

Centre des The Role of Intergranular Chromium Carbides on Stress Corrosion Cracking of Nickel Base Alloys in PWR Primary Water

F.O.M. Gaslain^{1,*}, H.T. Le¹, C. Duhamel¹, C. Guerre² and P. Laghoutaris³

¹ MINES ParisTech, PSL - Research University, MAT - Centre des Matériaux, CNRS UMR 7633, P.O. Box 87, FR-91003 Evry cedex, France ² CEA, DEN, DPC, SCCME, Laboratoire d'Etude de la Corrosion Aqueuse, FR-91191 Gif-sur-Yvette, France ³ CEA, DEN, DPC, SCCME, Laboratoire d'Etude de la Corrosion Non Aqueuse, FR-91191 Gif-sur-Yvette, France

Context: - There are plans to extend the lifetime of pressurised water reactors (PWRs) of French nuclear power plants up to 60 years.

- Alloy 600 (Ni-16Cr-10Fe) provides a good overall corrosion resistance, but is susceptible to stress corrosion cracking (SCC).

- SCC is the main degradation phenomenon of PWRs.
- Intergranular oxidation is a key step in SCC initiation.
- Chromium carbides at the grain boundaries showed themselves beneficial in terms of resistance to SCC by reducing the oxidation progress.

<u>Understanding the effect of intergranular Cr carbides on intergranular oxidation kinetics</u> **Objective:**

Materials: 2 model samples have been prepared from WF675

1050 °C for 1 h + water quenching

Grain boundary oxidation for 1400 h in autoclave:

P = 120 bar, 325 °C, $[H_2]$ = 30 mL (TPN)/Kg H_2 O (200 mbar à 325 °C), H₃BO₃ (1000 ppm), LiOH (2.2 ppm)

Analytical transmission electron microscopy:

Performed on FIB-lamellae, using a FEI Tecnai F20-ST TEM.

Conclusion:

EFTEM

- Sample SA: long slim Cr-rich oxide penetration of $\sim 2 \mu m$.
- Sample SA carbides: broad Cr-rich oxide penetration stopped by the Cr₇C₃ carbides and forming a cap.

3D SEM/FIB electron tomography:

Image acquisition:

Oxidation depth and path along grain boundaries have been characterised by 3D electron tomography using a FEI Helios 660 SEM/FIB with AutoSlice & View G3.

	Sample SA	Sample SA carbides
Number of slices	640	800
Voxel (nm)	13x13x20	10x10x10
Image acquisition parameters	HV 5 kV, beam current 0.1 nA, Non-immersion mode, Everhart-Thornley detector.	HV 5 kV, beam current 0.2 nA, Immersion mode, TLD detector in SE mode.
Image type	<u>2 μm</u>	<u>1 μm</u>

3D reconstruction in Avizo Fire:

Alignment, tilt correction, contrast/brightness normalisation, filtering (smoothing, edge enhancement) followed by segmentation.

Sample SA

Conclusion:

- Sample SA: oxide depths along grain boundaries are even and continuous of $\sim 2 \mu m$. GB2 is the shallowest oxide penetration, while GB1 and GB3 have the same depth. GB1 oxide penetration is porous and discontinuous.
- Sample SA carbides: oxide depths are much shallower, uneven and wider along grain boundaries than the previous sample. Cr carbides stop the ingress of oxide penetration.

Contacts:

- ¹ fabrice.gaslain@mines-paristech.fr
- ¹ cecilie.duhamel@mines-paristech.fr
- ¹ hong-thai.le@mines-paristech.fr
- ² catherine.guerre@cea.fr

pierre.laghoutaris@cea.fr

