207 Bagnols-sur-Cèze Cedex T. +33 (0)4 66 79 66 48 | F. +33 (0)4 66 79 60 27 Nuclear Energy Division
Radiochemistry and Processes Department
Separation Process Chemistry & Modelling Service
Elaboration of Separation Process Laboratory