

Measurements of long-lived ^{121m}Sn and ¹²⁶Sn nuclides in Low and Intermediate Level Nuclear Waste

Céline Gautier, J.-P. Degros, M. Coppo, P. Fichet, F. Goutelard, R. Brennetot

▶ To cite this version:

Céline Gautier, J.-P. Degros, M. Coppo, P. Fichet, F. Goutelard, et al.. Measurements of long-lived 121m Sn and 126 Sn nuclides in Low and Intermediate Level Nuclear Waste. MARC X - The Tenth International Conference on Methods and Applications of Radioanalytical Chemistry, Apr 2015, Kailua-Kona, United States. cea-02509180

HAL Id: cea-02509180 https://cea.hal.science/cea-02509180v1

Submitted on 16 Mar 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Measurements of long-lived Sn-121m and Sn-126 nuclides in Low and Intermediate Level Nuclear Waste

MARC X

10th International Conference on Methods and Applications of Radioanalytical Chemistry, USA, April 12-17, 2015

C. Gautier¹, J.P. Degros¹, M. Coppo¹, P. Fichet¹, F. Goutelard² and R. Brennetot¹

¹Operator Support Analyses Laboratory, Atomic Energy Commission, CEA Saclay, DEN/DANS/DPC/SEARS/LASE, Building 459, PC171, 91191 Gif-sur-Yvette Cedex, FRANCE

celine.gautier@cea.fr

2CEA/DEN/MAR/DEIM/Nuclab, Atomic Energy Commission, CEA Marcoule, Building 109, BP 17 171, 30207 Bagnols-sur-Ceze, FRANCE

Context

In France, nuclear waste are managed by the National Radioactive Waste Management Agency (ANDRA). Several repository sites have been built in order to accommodate nuclear waste packages. One is dedicated to waste containing short-lived radionuclides with radioactivity at Low and Intermediate Level. Criteria for 143 radionuclides have been defined by ANDRA which guarantees the safety of the facility. Among this long list, Sn-121m and Sn-126 have to be declared as soon as their activities are over 10E-3 Bq/g [1]. Both tin isotopes are fission products obtained according to thermal fission yields of 0.00003 % and 0.06 %, respectively. Sn-121m can also be produced by activation of tin present as an additive in zircaloys and as an impurity in inconels and steels used in the nuclear industry. Sn-121m decays with a half-life of 55 years whereas Sn-126 is a very long-lived radionuclide with a half-life estimated at around 10E5 years. Because of the long half-life and the unknown impact of high energy gamma emissions of Sn-126, ANDRA allows a very low Sn-126 activity limit (2.7 Bq/g) in waste packages. Due to their potential low activities in nuclear wastes, both tin nuclides need to be separated from the matrices and concentrated through chemical separations prior to any measurement.

Radiochemical protocol

OQ ICPMS (Elan DRCe, Perkin Elmer):

- Measurement of 126Sn activity

 $N \times ln \ 2 \times [^{126}Sn]_{ICPMS}$ $A(^{126}Sn) =$ $M \times T_{196~000~vears}$ [2]

113Sn (392 keV)

γ Spectrometry γ Spectrometry

- Gamma spectrometer (Ge detector, Ortec GMX-15185):
- Measurement of 121mSn activity - Measurement of 113Sn activity for the determination of the

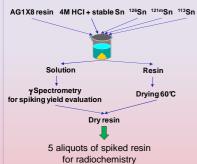
⇒ Radiochemical yield: 30% up to 70% depending on the matrix

Validation

In-house tin standards preparation

126Sn

No availability of commercial 121mSn and 126Sn sources


Application to radioactive zircaloys

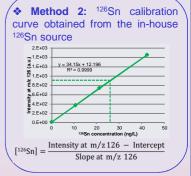
in-house ¹²¹mSn source

Application to spent nuclear fuel dissolution solutions ⇒ in-house ¹²⁶Sn source

Spiking of ion exchange resins with 113Sn*, 121mSn, 126Sn sources (*CERCA commercial source)

§ 70 60

yield 50 40 113Sn (y Spec) 121mSn (y Spec 126Sn (Q ICPMS) **⇒** Same radiochemical yields


Results of 5 radiochemical replicates

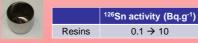
whatever the studied tin isotopes

Determination of ¹²⁶Sn activity

^{121m}Sn (37 keV)

Method 1: Extrapolation of the slope of the ¹²⁶Sn calibration curve from other natural tin isotopes 3.06E+01 3.04E+0 Intensity at $\,m/z\,126\,$ $[^{126}Sn] = \frac{\text{Extrapolated slope at m/z } 126}{\text{Extrapolated slope at m/z } 126}$

	[¹²⁶ Sn] (ng/L) obtained from Method 1	[¹²⁶ Sn] (ng/L) obtained from Method 2	Difference (%)	
Sample 1	36.2	36.7	-1.4	
Sample 2	12.3	11.7	4.8	


⇒ No significant difference between the two methods

Applications

Real matrices: radioactive steels and ion-exchange resins

121mSn activity (Bq.g-1) 50 → 1000

Conclusions

A radiochemical protocol was developed on synthetic samples to separate tin from various matrices and concentrate it prior to any nuclear or mass spectrometry measurements. As no 121mSn or 126Sn sources are commercially available, the protocol was first applied to zircaloys and spent nuclear fuel dissolution solutions to obtain in-house standards. The radiochemical procedure was validated subsequently on ion exchange resins spiked with ¹¹³Sn, ^{121m}Sn and ¹²⁶Sn. The developed radiochemical procedure enables to measure 121mSn and 126Sn in Low and Intermediate Level Nuclear Waste with detection limits of 20 Bq/g and 0.02 Bq/g respectively.

[1] ANDRA, Spécifications d'acceptation des colis de déchets radioactifs au centre de l'Aube - Spécification technique générale, ACO.SP.ASRE.99.001 indice D, 2014.
[2] P. Bienvenu et al., Determination of ¹²⁸Sn half-life from ICP-MS and gamma spectrometry measurements, Radiochim. Acta 97, 687-694 (2009)