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Industrial context



Pellet Cladding Interaction (PCI)

Pressurized Water Reactors

Fuel and Cladding

During irradiation
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Pellet Cladding Interaction (PCI)

Pressurized Water Reactors

Fuel and Cladding During irradiation

Pellet cracking
The pellet cracks and swells and the
cladding creeps

⇒ Discontinuous contacts between
pellet and cladding
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Pellet Cladding Interaction (PCI)

Pressurized Water Reactors

Fuel and Cladding During irradiation

Hourglass shape deformation
Due to the deforming effects of the high
temperature gradient

⇒
Irradiation

⇒ Contacts occur first in front of the
inter-pellet plane
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Pellet Cladding Interaction (PCI)

Pressurized Water Reactors

Fuel and Cladding During irradiation

Pellet cracking
Hourglass shape deformation

⇒ Localized high stress concentrations
on the cladding
⇒ Integrity of the cladding (security
stake)
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Modeling of PCI

Simulation in PLEIADES fuel performance software environment

Representation of 1/32 of the Pellet and the corresponding section of
cladding : precise simulations require cells of 1µm for a structure of 1cm
(unreachable for uniform mesh)

Numerical simulation of several pressure discontinuities

Acceptable computational times and memory space

Quadrangular linear finite element required around the
contact zone (modeling reason)

Use the solver as a "black box"

Limited number of degrees of freedom per resolution

Modeling by finite elements
No composite problem
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Modeling of PCI

Simulation in PLEIADES fuel performance software environment
Representation of 1/32 of the Pellet and the corresponding section of
cladding : precise simulations require cells of 1µm for a structure of 1cm
(unreachable for uniform mesh)
Numerical simulation of several pressure discontinuities
Acceptable computational times and memory space
↪→ Local Mesh Refinement Methods : (h-,p-,r-) adaptive methods or local
multi-grids method
Quadrangular linear finite element required around the
contact zone (modeling reason)

Use the solver as a "black box"

Limited number of degrees of freedom per resolution
↪→ Local multi-grids method

Modeling by finite elements
No composite problem
↪→ Local Defect Correction method
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Local Defect Correction
Method



Adaptive Mesh Refinement methods

Adaptive Mesh Refinement methods
≡ Local Multigrid methods

Inverse multi-grid process :

Global coarse grid
Local finer grids generated recursively
in zones of interest

Prolongation (BC interpolation) and
Restriction operators link the grids
↪→ Iterative process (∧-cycles)

Smoothing or exact solving

Converged solution

Initialisation

Fine grid Gl∗

Coarse grid G0

Prolongation step (boundary conditions)

Restriction step (correction)

Level 0

Level 1

Level 2

, Work on local fine meshes,
Fast resolution on each sub-grid,
Generic method : mesh, solver,
model, refinement ratio

/ Several meshes,
Iterative process,
Accuracy depending on
prolongation and restriction
operators

Hao Liu | Copper Mountain, March 22-27, 2015 | PAGE 4/15



Adaptive Mesh Refinement methods

Adaptive Mesh Refinement methods
≡ Local Multigrid methods

Inverse multi-grid process :

Global coarse grid
Local finer grids generated recursively
in zones of interest

Prolongation (BC interpolation) and
Restriction operators link the grids
↪→ Iterative process (∧-cycles)

Smoothing or exact solving

Converged solution

Initialisation

Fine grid Gl∗

Coarse grid G0

Prolongation step (boundary conditions)

Restriction step (correction)

Level 0

Level 1

Level 2

, Work on local fine meshes,
Fast resolution on each sub-grid,
Generic method : mesh, solver,
model, refinement ratio

/ Several meshes,
Iterative process,
Accuracy depending on
prolongation and restriction
operators

Hao Liu | Copper Mountain, March 22-27, 2015 | PAGE 4/15



Adaptive Mesh Refinement methods

Adaptive Mesh Refinement methods
≡ Local Multigrid methods

Inverse multi-grid process :
Global coarse grid

Local finer grids generated recursively
in zones of interest

Prolongation (BC interpolation) and
Restriction operators link the grids
↪→ Iterative process (∧-cycles)

Smoothing or exact solving

Converged solution

Initialisation

Fine grid Gl∗

Coarse grid G0

Prolongation step (boundary conditions)

Restriction step (correction)

 Level 0

Level 0

Level 1

Level 2

, Work on local fine meshes,
Fast resolution on each sub-grid,
Generic method : mesh, solver,
model, refinement ratio

/ Several meshes,
Iterative process,
Accuracy depending on
prolongation and restriction
operators

Hao Liu | Copper Mountain, March 22-27, 2015 | PAGE 4/15



Adaptive Mesh Refinement methods

Adaptive Mesh Refinement methods
≡ Local Multigrid methods

Inverse multi-grid process :
Global coarse grid
Local finer grids generated recursively
in zones of interest

Prolongation (BC interpolation) and
Restriction operators link the grids
↪→ Iterative process (∧-cycles)

Smoothing or exact solving

Converged solution

Initialisation

Fine grid Gl∗

Coarse grid G0

Prolongation step (boundary conditions)

Restriction step (correction)

Level 0

Level 1

Level 2

, Work on local fine meshes,
Fast resolution on each sub-grid,
Generic method : mesh, solver,
model, refinement ratio

/ Several meshes,
Iterative process,
Accuracy depending on
prolongation and restriction
operators

Hao Liu | Copper Mountain, March 22-27, 2015 | PAGE 4/15



Adaptive Mesh Refinement methods

Adaptive Mesh Refinement methods
≡ Local Multigrid methods

Inverse multi-grid process :
Global coarse grid
Local finer grids generated recursively
in zones of interest

Prolongation (BC interpolation) and
Restriction operators link the grids
↪→ Iterative process (∧-cycles)

Smoothing or exact solving

Converged solution

Initialisation

Fine grid Gl∗

Coarse grid G0

Prolongation step (boundary conditions)

Restriction step (correction)

Level 0

Level 1

Level 2

, Work on local fine meshes,
Fast resolution on each sub-grid,
Generic method : mesh, solver,
model, refinement ratio

/ Several meshes,
Iterative process,
Accuracy depending on
prolongation and restriction
operators

Hao Liu | Copper Mountain, March 22-27, 2015 | PAGE 4/15



Adaptive Mesh Refinement methods

Adaptive Mesh Refinement methods
≡ Local Multigrid methods

Inverse multi-grid process :
Global coarse grid
Local finer grids generated recursively
in zones of interest

Prolongation (BC interpolation) and
Restriction operators link the grids
↪→ Iterative process (∧-cycles)

Smoothing or exact solving

Converged solution

Initialisation

Fine grid Gl∗

Coarse grid G0

Prolongation step (boundary conditions)

Restriction step (correction)

Level 0

Level 1

Level 2

, Work on local fine meshes,
Fast resolution on each sub-grid,
Generic method : mesh, solver,
model, refinement ratio

/ Several meshes,
Iterative process,
Accuracy depending on
prolongation and restriction
operators

Hao Liu | Copper Mountain, March 22-27, 2015 | PAGE 4/15



Local Defect Correction method (Hackbush, 1984)

Discrete problem on Gl : Ll(uk
l ) = f k

l ∀l,k
↪→ no operator modification

Prolongation step : BC definition on the fine
grid Gl

Restriction step : voluminous efforts correction
on next coarse grid Gl−1

Widely used in Fluid Mechanics, but few
studied in Solid Mechanics (Barbié et al, 2014)

Depends on zones of interest : either a priori
known, or to be detected automatically
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l−1(x) = (R l−1
l uk

l )(x) ∀x ∈ �

Use the corresponding coarse defect as
correction :
f k
l−1(x) = f 0

l−1(x) + χ�(Ll−1(ũk
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Use the corresponding coarse defect as
correction :
f k
l−1(x) = f 0

l−1(x) + χ�(Ll−1(ũk
l−1)− f 0

l−1)(x)
↪→ overlaying zone must be large enough

Widely used in Fluid Mechanics, but few
studied in Solid Mechanics (Barbié et al, 2014)

Depends on zones of interest : either a priori
known, or to be detected automatically

Restriction and Correction
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A posteriori error
estimation in Solid
Mechanics



A posteriori error estimation

Estimation of the discretization error from a preliminary calculation
↪→ automatic detection of the zones to be refined

Main error estimations in Solid Mechanics

Residual type a posteriori error estimators (Babuška and Rheinboldt, 1978)
Constitutive relation error estimators (Ladevèze and Leguillon, 1983)
Recovery-based error estimators (Zienkiewicz and Zhu, 1987)
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↪→ automatic detection of the zones to be refined

Main error estimations in Solid Mechanics
Residual type a posteriori error estimators (Babuška and Rheinboldt, 1978)

Based on the fact that FE simulation does not verify locally the equilibrium
equation
Calculation of the interior element residuals and the jumps at the element
boundaries
Explicit method : post-processing method, easy to implement, dependant on
unknown coefficients
Implicit method : solve local problems, high computational costs

Constitutive relation error estimators (Ladevèze and Leguillon, 1983)

Recovery-based error estimators (Zienkiewicz and Zhu, 1987)
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Main error estimations in Solid Mechanics
Residual type a posteriori error estimators (Babuška and Rheinboldt, 1978)
Constitutive relation error estimators (Ladevèze and Leguillon, 1983)

Based on the fact that stress field of FE solution is not statically admissible
Define local problems to construct a statically admissible solution
High computational costs

Recovery-based error estimators (Zienkiewicz and Zhu, 1987)
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A posteriori error estimation

Estimation of the discretization error from a preliminary calculation
↪→ automatic detection of the zones to be refined

Main error estimations in Solid Mechanics
Residual type a posteriori error estimators (Babuška and Rheinboldt, 1978)
Constitutive relation error estimators (Ladevèze and Leguillon, 1983)
Recovery-based error estimators (Zienkiewicz and Zhu, 1987)

Based on the fact that the stress field of Lagrange FE method is discontinuous
between elements
Construction of a smoothed stress field : recover the nodal values of stresses,
then construct a continuous stress field using displacement shape functions
2 methods (Projection method, SPR method) based on minimization process
Effective, easy to implement, widely used in industrial codes
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A posteriori error estimation

Estimation of the discretization error from a preliminary calculation
↪→ automatic detection of the zones to be refined

Main error estimations in Solid Mechanics
Residual type a posteriori error estimators (Babuška and Rheinboldt, 1978)
Constitutive relation error estimators (Ladevèze and Leguillon, 1983)
Recovery-based error estimators (Zienkiewicz and Zhu, 1987)

⇒ Use the Zienkiewicz and Zhu error estimator
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Zienkiewicz and Zhu (ZZ) a posteriori error
estimator

Construction of a smoothed stress field
↪→ Error = difference between the FE and the
smoothed stress fields

One classical method to detect the zones of
interest

Zone to be refined : elements K such that
eK > α%(max

L
eL)

, Easy to implement, works well for every kind
of estimators and norms

/ α unknown, requirement of a stopping criteria
for LDC Method
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↪→ Error = difference between the FE and the
smoothed stress fields

One classical method to detect the zones of
interest

Zone to be refined : elements K such that
eK > α%(max

L
eL)

, Easy to implement, works well for every kind
of estimators and norms

/ α unknown, requirement of a stopping criteria
for LDC Method

SCAL

> 6. 90E−03

< 3. 55E−02

8. 04E−03

9. 40E−03

1. 08E−02

1. 21E−02

1. 35E−02

1. 49E−02

1. 62E−02

1. 76E−02

1. 89E−02

2. 03E−02

2. 17E−02

2. 30E−02

2. 44E−02

2. 58E−02

2. 71E−02

2. 85E−02

2. 98E−02

3. 12E−02

3. 26E−02

3. 39E−02

3. 53E−02

Example of ZZ a posteriori error
estimation
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↪→ Error = difference between the FE and the
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Zone to be refined : elements K such that
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detection method

SCAL

> 6. 90E−03

< 3. 55E−02

8. 04E−03

9. 40E−03

1. 08E−02

1. 21E−02

1. 35E−02

1. 49E−02

1. 62E−02

1. 76E−02

1. 89E−02

2. 03E−02

2. 17E−02

2. 30E−02

2. 44E−02

2. 58E−02

2. 71E−02

2. 85E−02

2. 98E−02

3. 12E−02

3. 26E−02

3. 39E−02

3. 53E−02

Example of ZZ a posteriori error
estimation
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Zienkiewicz and Zhu (ZZ) a posteriori error
estimator

Relative error estimator in energy norm :

‖eK‖E =

(∫
K (σ∗−σh) : (ε∗− εh) dK∫

K σ∗ : ε∗ dK

)1/2

with σ∗,ε∗ smoothed solutions and ε∗ = [C]−1σ∗, σ,ε FE solutions

Refine the elements for which the stress error is superior to a threshold :

‖eK‖E > threshold.

Global error

‖eΩ‖E =

(∫
Ω(σ∗−σh) : (ε∗− εh) dΩ∫

Ω σ∗ : ε∗ dΩ

)1/2

=

(
Σ
∫

K (σ∗−σh) : (ε∗− εh) dK
Σ
∫

K σ∗ : ε∗ dK

)1/2

< threshold
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Zienkiewicz and Zhu (ZZ) a posteriori error
estimator

Error estimator in maximal norm :

‖eK‖∞ = max
Gauss point in K

|σ∗−σh|

with σ∗ smoothed solutions and σ FE solutions

Refine the elements for which the stress error is superior to a threshold :

‖eK‖∞ > threshold.

Not widely used in the literature

More interesting for mechanical engineer because it gives a local
information
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Numerical results of
the combination of LDC
and ZZ estimator



Test case

Hourglass shape deformation :
2D(r ,z) test case

Focus on the elastic response of the
cladding

Contact with the pellet = discontinuous
pressure imposed on the internal
radius of the cladding

LDC coupled with ZZ error estimator
Generate sub-grids at the first
prolongation step
Number of level of sub-grids
generated automatically

1
3
.5

 m
m

0.6mm4.1mm

E = 100GPa,ν = 0.3
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Numerical results

Relative error in energy norm

test case Coarse grid 1st sub-grid 2nd sub-grid

SCAL

> 6. 90E−03

< 3. 55E−02

8. 04E−03

9. 40E−03

1. 08E−02

1. 21E−02

1. 35E−02

1. 49E−02

1. 62E−02

1. 76E−02

1. 89E−02

2. 03E−02

2. 17E−02

2. 30E−02

2. 44E−02

2. 58E−02

2. 71E−02

2. 85E−02

2. 98E−02

3. 12E−02

3. 26E−02

3. 39E−02

3. 53E−02

SCAL

> 2. 56E−03

< 2. 44E−02

3. 43E−03

4. 47E−03

5. 51E−03

6. 55E−03

7. 59E−03

8. 63E−03

9. 67E−03

1. 07E−02

1. 18E−02

1. 28E−02

1. 38E−02

1. 49E−02

1. 59E−02

1. 70E−02

1. 80E−02

1. 90E−02

2. 01E−02

2. 11E−02

2. 22E−02

2. 32E−02

2. 42E−02

SCAL

> 9. 26E−04

< 1. 89E−02

1. 64E−03

2. 50E−03

3. 35E−03

4. 21E−03

5. 07E−03

5. 92E−03

6. 78E−03

7. 64E−03

8. 49E−03

9. 35E−03

1. 02E−02

1. 11E−02

1. 19E−02

1. 28E−02

1. 36E−02

1. 45E−02

1. 53E−02

1. 62E−02

1. 71E−02

1. 79E−02

1. 88E−02

SCAL

> 1.10E−03

< 1.62E−02

1.70E−03

2.42E−03

3.14E−03

3.86E−03

4.59E−03

5.31E−03

6.03E−03

6.75E−03

7.47E−03

8.19E−03

8.91E−03

9.63E−03

1.04E−02

1.11E−02

1.18E−02

1.25E−02

1.32E−02

1.40E−02

1.47E−02

1.54E−02

1.61E−02

3rd sub-grid

Example for threshold 1%

Number of levels stops automatically
Sub-grids localized around the pressure discontinuity
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Numerical Results

Relative error in energy norm

mesh
threshold

5% 2% 1% 0.50%
hi =328 µm 4.5% 2.04% 0.614% 0.366%

hi/2 4.20% 1.98% 0.614% 0.366%
hi/4 1.92% 1.92% 0.527% 0.366%
hi/8 0.757% 0.757% 0.433% 0.322%

Error is calculated between the composite solution and the reference
solution which is calculated by a very fine mesh.
Works well, obtained errors inferior to threshold for different thresholds and
different initial coarse meshes.

Error can be sub-estimated by ZZ estimator→ security coefficient
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Numerical Results

Maximal norm

Example for threshold 5E+6 Pa

Generation of sub-levels doesn’t stop
Zone detected more localized
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Numerical Results

Maximal norm

Z

r

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0  1  2  3  4  5  6

σ
z
z
 (

 X
1

0
2
 M

P
a

)

r( X10
-4

m)

Stress in Z direction

 Reference solution
Solution of  h0

Solution of h0/2 
Solution of h0/4
Solution of h0/8

Solution of  h0/16

-2.2

-2

-1.8

-1.6

-1.4

-1.2

-1

 0  0.2  0.4  0.6  0.8  1

Stress for different meshes

Stress singularity near the pressure discontinuity

Never converge with the mesh step
→ Find a method to stop the generation of sub-grids
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Conclusions and
perspectives



Conclusions and perspectives

Conclusions
Use the solver as a "black box"
Coupling of ZZ error estimator and LDC method works well.
Zones of interest are detected automatically

Energy norm : automatically stop
Maximal norm : generation of sub-grids doesn’t stop (singularity)

Numerical results of the 2D(r,z) test case are promising as zones of interest
are more and more localized and the errors decrease.

Perspectives
Error in maximal norm
→ Find a user-independent method to stop generating sub-grids
Nonlinear test case
Comparison with h-adaptive method (most used space refinement method)
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Thank you
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