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Local Defect Correction method (Hackbush, 1984) Discrete problem on G l : L l (u k l ) = f k l ∀l, k → no operator modification 

Use the corresponding coarse defect as correction : Error is calculated between the composite solution and the reference solution which is calculated by a very fine mesh. Works well, obtained errors inferior to threshold for different thresholds and different initial coarse meshes.
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