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ABSTRACT  
 

In this paper we investigate analytically and numerically the creep behavior of 
concrete at mesoscale. The simulations are carried out with the finite element (FE) 
code (Cast3M) on 3D concrete specimens consisting in about 4600 polyhedral 
aggregates of various size and shapes randomly distributed in a box. Both matrix and 
Interfacial Transition Zone (ITZ) are considered as linear viscoelastic materials while 
the aggregates are elastic. Specific interface finite elements are introduced between 
the aggregates and the matrix to model the ITZ. The overall and intra-phase response 
of the numerical specimens when subjected to classical creep loadings is investigated, 
and then compared to the results of analytical estimations obtained with classical 
mean-field approximation schemes. These schemes are applied in the Laplace-Carson 
(LC) space, and the effects of the ITZ are accounted for via appropriate interface 
models. The results obtained for different ITZ thicknesses are analyzed so as to 
evaluate their respective influence on mortar and concrete materials. 
 
 
INTRODUCTION  
 

Two main functions are devoted to concrete structures in the nuclear context 
(containment building, waste storage structures…): containment and protection 
against radionuclide migration. The constitutive material must then meet high 
requirements in terms of performance and durability. In particular, loss of 
containment abilities due to long-term creep and induced development of cracks shall 
be prohibited. Concrete is a heterogeneous material made up at the mesoscale of 
linear elastic aggregates distributed in a mortar matrix whose behavior is time-
dependent. Besides, the presence of an ITZ between the aggregates and the matrix is 
known to also influence the overall behavior (see e.g. (Lavergne et al. 2015; Lutz et 
al. 1997; Scrivener et al. 2004)). It is then of particular importance to correctly 
characterize the respective role and impact of both phases and ITZ regarding the 
creep strains, since the initiation and propagation of cracks are strongly related to the 
local stresses and strains states as well as their history.  
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In this paper we investigate analytically and numerically the creep behavior of 
concrete at mesoscale. The simulations are carried out on 3D concrete specimens 
generated by means of python scripts using the functionalities of the integration 
platform Salome (Bourcier et al. 2013; Salome). They consist in about 4600 
polyhedral aggregates of various sizes and shapes obtained by a Voronoi space 
decomposition, and randomly distributed in a box. Only the coarser aggregates 
representing a volume fraction of 50% are considered in order to generate 
mesostructure meshes of reasonable size. Then, unstructured periodic meshes with 
tetrahedral elements are generated, and computations are carried out in the finite 
element code (Cast3M). The matrix and ITZ are considered as linear viscoelastic 
materials ruled by different generalized Maxwell models. Specific interface elements 
are introduced between the aggregates and the matrix to model the ITZ.  

One purpose of the study is to analyze the overall and intra-phase response of 
the numerical specimens when subjected to classical creep loadings. In particular, the 
evolutions of averaged stresses and strains in the matrix and aggregate phases will be 
reported and compared to analytical estimations obtained with classical mean-field 
approximation schemes. These schemes will be applied in the Laplace-Carson (LC) 
space via the well-known elastic – linear viscoelastic correspondence principle. The 
effects of the ITZ will be accounted for via interfaces modelled with the linear-spring 
model (LSM) (see e.g. (Duan et al. 2007)) in the LC space. The influence of the ITZ 
thickness on the overall and local response of the specimens is studied. Further, an 
analysis regarding the evolutions of the mean stresses and strains in each aggregate 
and in matrix subvolumes is performed so as to quantify their fluctuations. Finally, 
the impact of the aggregate shape on both local and macroscopic response is analyzed 
through different mesostructures with flat and elongated particles.  

 
MESOSTRUCTURE GENERATION 
 

The procedure for constructing the numerical cubic samples is detailed in 
(Bourcier et al. 2013; de Larrard et al. 2013). The open-source python library Combs 
(Bourcier et al. 2013) based on the Computer-Aided Design code (Salome) is used to 
generate both geometry and meshes of the mesostructures. To improve the placement 
procedure time, the GJK 3D algorithm has been implemented in Combs for fast 
polyhedrons distance computation (see e.g. http://www.dyn4j.org/2010/04/gjk-
distance-closest-points). The geometries considered in this paper are obtained by 
randomly distributing in a box polyhedral aggregates of various sizes and shapes 
obtained by a classical Voronoi space decomposition (de Larrard et al. 2013). To limit 
the FE computation time and the placement procedure, the choice of 4627 coarse 
aggregates has been retained, for a total volume fraction of 0.50. Their number and 
volume are defined to match the ones of the corresponding spheres assembly 
according to the sieve curve described in (de Larrard et al. 2013). The total number of 
aggregates in the samples is greater than the prescribed one since the aggregates 
overlapping the surfaces of the mesostructures are cut and the remaining parts are 
placed on the opposite faces to ensure periodicity. To evaluate the effects of the 
aggregates shape, three mesostructures are generated, one with the initial Voronoi 
aggregates (denoted as ‘isotropic’ in the following), another with flat ones and the 
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third with elongated inclusions. These flat and elongated aggregates are obtained by 
applying a scale transform of 3 on the initial aggregates along one or two 
perpendicular axes randomly defined. The Figure 1 presents a sample realization with 
isotropic (left) and flat (right) particles. 

 

     
Figure 1. Sample with isotropic (left) and flat (right) aggregates. 

 
 For the numerical results to be comparable, the meshes are constrained to 
have a similar size. Here the number of linear tetrahedral finite elements ranges from 
3.71 to 4.21×106.  
 
MODELLING  
 

As mentioned above, the behavior of the matrix material is assumed to be 
linear viscoelastic, with bulk ����� and shear moduli 		����� ruled separately by a 
generalized Maxwell model with 4 elements (the element labeled as 0 is only 
composed of a spring) as:  

����� = �	� +������ ���⁄
�

���
, 		����� = �	� +������ ���⁄
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���
 

in which ��� and ��� with � ∈ �0,3� are the elastic moduli of the Maxwell elements, 
��� are the relaxation times. It is well-known that in the case of linear viscoelasticity 
the time-dependent problem may be equivalently reformulated as a linear elastic 
problem in the Laplace-Carson space (Mandel 1966), allowing to applying classical 
upscaling techniques. It is shown in (Thai et al. 2014) that in the particular case of the 
MT scheme and spherical particles, exact or semi-analytical solutions of the inversion 
problem can be derived. We choose here to apply this simplified methodology. The 
macroscopic behavior may then take the general form of a linear viscoelastic 
material: 

 ��� = 3 !�"#�� − �� %&%� %�
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with 	 ���, & = 1 3⁄ tr�.� and * the macroscopic stress tensor, bulk and deviatoric 
part of the strain tensor ., respectively; �"# and 		�"# are the homogenized bulk and 
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shear moduli, which take the general form of Dirichlet series. The Young modulus of 
the aggregates is taken as / = 70 GPa and its Poisson ratio as 	0 = 0.3. The 
parameters of the Maxwell models are identified on a classical concrete creep test 
realized by (Ladaoui 2010) (see (Bary et al. 2014)). To simplify, the relaxation times 
are chosen a priori, in accordance with the duration of the creep tests (300 days). The 
behavior of the interface between the aggregates and the matrix is also assumed to be 
ruled by generalized Maxwell models. As in concrete the mechanical properties of 
the ITZ are known to be more compliant than the ones of the mortar matrix and 
aggregates, we chose to apply the LSM in the LC space to simulate the interface 
effects. The interface conditions for the LSM are (e.g., (Duan et al. 2007; Hashin 
1991)): 

1 23. 5 = 0, 67 . 183 =  2. 5	
where 5, 67 , 8 are the unit normal vector to the interface, the second order tensor 
characterizing the elastic parameters in the LC space (the ‘tilde’ notation designates 
the properties expressed in the LC space), and the displacement; 1∙3 denotes the jump 
of the corresponding quantities. In the case where the interface is thin and compliant 
with respect to the inclusion, i.e. ℎ ≪ <=, /> ≪ /= and �> ≪ �= with ℎ the thickness 
of the interphase, <= the radius of the spherical inclusion, /> and �> the Young and 
shear moduli of the interphase, /= and �= the Young and shear moduli of the 
inclusion, the tensor 67  can be expressed as 67 = k@A5⨂5+ k@ �C⨂C + k@ �D⨂D with 

k@A = 2�E>�1 − 0E>�
ℎ�1 − 20E>� , k

@� = �E>
ℎ  

in which C and D are the two orthogonal unit vectors in the tangent plane of the 
interface and 0E> is the Poisson ratio of the interphase. In the following, we will retain 
this model for characterizing the viscoelastic properties of the interfaces in the FE 
simulations, providing kA and k� are expressed in the time space. Further, we propose 
to estimate the overall properties of the heterogeneous material by making use and 
extending the approach due to (Duan et al. 2007), based on a replacement procedure. 
In this approach, the elastic composite inclusions composed of the aggregates and 
their surrounding interfaces are replaced by equivalent homogeneous spherical 
inclusions. The expressions of the moduli for these equivalent particles depend then 
on both inclusion and interphase properties; as they are lengthy, they are not recalled 
here, see (Duan et al. 2007) for details. Since these formulas are established in an 
elastic framework, they are applied here in the LC space. Once the composite 
inclusions are substituted by equivalent homogeneous ones, the MT scheme may be 
applied to obtain the overall properties of the concrete material.  
 
SIMULATION RESULTS  
 

We propose to perform the simulations in the FE code Cast3M with the 
different following values of interphase thickness ℎ=1, 10, 50, 100 and 250 µm. A 
calculation with no interfaces between aggregates and matrix is also carried out to 
control the accuracy of the results with smaller thicknesses. Note that the higher 
values of thickness considered are unrealistic for concrete, but are representative for 
mortars, provided the aggregates are regarded as sand particles. The loading 
corresponds to a typical creep test, defined by a constant normal stress 
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of -25.8×106 Pa applied on the sample boundaries in the direction 1 and zero stress on 
the other faces, via uniform stresses boundary conditions (BC). Such BC are 
preferred as they give results close to the periodic ones, for a much lower 
computation time (Bary et al. 2014). The computations are performed on standard 
Linux machine with 20 cores and 128 Go RAM. The total simulated time is 300 days, 
reached in 32 time steps. The computation time is about 10-12 hours, and additional 
10-12 hours are needed for post-processing the results (i.e. calculating the average 
stresses and strains in all inclusions and matrix subvolumes for all time steps). The 
mechanical properties of the interphase are supposed to be half those of the matrix 
(e.g. (Neubauer et al. 1996)). The mechanical models for both matrix and interphase 
materials have been implemented via the Mfront code generator developed at CEA 
(MFront). 

Figure 2 presents the evolutions of the creep longitudinal and transversal 
strains obtained numerically by FEM (symbols) and analytically (lines) for the 
different interface thicknesses and the isotropic aggregate case. We observe as 
expected that the magnitude of strains progressively increases for higher values of 
thickness. The differences are negligible between ℎ=1 and 10 µm, and are about 6, 14 
and 33% between ℎ=1 and 50, 100 and 250 µm, respectively. Note that the results 
with no interface are omitted as they are superposed with the ℎ=1 thickness ones. One 
may conclude that the presence of ITZ, whose typical thickness is around 20-25 µm 
(Scrivener et al. 2004) in concrete at mesoscale (i.e. considering the matrix as 
mortar), is not significant regarding the estimation of macroscopic response of the 
material. By contrast, for mortars which correspond approximately to the case of a 
thickness of 250 µm with respect to the aggregate sizes, they appear very influential 
and should not be neglected. Note that all the results shown here may be somewhat 
moderated since ITZ are modelled as idealized interfaces with very low mechanical 
properties, which may not be totally realistic. 

 

 
Figure 2. Longitudinal and transversal creep strains obtained numerically 

(symbols) and analytically (lines) for interface thicknesses of 1, 10, 50, 100 and 
250 µm. 
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We also observe that the strains estimated by the model overestimate in 
magnitude the numerical ones for all interface thicknesses. Several causes may 
explain these discrepancies: one is due to the inherent use of the MT scheme whose 
application domain should not in principle exceed about 30% of inclusion volume 
fraction; another lies in the inclusion shape considered, spherical for the model and 
polyhedrons for the FE. Biases introduced by the insufficiently fine meshes and the 
considered BC are also well-known sources of inaccuracies. Figure 3 shows the 
evolutions of average stresses (left) and strains (right) in the aggregates and matrix in 
the direction of creep loading, obtained numerically (symbols) and analytically (lines) 
for the different interface thicknesses. It should be noted that the average strains in 
the aggregate phase (contrary to the average stresses in the case of LSM) cannot be 
directly obtained via the estimation of the strain concentration tensor since in the 
approach of (Duan et al. 2007) the MT scheme is applied to the material exhibiting 
equivalent homogeneous inclusions in replacement of the composite sphere-interface 
ones. This Figure indicates that an increase of the interface thickness tends to reduce 
the magnitude of the stress in the aggregates and to augment it in the matrix; this is 
the reverse for the strain: it increases in the matrix and decreases in the aggregates. 
Again, the model provides estimations relatively close to the FE simulations. 

 
Figure 3. Average stresses (left) and strains (right) in both aggregate and matrix 

phase, obtained numerically (symbols) and analytically (lines) for different 
interface thicknesses ranging from 1 to 250 µm. 

 
Figure 4 presents the probability distribution functions (PDF) of the 

longitudinal average stress in the aggregates and matrix subvolumes for the interface 
thicknesses of 1 (left) and 250 (right) µm, and at 0.38, 24.5 and 300 days. The matrix 
subvolumes are obtained by dividing the matrix with a voxel-type procedure. Here 
the dimension of a voxel is chosen as 1/20 of the edge dimension of the initial box 
(i.e. 8000 subvolumes are expected). We observe that the stress in the aggregates is 
more dispersed than in the matrix subvolumes, in particular in the case of the smaller 
interface thickness. This dispersion tends to reduce for higher thickness (Figure 4 
right). Moreover, in all cases the PDF are more dispersed at later ages. These results 
indicate that the presence of interfaces affects notably the mean stress in both matrix 
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and aggregate phases, but also the dispersion essentially in the inclusive phase. 
Besides, the relatively high dispersion proves that important stress concentrations 
arise locally, meaning that microcracking is likely to occur in particular in the matrix 
and ITZ phases, whose strength is in general weaker than in the aggregate one.  

 
Figure 4. FE Probability Distribution Function for the average longitudinal 

strain in both matrix subvolumes and aggregates for the 1 µm (left) and 250 µm 
(right) interface thickness and at 0.38, 24.5 and 300 days. 

 
Finally, we compare on Figure 5 the longitudinal creep strain obtained in the 

cases of isotropic, flat and elongated aggregates, and for the interface thickness of 1, 
100 and 250 µm. The curve obtained for a mesostructure containing 1052 spherical 
particles representing a volume fraction of 50% is also depicted. We note that the 
effects of the aggregate shape as considered here (i.e. polyhedrons with different 
aspect ratios) are not important regarding the macroscopic creep response, whatever 
the interface thicknesses. This aspect is in agreement with results reported in e.g. 
(Lavergne et al. 2015).  

 
Figure 5. Longitudinal creep strain obtained numerically for different aggregate 

shapes and 3 interface thicknesses. 
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By contrast, significant discrepancies are observed between spherical and non-
spherical aggregates for lower ITZ thickness, which tend to reduce and even cancel 
for higher ones. However, it should be noted that the mesostructure with spherical 
particles has much less inclusions and then interfaces than the ones with polyhedrons. 
This was imposed to obtain meshes of similar size, due to the fact that curved 
surfaces necessitate a much finer discretization than plane ones. Consequently, the 
results may only be compared cautiously in particular for high ITZ thicknesses.  
 
CONCLUSION  
 
In this paper, we have analyzed analytically and numerically the viscoelastic behavior 
of concrete at mesoscale. FE simulations have been carried out on 3D concrete 
specimens with 4600 polyhedral aggregates randomly distributed in a box and 
representing a volume fraction of 50%. Both matrix and ITZ behaviors have been 
considered as linear viscoelastic and the aggregates one as elastic. Specific FE 
interface elements have been introduced to model the ITZ, assumed to be more 
compliant than the matrix. The overall and intra-phase responses in the numerical 
specimens have then been investigated when subjected to classical creep loading, and 
compared to the analytical estimations obtained with classical mean-field 
approximation schemes accounting explicitly for ITZ and applied in the LC space. 
The results obtained show that typical ITZ thicknesses for concrete of 20-25 µm do 
not affect significantly the macroscopic and intra-phase response, contrary to the case 
of mortars whose behavior is comparatively notably influenced. As expected, 
increasing the ITZ thickness leads globally to a rise of the creep strains magnitude, 
i.e. the material becomes more compliant. Moreover, it implies a reduction (in 
magnitude) of the stresses in the aggregates and an increase of both stresses and 
strains in the matrix phase. A significant dispersion has been observed in the average 
creep stress per aggregate and per matrix subvolumes, indicating potentially 
important local stress concentrations. Higher ITZ thicknesses tend to slightly reduce 
this dispersion. The effects of the aggregate shape (i.e. flat or elongated polyhedrons 
with aspect ratio of 3) are weak on the macroscopic response, whatever the interface 
thickness. More important discrepancies are observed with spherical particles. 
Future works will focus on the introduction of a more realistic ITZ behavior 
discarding the hypothesis of very low mechanical properties. Coupling with damage 
will also be a challenging aspect to study both analytically and numerically. 
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