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Properties evolving at early age (ageing) 
Phenomena taking place at different space and time scales: 
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Mesocale 

Different strategies 
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bottom-up and top-down  
phenomenological and mechanistic approaches 

 

Accounting for the 
ITZ and mortar 

additional porosity 

Mechanistic 
determination of the 
kinetics of hydration 

Estimation of 

reactant and 
products volume 

fractions 

Influence of the 
thermal boundary  

conditons 

Influence of the 

restraint conditions  

Analysis by means of a 
phenomenological 

approach 

Identification of the 
zones damaging and 

cracking 



Thermo-chemo-mechanical 

analysis 
A phenomenological approach at the structure 

level 
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Chemo-thermal problem 
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]/exp[)( TEatA Hydration  

Heat balance 

 

 

 

Non-homogeneous PDE  

… with non-homogeneous BC 

Boundary conditions  
0 yrcs qqqq

                         Heat conducted into concrete 

  Re-radiation by concrete 

          Heat loss by convection   

  Radiation absorbed 

𝑇 𝐱, 𝑡 =  𝐷 𝛻2𝑇 𝐱, 𝑡 + 𝑄  
𝑇 𝐱, 0 = 𝑇0                                                           ∀𝐱 ∈  𝜴𝒄

 𝜆 𝛻𝑇 𝐱, 𝑡  ∙ 𝐧 – 𝑘 𝑇 𝐱, 𝑡 − 𝑇𝑎  = 𝑞𝑖(𝑡)        ∀𝐱 ∈  𝝏𝜴𝒊
 



Analytical solutions 
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Why? 
 

Elucidates the role of the BC in the chemo-thermal problem 
Validates and allows some extrapolations from the numerical results 
 
 

𝑙ℎ =
𝐷

𝐴 𝜉
 exp −

𝐸𝑎
𝑅 𝑇

 

adiabatic 

isothermal 



Analytical solutions 
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𝑇 𝑥, 𝑡 ≈  𝑇1 𝑥, 𝑡 + 𝑇2 𝑥, 𝑡 + 𝑇3 𝜉, 𝑥, 𝑡  

𝑇1 𝑥, 𝑡 =  𝑇0  1 − erfc
𝑥

4 𝐷 𝑡
+ exp  

𝑘

𝐷
(𝑘 𝑡 + 𝑥) erfc

2  𝑘 𝑡 + 𝑥

4 𝐷 𝑡
 

𝑇2 𝑥, 𝑡 =  𝑇𝑎 −
𝑞𝑠 

 𝑘
 erfc

𝑥

4 𝐷 𝑡
− exp  

𝑘

𝐷
(𝑘 𝑡 + 𝑥) erfc

2  𝑘 𝑡 + 𝑥

4 𝐷 𝑡
 

After some hypothesis and simplifications… 
 

1D solution in a semi-infinite domain non-homogeneous PDE with non-
homogeneous BC: 

x 

Temperature of concrete 
at placement 

Ambient temperature Variable flux on 
boundaries (solar flux) 

Reradiaiton and 
Convection 

equivalent 
exchange coeff. 



Solar flux 
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• Evolution of the temperatures at 
different distances from the 

surface  

 

• Profiles of temperatures at different times ↓ 

• Convection and reradiaiton 

• 𝑇𝑎 is kept constant. 

full lines: no solar flux; 

dashed lines: constant solar flux 

• Gradient of temperature 

• Gradient of temperature ↓ 



FEM analysis 
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~ 200k FE in total 

~ 100k FE for the wall 

 

• Asymmetric thermal loading 

induced by solar flux 

• Test different T scenarios 

• Precooling? 

Solar flux Validation 

• Goal: Determine concreting temperatures 



Ambient temperature 
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Maximum T to prevent DEF 

problems Tadm=70°C 

Maximum temperature reached 

within the structure varies almost 

linearly with Ta 

 

Set of temperatures   



Concreting temperatures 

CMS Workshop “Cracking of massive concrete structures” 

Cachan, 17 March 2015 

11 Modelling the mechanical behavior at early-age | T. HONORIO et al. 

𝑇𝑚𝑎𝑥 = 𝑐1 𝑇0 + 𝑐2 𝑇𝑎 + 𝑐3 

[-] 1.28 

 [-] 0.359 

 [°C] 34.1  

Fitting parameters 

𝑇 𝑥, 𝑡 ≈  𝑇1 𝑥, 𝑡 + 𝑇2 𝑥, 𝑡 +  𝑇3 𝜉, 𝑥, 𝑡  

𝑇1 𝑥, 𝑡 =  𝑇0 …  𝑇2 𝑥, 𝑡 =  𝑇𝑎 −
𝑞𝑠 

 𝑘
 …  

R2 = 0.81 

∆𝑇𝑎𝑑 =  46.62 °C 



Mechanical model 
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𝛆𝒊𝒏 = 𝛆𝒂𝒖 + 𝛆𝒕𝒉 + 𝛆𝒄𝒓 

 
Rheological model 
 
 

 
𝜏𝑏𝑐
𝑖 𝛆 𝑏𝑐 + 𝜏𝑏𝑐

𝑖 𝑘 𝑏𝑐
𝑖 (𝜉)

𝑘𝑏𝑐
𝑖 (𝜉)

+ 1 𝛆 𝒊𝑏𝑐 =
𝛔 

𝑘𝑏𝑐
𝑖 (𝜉)
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Damage model 
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Isotropic damage variable D 

 

 

Equivalent strain 

 

 

Coupling between damage and creep 

𝛔 = 1 − D 𝛔  

𝜀 = 𝜀𝑒 + 𝛽𝜀𝑏𝑐 +: 𝜀𝑒 + 𝛽𝜀𝑏𝑐 + 

Cracking index 

CI =  maxΩ
𝜎𝑖𝑖 𝑡

𝑓𝑡 𝑡
+ 

𝑃 𝐶𝐼 = 100 × 1 − exp −
1

𝐶𝐼
/0.92

−4.29

 

Probability of cracking as a function of 

the CI: 

The 𝐶𝐼 obtained from the simulation must 

be inferior to 54% so that 𝑃 𝐶𝐼  ≤ 5% 

 

Other criteria existing  B. Craeye (70%); 

Fairbairn (100%) 



Thermal conditions: Cracking Index 
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t = 15.08 days 

First (maximum) 

eigenstress 

according to 

the 3 thermal 

boundary 

conditions 

wall 

slab 

Aug (oscillating) Aug (constant) Nov (oscillating) 



Coupling between creep and damage 
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August temperatures; t = 15.08 days  
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Thermal conditions: Damage and Crack opening 
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Aug (oscillating) Nov (oscillating) 

β = 0.1 β = 0.1 

Damage  

Crack opening 

Damage  

Crack opening 

[Mattalah et al. 2009] 



Conclusions 
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• Phenomenological approaches: 

• It works! 

• Ad hoc character: difficult to extrapolate to other scenarios of 

interest 

• “enigmatic“ parameter β  

• Small variations of β can lead to different damage patterns  

 

• Mechanistic approaches to understand the underlying phenomena 

• Justify and improve phenomenological 

 



Multiscale estimation of ageing 

properties 
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Concrete at early-age 
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Properties evolving at early age (ageing) 
Phenomena taking place at different space and time scales: 
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Goals 
Determine the kinetics in from 
the main driving mechanisms 
Estimate the evolution of 
volume fraction  

 
Approach 

2 mechanisms gouverning 
hydration : 

o Boundary nucleation and space-

filling growth (BNG) 

o Diffusion controlled growth (DCG) 

BNG 

 

DCG Hydration kinetics 

[Honorio et al. 2014c; 
Honorio et al.  Submitted] 



Microstructure representation 
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Repartition of 
products 

C-S-H HD C-S-H LD 
ITZ 

[Honorio et al. 2014d] 

[Stora et al., 2006 ] 



Solutions in elasticity 
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Mori-Tanaka  
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Generalized Self-Consistent 

[Honorio et al. 2014d] 



Ageing linear viscoelasticity 
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Mori-Tanaka  Generalized Self-Consistent 

[Volterra 1887; Maghous et al. 2003; 

Sanahuja, 2013 ] 

𝑓 ∘ 𝑔 𝑡, 𝜏 ≡ 

 𝑓 𝑡, 𝑡′
𝑡

𝑡′=−∞

𝑑𝑡′𝑔(𝑡
′, 𝜏) 

Opérateur Intégral 
de Volterra : 

C-S-H HD 

C-S-H LD 

C-S-H : viscoelastic behavior 
o Intrinsically ageing?  

Solidification  ageing behavior  



Numerical homogeneization 
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Dispersion on stresses within the 

inclusions 

Elasticité  

Investigate the influence of the aggregates 

Get local information 

Study more complex microstructures 

Matrix : cube (120x120x120 )mm3 

Number of inclusions : 872  

o Equivalent diameters : 8-18 mm  

[Bary et al. 2014] 

Goals: 

Ageing linear 

viscoelasticity 
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Conclusions 
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Different strategies to investigate the behavior at early-age 
 

Mechanistic approach: 

Some phenomena still need to be better understood (hot point!) 

Some tools still to be developed 

 

 

Perspectives 
Contribution to the study of the ageing viscoelastic behavior 

Influence of the ageing mechanisms at the paste level 

Influence of the aggregates (shape, PSD, vol. fraction) 

Mismatch of  matrix-inclusions properties  

Thermal effects 
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