

#### SiC/SiC composite behavior in LWR conditions and under high temperature steam environment

C. Lorrette, C. Sauder, P. Billaud, C. Hossepied, G. Loupias, J. Braun, A. Michaux, E. Torres, F. Rebillat, J. Bischoff, et al.

#### ▶ To cite this version:

C. Lorrette, C. Sauder, P. Billaud, C. Hossepied, G. Loupias, et al.. SiC/SiC composite behavior in LWR conditions and under high temperature steam environment. TOP FUEL Reactor Fuel Performance 2015, Sep 2015, Zurich, Switzerland. cea-02509729

#### HAL Id: cea-02509729 https://cea.hal.science/cea-02509729

Submitted on 17 Mar 2020

**HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

DE LA RECHERCHE À L'INDUSTRIE









## SIC/SIC COMPOSITE BEHAVIOR IN LWR CONDITIONS AND UNDER HIGH TEMPERATURE STEAM ENVIRONMENT

C. LORRETTE\*, C. SAUDER, P. BILLAUD, C. HOSSEPIED, G. LOUPIAS, J. BRAUN, A. MICHAUX

CEA, DEN, DMN, F-91191 Gif-sur-Yvette, France <a href="mailto:ten:enumber-yvette">tchristophe.lorrette@cea.fr</a>

E. TORRES, F. REBILLAT

LCTS, UMR CNRS-UB1-SPS-CEA, F-33600 Pessac, France

J. BISCHOFF

AREVA NP, F-69456 Lyon, France

A. AMBARD

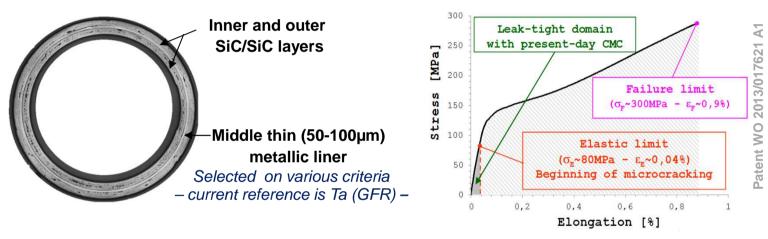
EDF R&D, MMC Dept, F-77818 Moret-sur-Loing, France

TOP FUEL Reactor Fuel Performance | Zurich, Switzerland

13-17 SEPTEMBRE 2015



www.cea.fr




#### INTRODUCTION

## A Decade of R&D activity at CEA has been dedicated to the development of SiC/SiC composites for GFR fuel cladding application: 2005-2015

Focus on metal/ceramic hybrid cladding: a solution to leak-tighness

#### **CEA « SANDWICH » CLADDING DESIGN**



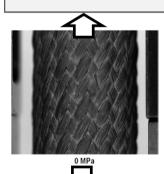
The potential benefits in terms of application temperature and dimensional stability make this concept have a very high potential for EATF

Transposition to LWR is under investigation with the current manufacturing process

#### **Objectives for current research (French Nuclear Institute)**

- ▶ Assess the SiC resistance to corrosion/interaction with coolant in normal operating conditions
- ▶ Define the overall performance under high temperature steam

#### **EXPERIMENTAL**


Materials examinated

#### TUBULAR SIC/SIC COMPOSITES (WITHOUT LINER)

Thickness 1 mm, Ø 10 mm, L 75 mm

#### **Nuclear grade materials (from CEA)**

- Hi-Nicalon S fibers + CVI-SiC matrix
- ▶ Multilayered 2D architectures (filament winding, braiding with 45° angle)
- Pyrocarbon interphase between fibers and matrix



As-received and intentionally pre-damaged SiC/SiC at different level (0.05 to 0.5 %  $\sigma_{\text{R}})$ 

Acess to PyC interphase allowed to oxidizing species

#### **HIGH PURITY CVD-SIC**

Ø 10 mm, L60 mm

#### **Monolithic rod samples**

► For understanding and comparison to CVI-SiC matrix

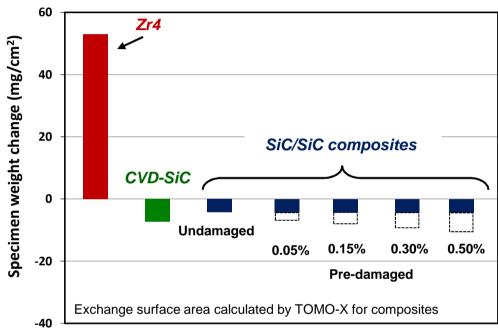


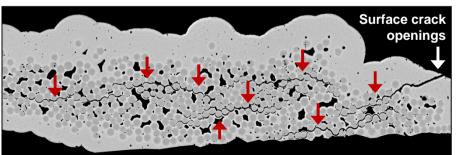
- First oxidation tests in CEA autoclaves Static and closed system
  - ▶ Representative LWR nominal conditions (360°C / 180 bar) up to 3500 h − 5 months
  - ▶ 2 compositions of water

Distilled water

VS

LWR water composition


pure


1000 ppm  $H_3BO_3 + 2$  ppm LiOH



#### WEIGHT CHANGE (LWR RESULTS PRESENTED)

After 5 months of testing



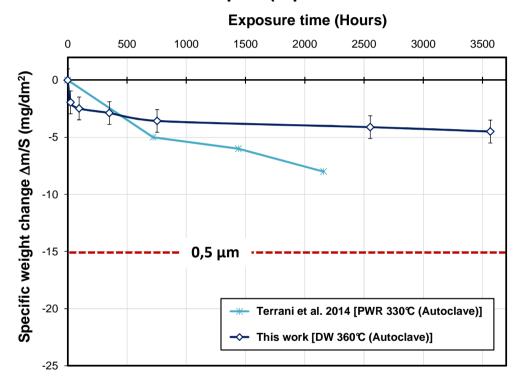


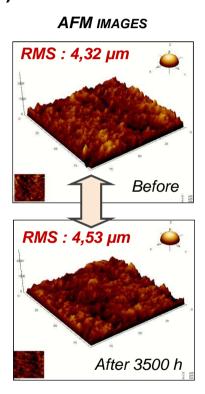
- No visible effect of water chemistry Similar results between DW and LWR water
- ► Confirmation of weight loss for SiC-based samples in comparaison to weight gain for Zr

| Zr4                       | SiC samples        |  |  |  |  |
|---------------------------|--------------------|--|--|--|--|
| ~ 3-4 µm ZrO <sub>2</sub> | Recession          |  |  |  |  |
| growth                    | Thickness < 0.5 µm |  |  |  |  |

► Greater weight loss for pre-damaged materials in comparison to undamaged

But not be quantifiable exactly due to uncertinity on exchange surface


Water infiltrates through the larger crack openings and oxidizes the SiC materials from inside and not just on the surface

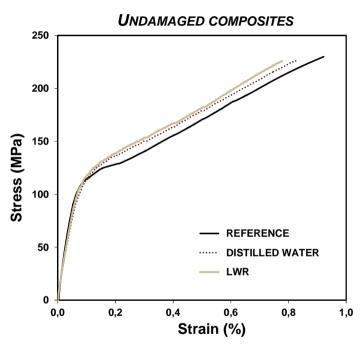


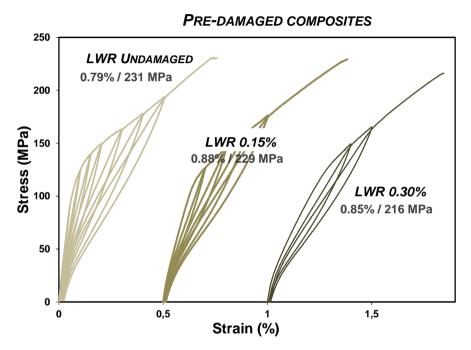

**CORROSION RATE IS INCREASING** 

#### **KINETICS AND SURFACE ROUGHNESS**

Results on CVD-SiC samples (representative of the CVI-SiC matrix)





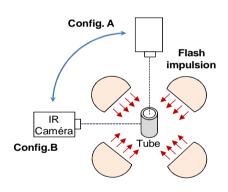


- Slow kinetics of SiC recession which tends to stabilize at long time in static conditions (closed system)
- ▶ Limited effect on surface specimen (Roughness) No passivation layer (to be confirm)

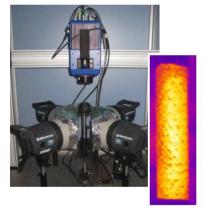
Presence of « Si » content in water after exposure suggests a release from samples

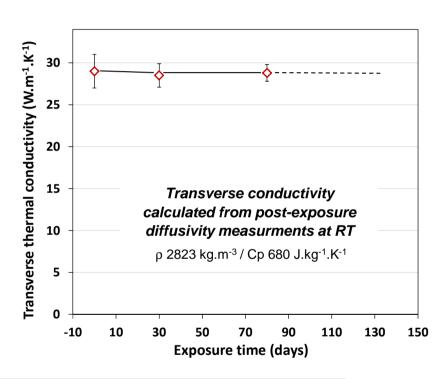
#### POST-EXPOSURE MECHANICAL TENSILE BEHAVIOR

No significant degradation of the mechanical behavior after long-term exposure







- ▶ Characteristic damageable behavior with a low fiber-matrix bonding after oxidation (DW and LWR)
- ► Slight reduction of strength (5%) for pre-dammaged samples in comparaison to the reference ► Pyrocarbon interphase is not significantly degraded for these oxidation conditions

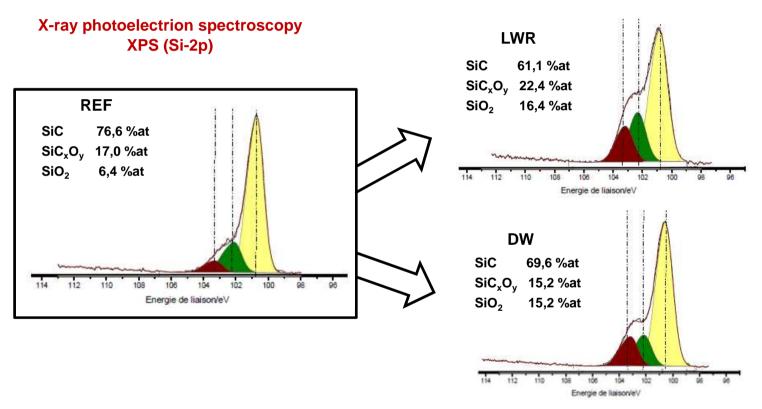

Fiber-matrix load transfer remains efficient to provide ability to deform for SiC/SiC

#### POST-EXPOSURE THERMAL BEHAVIOR

Measured on undamaged SiC/SiC exposed in dynamic conditions (Loop, AREVA Facility)








No effect of oxidation on the thermal behavior after 80 days

Consistent result with the thin sample recession and the surface analysis Next measurements after 300 et 500 days – no expected change...

#### **DISCUSSION AND MECHANISM**

**Evolution of surface composition on SiC/SiC tubes before and after exposure** 



▶ After oxidation, presence of a larger (but low) quantity of SiO₂ oxide Surface is mainly composed of SiC after oxidation in both DW/LWR conditions

#### **DISCUSSION AND MECHANISM**

- Probable mechanisms
  - 1. Direct recession of SiC

$$SiC_{(s)} + 4H_2O_{(l)} \longrightarrow Si(OH)_{4(aq)} + CH_{4(g)}$$

2. Formation and dissolution of silica (not protective)

In both cases, material is being consumed

#### Need further investigation to conclude on mechanism

(see Terrani et al., ICACC 2015 and others)

#### **PARTIAL CONCLUSIONS:**

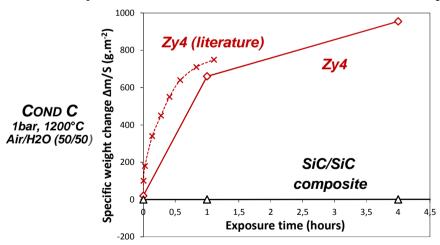
Positive mechanical/thermal behavior of SiC/SiC in LWR conditions (Out of pile)
SiC recession needs to be mitigated by protecting surface from reaction with water

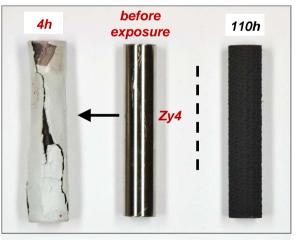
Go to the next step Assessment of performances in accidental conditions



# OXIDATION OF SIC/SIC UNDER HIGH TEMPERATURE STEAM CONDITIONS





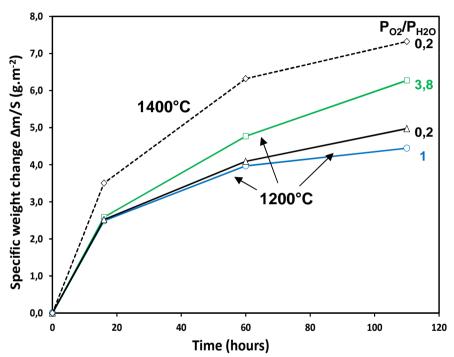


#### **EXPERIMENTAL**

- Double sided oxidation exposure for 4 to 110h
- Steam and air/O2 flow (5cm/s) with various oxygen content Total pressure between 1 to 10 bar

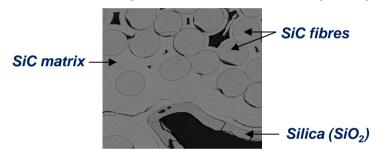
| Conditions |   | Temperature (°C) | Pressure (bar) |       |                |         | Pressure ratio (%) |                |                                   |
|------------|---|------------------|----------------|-------|----------------|---------|--------------------|----------------|-----------------------------------|
|            |   |                  | Total          | Water | Gas in a       | ddition | $P_{H2O}/P_{T}$    | $P_{O2}/P_{T}$ | P <sub>02</sub> /P <sub>H20</sub> |
| HP         | Α | 1200             | 10             | 0.5   | Air            | 9.5     | 0,05 (5)           | 0,19 (19)      | 3,8                               |
| $P_{atm}$  | В | 1200             | 1              | 0.5   | O <sub>2</sub> | 0.5     | 0,5 (50)           | 0,5 (50)       | 1                                 |
|            | С | 1200             | 1              | 0.5   | Air            | 0.5     | 0,5 (50)           | 0,1 (10)       | 0,2                               |
|            | D | 1400             | 1              | 0.5   | Air            | 0.5     | 0,5 (50)           | 0,1 (10)       | 0,2                               |

#### Experiments on SiC/SiC tubes and Zircaloy-4 clad segments as baseline material





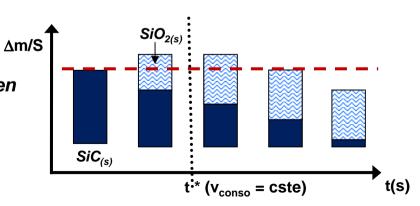

SiC/SiC composite


Extremely slower oxidation kinetics of SiC/SiC than for Zr alloys!

Confirmation of high potential of SiC/SiC for ATF

#### FOCUS ON SIC/SIC

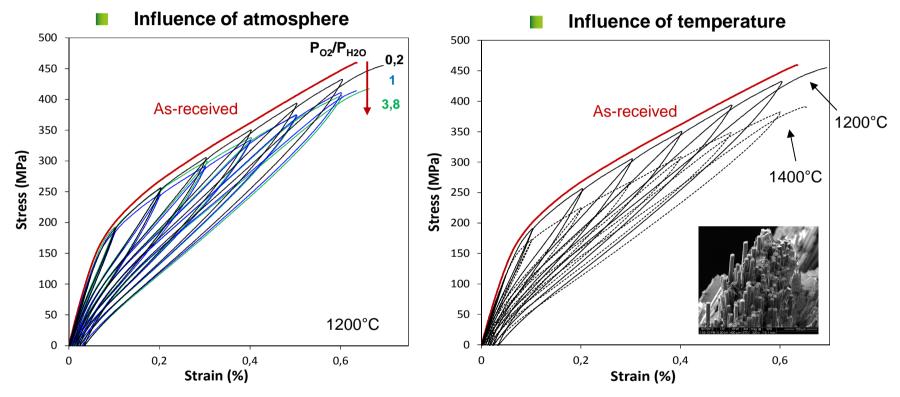



- Oxidation kinetics are strongly dependent on the bondary conditions
  Acceleration effect with temperature
  (1200 vs 1400°c)
- Formation of protective oxide scale (silica)



But volatilization of oxide is occuring from its formation (Opila et al. 97)

Global behavior resulting from the competition between simultaneous growth and volatilization of a silica oxide


$$\Delta m/S = \Delta m_{SiO2(s)}/S + \Delta m_{SiO2(vol)}/S$$





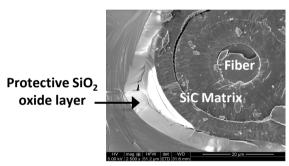
#### RESIDUAL MECHANICAL TENSILE BEHAVIOR (RT)

Integrity and geometry of specimens fully preserved after 110h exposure



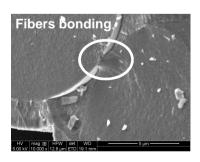
Retention of the characteristic « non-linear elastic damageable » behavior of CMCs (No reduction of strain to failure / Slight decrease of tensile strength and Young modulus)

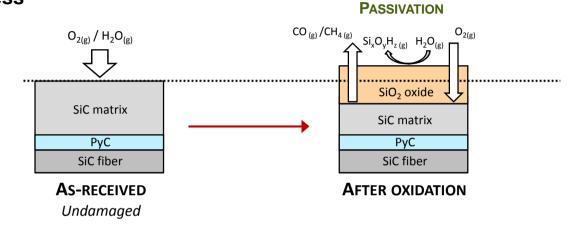
Confirmation of the protective function of silica in these conditions

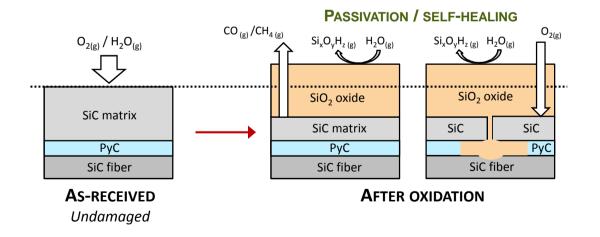

Pyrocarbon interphase stays efficient to deviate cracks



#### **DISCUSSION AND MECHANISM**


Suggested oxidation process


1200°C – 110h
"Moderate" oxidation kinetics




1400°C - 110h

"Accelerated" oxidation kinetics able to locally cause fibers bonding at pre-existing surface cracks









#### **CONCLUSION AND PERSPECTIVES**



Using SiC<sub>f</sub>/SiC composites as fuel cladding element for LWRs represents a considerable challenge related to ambitious objectives (ATF)



SiC/SiC composites is a break-through solution which requires a long term R&D

- Technical update (present work)
  - Autoclave tests results in LWR nominal operating conditions are positive in term of mechanical and thermal behavior
    - ... but highlight a different behaviour for SiC (recession) than conventional Zr
  - ► High temperature strength in steam was demonstrated (up to 1400°C, > 100h)

Although many progresses have been made, many prospects have been raised to confirm the feasibility of using SiC/SiC for LWR

- On going work and some pending issues
  - ▶ Transposition of sandwich clad to LWR requirements (design, most suitable liner)
  - ▶ Manufacturing of elongated and closed clad by welding for the « sandwich » design
  - Evaluation of neutron irradiation
  - Many others...



### THANK YOU FOR YOUR ATTENTION





christophe.lorrette@cea.fr

CEA, DEN, DMN, F-91191 Gif-sur-Yvette, France

French alternative energies and atomic energy commission Saclay center | F91191 Gif-sur-Yvette Cedex T. +33 (0)1 69 08 51 66 | F. +33 (0)1 69 08 82 52

Nuclear Energy Division

Nuclear Materials Department

Section for Applied Metallurgy Research

Technology for Extreme Materials Laboratory