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CONTENT

Content: EAC, FAC, MIC in LWrs have been discussed 
already. Are there some other phenomena of 
importance in these reactors?

Background

Cladding behavior

Concrete behaviour
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“OTHER CORROSION PHENOMENA” IN LWR 
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BACKGROUND
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From R. Staehle



Evaluation of Worldwide Corrosion Events
Distribution of Corrosion Types 
PWRs & BWRs (1995 – 2004)

MIC
5,3%

galvanic corrosion
1,1%

H ind cracking
1,1%

Corrosion
18,7%

FAC
33,6%

SICC
1,7%

Ni Alloys
8,6%

IGSCC SS
12,2%

IGSCC sens
0,3%

TGSCC
15,9%

Pitting
1,4%

From  Renate Killian, 
Areva NP 

BACKGROUND
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From H.-P. Berg, R&RATA #4, Vol. 2, 2009, December

Distribution of corrosion types in PWR and BWR 
plants in Germany (1968 - 2001)

BACKGROUND
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SAFETY BARRIERS IN PWRS 
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¹ - first barrier - fuel cladding : the fuel, inside 
which most of the radioactive products are already 
trapped, is enclosed within a metal cladding;
º - second barrier – reactor coolant boundaries : 
the reactor coolant system is enclosed within a 
pressurized metal envelope that includes the reactor 
vessel which houses the core containing the fuel 
rods;
» - third barrier – reactor containment : the 
reactor coolant system is itself enclosed in a 
thickwalled concrete containment building (for the 
EPR™ reactor, the containment is a double shell 
resting on a thick basemat, the inner wall being 
covered with a leak-tight metallic liner).

If one of the barriers is leaking, the reactor is stopped
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CORROSION & SAFETY BARRIERS
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¹ - fuel cladding : zirconium alloys / limited 
residence time (3 years)
º - reactor coolant boundaries : pressure 
vessel (irradiation damages) but also pipes and 
steam generator tubes / life time of the plant 
(repairs except for the RPV)
» - reactor containment : concrete of the 
reactor building (life time duration and 
accidental situations)

Maintaining the integrity and leak tightness of just one of these 
barriers is sufficient to contain radioactive fission products.
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CORROSION PHENOMENA
LINKED WITH SAFETY BARRIERS
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Fuel cladding : corrosion of zirconium alloys limits the 
residence time of fuel materials 

Reactor coolant boundaries : pressure vessel 
(irradiation damages) is limited by irradiation 
damages, while stress corrosion cracking of the 
nickel base alloys tubes of the SG limits the life 
time of steam generators

Reactor containment : concrete and 
reinforced concrete evolution (repairs 
possible)
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FUEL CLADDING

CORROSION OF ZIRCONIUM ALLOYS 

IN LWRS CONDITIONS
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PWR FUEL

Few numbers

|  page 10
From A. Motta
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PWR FUEL CLADDING

Operational conditions and challenges

�‰Chemistry: lithium /boron & hydrogen (Zn injection)
�‰Total residence time: 3 years increased to 5 years
�‰Burnup: from 30 GWd/t to 75-100 GWd/t 
�‰Fuel cycles increased from 18 to 24 month cycle
�‰Evolution of the zircaloy alloy from Zircaloy4®to M5®

|  PAGE 11
Bibliography  IV
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Chemical composition of 
zirconium alloys used as 
cladding material

Typical reactor 
environments to 
which zirconium 

alloys are exposed

Alloy Zircaloy 2 Zircaloy 4 Zr- 1 Nb Zr- 2.5 
Nb

Sn % 1.2-1.7 1.2-1.7
Nb % 1 2.4-2.8
Fe % 0.07-0.20 0.18-0.24
Cr % 0.05-0.15 0.07-0.13
Ni% 0.03-0.08
O  ppm 1200-1400 1200-1400 1200-

1400
1200-
1400

Co ppm 20 20 20 20
Hf ppm 100 100 100 100
U ppm 3.5 3.5 3.5 3.5
Application LWR LWR LWR LWR

CLADDING MATERIALS & ENVIRONMENTS

Bibliography  I



CORROSION PHENOMENA ON ZR ALLOY CLADDING
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Ligth water reactor nuclear fuel cladding

In reactor, Zr alloy cladding undergoes 
- on the outersurface (water side)

• General corrosion from primary water
• Hydriding

- on the innersurface (oxide side)
• Stress corrosion cracking (iodine)

From A. Motta



Generalised Corrosion of Zr alloys in LWR

Schematic representation of the zirconium alloy 
corrosion showing the pretransition, the transitory 
and the postransitory regions  

In primary water environments (water or steam), Zr alloy 
cladding undergoes corrosion according to:

Zr + 2H2�2���:���=�U�22 + 2(1-w)H2 (coolant) + 4wH2(metal)

w= fraction of produced hydrogen absorbed by the metal

�¾ Progressive formation of a  ZrO 2 layer

�¾ Hydriding the cladding metal bulk

Uniform corrosion is the dominant mechanism 
observed in LWRs

Bibliography  II

Bibliography  II
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Schematic presentation of the general  
corrosion of zirconium alloys (uniform, 
nodular and shadow corrosions)

Uniform corrosion 
and hydriding

Nodular corrosion
(oxygen, vapor –
BWRs)

Shadow corrosion - BWRs
(b) Near stainless steel
(a) Away from SS

CORROSION OF ZR ALLOY CLADDING

Bibliography  II & bibliography IV 
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Uniform Corrosion of Zr alloys in LWR

Transition thickness is characteristic of alloy, 
chemistry and very reproducible 

From A. Motta
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Oxidation rates of Zircaloy - 4 and M5 TM

measured in primary water conditions by autoclave tests 
(at 360 °C, with10 ppm of  Li  and 650 ppm of B in water). 
Cycles appear with transitions

UNIFORM CORROSION OF ZIRCALOY

Biography  IV
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UNIFORM CORROSION OF ZIRCALOY

Biography  IV
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eau

Enrichissement en espèces 
faiblement volatiles (Li)

bulle
de vapeur

oxyde

Boiling on cladding
- Temperature increase
- Sequestration of non volatile species (Li )

GENERAL CORROSION OF ZIRCALOY

Crud deposition on cladding
- Temperature increase
- Steam pockets

Cladding corrosion and crud deposits observed on 
BWR with brass condensers

Nodular corrosion in BWR

Local increases of the temperature: one of the explanations of observed local 
degradations (nodular corrosion & Crud Induced Localized Corrosion – CILC)

Biography  IV

From P. Bouffioux & B. Cheng 
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GENERAL CORROSION OF ZIRCALOY
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GALVANIC CORROSION OF ZIRCALOY

Biography  IV
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GENERAL CORROSION OF ZIRCALOY
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CORROSION OF ZR CLADDING

Shadow corrosion: specific to BWRs

|  PAGE 24

BWR 6                Fuel Bundle       Zircaloy fuel rods fuel rod spacers
(SS, Ni alloy)

( from Youg-Jim KIM & Ayljn Cukuc)
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SHADOW CORROSION IN BWR

Shadow corrosion observed after in reactor service 

|  PAGE 25
( from Youg-Jim KIM & Ayljn Cukuc)
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BWR SHADOW CORROSION ON ZIRCALOY

Main observations
- Ziracloy 2 surface adjacent to spacer (SS or Ni alloy)
- Thicker oxide in shadow
- No correlation with hydrogen pickup
- No shadow corrosion in PWR
- No shadow corrosion in lab.
- Radiation enhanced corrosion

Root causes
- Dissimilar alloys
- Contact not necessary
- Distance between two alloys
- Water chemistry (oygen)
- Radiation
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BWR SHADOW CORROSION ON ZIRCALOY

Galvanic corrosion tests

�¾ UV « On »: positive current flow indicates the anodic
dissolution of zircaloy 2

�¾ UV is needed (radiation needed )

(Youg-Jim KIM & Ayljn Cukuc)
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Mecanisms
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BWR SHADOW CORROSION ON ZIRCALOY

�¾ Galvanic corrosion
�¾ Corrosion potential diffrence between the two alloys )

(Youg-Jim KIM & Ayljn Cukuc)
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HYDRIDING PHENOMENOLOGY

�‰The Zr alloy absorbs a fraction of hydrogen produced by the 
zirconium oxidation in primary environments (liquid water & steam

�‰The absorbed hydrogen precipitates as hydrides when the solubility 
limit is exceeded

|  PAGE 29

Hydrogen pickup fraction
(correlated to the oxide layer thickness)

Hydrogen precipitation and 
dissolution of Zr hydrites

52% pickup 

15% pickup 

measured

Weigth gain 

From A. T.  Motta
From P. Bouffioux & B. Cheng 
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HYDRIDE MORPHOLOGY

- In PWR with high burnup: a 
hydride rim (30-60 µm) is 
observed close to the colder 
outer surface (oxide thickness > 
50µm)

- If oxide layer delaminates, 
the outer surface will be colder 
(better cooling) and hydrogen 
precipitates to form hydride lens

|  PAGE 30

Zr hydride are formed over the whole cladding thickness

Hydride lens

From P. Bouffioux & B. Cheng 

From P. Bouffioux & B. Cheng 



HYDRIDE IMPACTS

- Crack initiates in the rim or lens and propagates (high burnups with 
Zircaly 4)
- Ductility is reduced
- Delayed hydride cracking (DHC - phenomenon occurs at lower 
temperatures, for instance during dry storage / crack initiation under 
reactor operation and crack propagation at lower temperatures)
- Hydride reorientation (HRO) occurs when tensile hoop stress are 
generated by internal pressure (during cooled down often) and results in 
a ductile cracking

|  PAGE 31

Ductile (1) to brittle (0)  
transition as function of 
the hoop tress

From P. Bouffioux & B. Cheng 



STRESS CORROSION CRACKING OF ZR
PELLET & CLAD INTERACTIONS

Stress corrosion cracking of phenomena of zirconium cladding 
Internal surface of the fuel tube

MATERIAL ENVIRONMENT

STRESS

Chemical aggressive 
environment: release of 
fission products like 
Iodine (cracks in the 
pellets often due to rapid 
thermal transiants)

Sensitive materials: 
Zr alloys (hydrides)

Initially, compressive stress.
Tensile conditions due to the pellet swelling 

From P. Bouffioux & B. Cheng 
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Bibliography  IV
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PELLET & CLAD INTERACTIONS
MORPHOLOGY

Stress corrosion cracking of phenomena of zirconium cladding 
Internal surface of the fuel tube

Stress corrosion cracking of clad during a 
power transient
a & b: during a power variation in test reactor
c: in presence of iodine during a laboratory 
test

Bibliography  IV

With hydrides, significant crack lengths may 
be observed

From P. Bouffioux & B. Cheng 
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STRESS CORROSION CRACKING OF ZR AND ALLOYS

Crack propagation rate as function of the initial stress intensity 
factor and for 3 temperatures 

SCC-I / Zircaloy -4 

STRESS CORROSION CRACKING OF ZR
STRESS EFFECTS

Biography  IV
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FUEL CLADDING CORROSION

Summary 

�‰ Zr alloys are commonly used with success as material for cladding of 
fiuel rods in LWRs

�‰ Internal and external surfaces are subject to corrosion phenomena
�‰ In contact with primary water (liquid or vapor), 

- uniform corrosion occurs with the formation of an oxide ZrO2 layer 
with cycles and hydrogen pickup

- Nodular and underdeposit corrosion is characteristic of BWRs
�‰ Hydriding leads to cladding embrittlement
�‰ Fretting and irradiation damages are also important degradation modes
�‰ New products are developed to increase the burnup
�‰ New investigations on accidental conditions (LOCA, ….)

D. Féron | NuCoSS-15 | July 2015



CONCRETE DEGRADATION

CORROSION OF REBARS
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CONCRETE & NPP
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Cooling towers 
(reinforced concrete)

Reactor building 
(prestressed concrete)

Turbine 
building

Auxiliary buildings

Fuel pool Dampierre NPPs

PWR 900 MWe

Concrete foundation
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CONCRETE SOLICITATIONS IN NPP
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Concrete carbonation and 
corrosion of rebars

Coupling of thermal, hydric 
and mechanical solicitations

Degradation by 
boric acid

Interaction 
corium/concrete

For seacoast NPPs: chloride corrosion

Graveline NPPs

Paluel NPPs

Flamanville NPPs D. Féron | NuCoSS-15 | July 2015



BEHAVIOR OF CARBON STEEL IN CONCRETE

�‰In new concrete, pH is around 13 and the steel is passive
�‰With time, concrete minerals react with carbonic gas and pH 

decreases
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REBAR CORROSION 

- Reaction with CO 2 leads to pH decreases

- Depassivation occurs as function of pH and pollutants like 
chlorides

-Expansive corrosion products

- Cracking of the concrete

|  PAGE 40
From V. L’hostis & al.
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MODELLING CONCRETE DEGRADATION
AND REBAR CORROSION

Mechanical modell ing coupled with chemical 
evolution simulation ( carbonatation ), oxygen 

transport and corrosion
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First major consequence: loss 
of ductility needed under 
extreme conditions (storm)

CORROSION OF THE COOLING TOWERS

From Dan J. Naus, AMP2010, Toronto, Canada

Chinon

Belleville
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REBAR CORROSION

The two piers (1,2 km) have been built with reinforced 
concrete without maintenance up to around 2000….

Difference ?

Built in 1960

Built in 1937 - 1941

Pier(s) in the Mexico gulf ( Progreso, Yucatan)
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CONCLUSIVE COMMENTS
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