<u>Ceaden</u>

cidecentes outervice de la recherche l'innovation cet 1945-2015

www.cea.fr

INVESTIGATION OF TAILORED SIC/SIC COMPOSITES FOR SODIUM-COOLED FAST REACTORS

J. BRAUN¹, C. SAUDER¹, F. BALBAUD², F. ROUILLARD³,

C. GUENEAU⁴, J. LAMON⁵

¹DEN/DANS/DMN/SRMA/LTMEX

²DEN/EC/DADN

³DEN/DANS/DPC/SCCME/LECNA

⁴DEN/DANS/DPC/SCCME/LM2T

⁵ENS CACHAN/LMT

APRIL, 19 2016

- SiC/SiC as **core materials** for fission nuclear reactor applications
- **Na SiC compatibility**
- **Experimental procedure** for Na-SiC compatibility tests at 550°C
- Mechanical behavior of SiC/SiC before immersion
- **Chemical surface analyses** after immersion
- Mechanical behavior of SiC/SiC after immersion
- Conclusions and perspectives

SIC/SIC AS CORE MATERIALS FOR FISSION NUCLEAR REACTOR APPLICATIONS

Cladding applications

- \rightarrow Stability under neutron irradiation for high dose (in dpa)
 - > few dpa for thermal neutron applications (LWR, HTR)
 - > 100dpa for fast neutron nuclear applications (GFR, SFR)
 - Dimensional stability (no large swelling)
 - No degradation of thermal and mechanical behaviors
 - Low irradiation induced creep

→ Gas tightness for cladding applications (French patent – Sandwich concept)

- \rightarrow Low neutron absorption (depending energy of neutrons)
- → Resistance to accidental situations (For GFR, T > 2000° C)
- → Ideally low activation materials
- →

High benefits possible but :

- (i) very high level requirements
- (ii) very long term application (> 20 years)
- (ii) demonstration of feasibility still to be proven

SIC/SIC AS CORE MATERIALS FOR FISSION NUCLEAR REACTOR APPLICATIONS

-Non-Cladding applications (Mainly lower benefits ?)

• Channel box in BWRs

Yueh et al, TOP FUEL 2012.

• Control rods in VHTRs

Y. Katoh, L.L. Snead, I. Szlufarska and W.J. Weber, *Current Opinion in Solid State Materials Science,* 16 [3] 143-152 (2012).

Easier requirements applications (ex : hermeticity is not a requirement)

more accessible for demonstration of SiC/SiC interest for nuclear applications

Specific requirements for SiC/SiC composites

- → Reproducible dimensional tolerance (easier than for cladding) to ensure
- \rightarrow Good mechanical and thermal properties up to high temperature
- → Good chemical compatibility with environment (coolant and core structures) event under accidental situation

Probably the fastest route to acquire operational experience of SiC/SiC for nuclear applications

PROCESSING OF SIC/SIC COMPOSITES – HEXAGONAL TUBE

■ Large diameter hexagonal tubular structure → Texture issues

Use of conventional techniques (Filament winding and braiding) difficult

- low diameter of tows (~ 1 mm)

- presence of sharp edges leading to thickness differences along circumference with filament winding or braiding

 Weaving is possible but needs expansive tools to ensure rigorous shape during densification (CVI process)

Choice:

Experience obtained on filament winding

- <u>Solution</u>: SiC rebuild tow

200mm

Ceaden processing of sic/sic composites – HEXAGONAL TUBE

- (1) Production of larger tows (3-4mm)

(2) Production of flat braid (3-4mm)

- Production of a mixed sample by filament winding
 - Inner part made from (1) tow
 - Outer part made from (2) tow

Solution (1) is promising

Ceaden NA-SIC COMPATIBILITY

Several possible interactions :

- SiC Na_(I) and its impurities:
 Mainly oxygen
 - Nominal : [O] ≤ 3 ppm
 - Incidental : [O] ~ 200 ppm

- Presence of SiO₂ : Formation of Na₂SiO₃ ([Cook, 60], [Kano, 95])

 $Na_2O_{(s)} + SiO_{2(s)} = Na_2SiO_{3(s)}$

- Na₂SiO₃ ? Solubility in Na_(I) ?
- Oxidation of SiC ?

C (PyC interphase) – Na_(I) :

- Formation of C₆₄Na is possible ([Asher, 59])
- Poor behavior of graphite carbon in Na_(I) ([Gill, 61], [Davidson, 65])
- Modification of lattice parameters \rightarrow Expansion \rightarrow Mechanical stresses

Few studies on SiC, no studies on SiC/SiC composites.

What is the behavior of pyrocarbon (interphase in SiC/SiC) ?

Ceaden experimental procedure

Immersion procedure

- 2 Main objectives: Influence of
 - liquid sodium
 - oxygen concentration in liquid sodium
- 2 experiences: 550°C, 2000h (with partial extraction at 1000h), static sodium:
 - Purified sodium by a zirconium foil ([O] < 10 ppm) Na(p)</p>
 - Sodium with Na_2O/Na_2O_2 to reach [O] ~ 1000 ppm) Na(O)
- 2 types of samples:
 - **CVD SiC**
 - SiC/SiC Composites (CVI process)
- Cleaning of samples after tests:
 - Ethanol (3x)
 - Distilled water
 - Acetone

Analytical techniques : weight evolution, XPS surface analysis, SEM,

mechanical tests after immersion

Ceaden experimental procedure

Materials of the Study

CVD β -SiC : High purity

SiC/SiC composites tubes:

- 1 layer of filament winding (45°) + 2 layers of 2D braiding (45°)
- 50 nm Pyrocarbon interphase
- Internal and external grinding

Intact tubes

Pre-damaged tubes before immersion → Possible access to the pyrocarbon interphase

Ceaden experimental procedure

Mechanical tests before immersion

Uniaxial tensile tests with loading-unloading sequences

Analysis of mechanical behavior (loading-unloading sequences)

Ceaden TENSILE MECHANICAL BEHAVIOR OF SIC/SIC PRIOR TO

Very good reproducibility of mechanical behavior

E ₀ (GPa)	ε _R (%)	σ (MPa)
281	1,010	279

Ceaden mechanical behavior of sic/sic before immersion

50µm

ICAPP 16 | APRIL 19, 2016 | PAGE 12

<u>Conclusion</u>: Deviation from linearity before damaging the matrix is the consequence of pre-existing matrix cracks (due to residual thermal stresses induced by mandrel during processing)

RESULTS OF CHEMICAL SURFACE ANALYSIS AFTER IMMERSION

Chemical analysis of CVD SiC before and after immersion

Weight changes

- Na(p): no significant evolution
- Na(O): weight loss (0,63%)

XPS: 3 contributions (SiC, SiO₂, SiC_xO_y) Surface analysis (few nm)

Reference

- Na(p) : decrease of SiO_2 et de SiC_xO_y amount.
- Na(O): increase of de SiO₂ et de SiC_xO_y amount \Rightarrow surface oxydation

Question on the influence of the possible formation of Na₂SiO₃ that would have been dissolved during the cleaning of samples !

<u>Conclusion</u>: Very limited reaction as silicon carbide is still the major phase at the extreme surface.

RESULTS OF CHEMICAL SURFACE ANALYSIS AFTER

- Weight change for SiC/SiC composites : Positive ! Porous material
 - \rightarrow residual sodium which reacts with air and water
- Surface morphology doesn't allow XPS analysis
- **TEM** analyses

PyC interphase is not affected

8 months after experiments and cleaning

Presence of sodium in crack lips

ICAPP 16 | APRIL 19, 2016 | PAGE 14

Ceaden mechanical behavior of Sic/Sic After Immersion

	E ₀ (GPa)	ε _R (%)	σ (MPa)
References	281	1,010	279
Na(p) 1000h	296	1,053	303
Na(p) 2000h	308	1,145	349

immersion ?

Higher dispersion of mechanical behavior is noted after immersion

Ceaden mechanical behavior of sic/sic after immersion

Zoom on mechanical behavior at low strain after immersion in purified sodium(Na(p))

Increase of the linear elastic range after immersion even if dispersion is noticed

End of linear elastic range and beginning of acoustic emission are closed

Phenomenon is more pronounced after longer immersion

Kinetic effect ?

	Deviation from linearity		First Acoustic emission signal	
	ε _ι (%)	σ _ι (Mpa)	ε _{EA} (%)	σ_{EA} (Mpa)
Reference	0,012	34	0,053	112
Sodium immersion 2000h	0,041	123	0,046	135

Ceaden mechanical behavior of sic/sic after immersion

Crack spacing distance:

- Bulk crack spacing distance
- Surface crack spacing distance (not representative) :
 - Internal (filament winding)
 - External (2D braiding)

Acoustic emission is a good parameter to follow the evolution of matrix multicracking process during mechanical tests

Linear Increase of crack density with stress (no matrix multicracking saturation) ICAPP 16 | APRIL 19, 2016 | PAGE 17

Ceaden mechanical behavior of Sic/Sic After Immersion

350 300 250 Stress (MPa) REF 3 200 Pre-damaged 0,1% --- Na(p) - 2000h - 1 - 0,1% 150 Pre-damaged 0,15% --- Na(p) - 2000h - 1 - 0,15% 100 -Pre-damaged 0,3% --- Na(p) - 2000h - 1 - 0,3% -Pre-damaged 0,5% 50 --- Na(p) - 2000h - 1 - 0,5% ······ Na(p) - 2000h - 2 - 0,5% 0 0.6 0.2 0.4 0.8 0 1 1,2 Strain (%)

Results of pre-damaged materials

Same results for Na(O)

No influence of the pre-damaging on the mechanical properties of composites after immersion in sodium at 550°C up to 2000h. ICAPP 16 | APRIL 19, 2016 | PAGE 18

Ceaden Mechanical Behavior of Sic/Sic After Immersion

Analysis of loading-unloading cycles during mechanical tensile tests:

- **E/E**₀: increase of Young modulus
- ■Δε (strain at halfway up) : no evolution \rightarrow fiber/matrix bonding is not modified
- **A** (area of cycles) and $\Delta W/W$: slight increase
- $-\epsilon_{R}$ (residual strain) : high increase

Ceaden mechanical behavior of sic/sic after immersion

Tomography experience for a tube section after immersion

2 contrasts in porosities of composites: presence of sodium trapped after immersion ?

Ceaden mechanical behavior of sic/sic after immersion

Video tape during tensile mechanical test after immersion

Tensile test in air (presence of water vapor and 0_2)

Off-gassing \rightarrow Na_(s) + H₂O_(g) = NaOH_(s) + ½ H_{2(g)}

Origin of high residual strains during mechanical unloading after immersion (presence of reaction products between crack lips that prevents closure of cracks)

Ceaden conclusions and perspectives

CVD SiC:

PECHERCHE À L'INDUSTRI

- Slight decrease of Oxide and oxicarbide phases on surface (no weight loss) for Na(p)
- Slight surface oxidation and weight loss for Na(O)
 - \Rightarrow SiC is not significantly affected by sodium immersion

SiC/SiC composites :

- **Increase** of stress and strain to rupture for non pre-damaged samples
- No effect of high oxygen concentration in sodium
- No effect of pre-damaging on samples → Interphase is not affected
- <u>Hypothesis</u> : healing of pre-existing cracks by sodium for undamaged samples.

Perspectives :

- Influence of sodium ? (test on SiC/SiC plates)
- Oxidation kinetic of CVD SiC in Na(O)
- Irradiation in BOR60 should give complementary information

SiC/SiC samples in sodium at 550°C and up to 120 dpa neutron irradiation dose!

Questions ?

Commissariat à l'énergie atomique et aux énergies alternatives Centre de Saclay | 91191 Gif-sur-Yvette Cedex Direction de l'énergie nucléaire

Etablissement public à caractère industriel et commercial R.C.S Paris B 775 685 019