

Wir schaffen Wissen – heute für morgen

Paul Scherrer Institut

Sara Bortot et al. (presented by Sandro Pelloni)

European benchmark on the ASTRID-like low-void-effect core characterization: neutronic parameters and safety coefficients (Paper 15361, Session 3.05-II)

PSI, 26. Mai 2015

General framework

- European Sustainable Nuclear Industrial Initiative (ESNII) addressing needs for demonstration of prioritized Generation-IV fast reactor technologies.
- Sodium-cooled Fast Reactor (SFR): reference solution.

Accurate modeling and assessment of SFR safety essential.

Neutronics, first step, several benchmarks:

-Superphénix (PNC/CEA),

-BN-600 design modifications and control rod withdrawal Phénix end-of-life experiments (IAEA). Ongoing:

-Large SFR with different fuel compositions (OECD-NEA WPRS),

-Advanced Sodium Technological Reactor for Industrial Demonstration, ASTRID (DOE/CEA).

• ESNII+ WP6 (Core safety), new benchmark:

Assess viability and applicability of state-of-the-art tools and databases for safety analyses of low-void-effect cores (CFVs) targeting ASTRID.

Low-void-effect core (CFV), this study

- Highly heterogeneous: Several driver zones, inner fertile zone, large sodium plenum above _____> Enhanced leakage, overall coolant void worth negative. Challenging.
- MOX fueled, 1500 MWth, 291 hexagonal wrapped fuel subassemblies (SAs).
 SA: 217 pins, triangular arrangement.
- Two radial regions: Different Pu content and axial zoning.
 Inner core: 177 SAs, total active height 1.1 m.
 0.2 m thick internal axial blanket Reduced power peaking.

-Outer core: 114 SAs, no internal blanket, total active height 1.2 m. 30 cm thick axial blanket below inner and outer core regions.

- Three rings radial reflector SAs and four rows radial shielding SAs.
- Regulation, compensation and safety:
 12 control rod SAs (CSDs), 6 safety rod SAs (DSDs), 4 diluent SAs: inner core region.

CFV radial/azimuthal layout

CFV axial layout

- Operating conditions, prescribed end of cycle compositions.
- Perturbations according to guidelines harmonizing modeling approaches: ensuring that relevant phenomena contributing to each reactivity coefficient be accounted for.

To determine:

- Core multiplication factor and kinetic parameters,
- Power distribution,
- CSD S-curve,
- Doppler constant,
- Coolant void worth.

Participating European institutions (8)

Institute	Address	Country
CEA	Commissariat à l´énergie atomique et aux énergies alternatives, Cadarache, F-13108 Saint-Paul-lez-Durance	France
CIEMAT	Spanish National Research Centre for Energy, Environment and Technology, Av. Complutense 40, 28040 Madrid	Spain
GRS	Gesellschaft für Anlagen- und Reaktorsicherheit mbH, Boltzmanntraße 14, 85748 Garching	Germany
HZDR	Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden	Germany
JRC	European Commission, Joint Research Centre, Institute for Energy and Transport, P.O. Box 2, NL-1755 ZG Petten	the Netherlands
КІТ	Karlsruhe Institute of Technology, Hermann-von- Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen	Germany
PSI	Paul Scherrer Institut (PSI), 5232 Villigen PSI	Switzerland
UPM	Universidad Politécnica de Madrid, Jose Gutierrez Abascal 2, 28006 Madrid	Spain

PAUL SCHERRER INSTITUT

Computational tools (10 codes, 4 basic data libraries)

Institution	Code or	Code	Library	Deterministic codes
	data			KArlsruhe Neutronic EXtendable Tool
KIT		KANEXT (Variant)	JEFF-3.1.1	(KANEXT), successor of KAPROS
PSI	-E	ERANOS-2.2-N (ECCO,	JEFF 3.1	-3D nodal transport Variant
		Variant)		 European Reactor ANalysis Optimized
CEA		ERANOS-2.3 (ECCO,	JEFF-3.1	calculation System (ERANOS):
		Variant, Bistro), PARIS		-Lattice code ECCO (CP method)
GRS		Helios-1.12/	HELIOS	-2D discrete-ordinates Bistro
		FEM-DIFF-3D		 3D discrete-ordinates transport PARIS
PSI	-S	Serpent2	JEFF-3.1	 3D diffusion FEM-DIFF-3D, lattice
HZDR	-J	Serpent2	JEFF-3.1	code Helios-1.12 (CP based).
	-N		ENDF/B-VII.0	Stochastic codes
UPM		SCALE6.2 beta (KENO-VI)	ENDF/B-VII.0	Serpent2 (continuous energy)
				Standardized Computer Analyses for
CIEMAT		MCNP6.1	JEFF-3.1.1	Licensing Evaluation (SCALE):
JRC		MCNP5/MCNPX,	JEFF-3.1	KENO-VI (multiaroun)
		MCNP6		MCNP6 1 MCNP5/MCNPX MCNP6
Nuclear I	Data			(continuous energy)
				(continuous onorgy).

European Joint Evaluated Fission and Fusion Files
 US Evaluated Nuclear Data Library

JEFF-3.1, JEFF-3.1.1 (majority) ENDF/B-VII.0 (Serpent2 and SCALE6.2 beta) ENDF/B-VII-based library, HELIOS (Helios-1.12)

Effective multiplication factor and kinetic parameters

Institution	k _{eff}	$oldsymbol{eta}_{ ext{eff}}$	Λ	Multiplication factor: Overall spread >2\$.
-Method		[10 ⁻⁵]	[10 ⁻⁷ s]	
Deterministic methods			Deterministic: agreement within 1.4\$.	
KIT	0.99966	358	4.54	Stochastic : spread larger (>2\$).
PSI-E	1.00123	366	4.62	However:
CEA	1.00432	356	4.55	calculations with same code/data (PSI-S,
GRS	1.00466			-Agreement JEFF data within ~1\$.
Stochastic methods			Discrepancy ENDF/B-VII.0 data	
PSI-S	1.00431	347	4.72	1200°K instead of 1500°K, no temperature
HZDR-J	1.00394	357	4.73	interpolation \rightarrow smaller k_{eff} expected, but no clear trend (GRS, HZDR-N).
HZDR-N	0.99796	344	4.76	Kinetic parameters:
UPM	1.00475			Overall agreement.
CIEMAT	1.00567	362	4.76	β: within 22ncm
JRC	1.00218	350	4.82	Λ : <10% spread.

Axial power peaking factor

Radial power distribution

Fuel subassemblies: Agreement within 10%

Non-fuel subassemblies: Disagreement, limited capabilities (only ERANOS, MCNP6.1) Photon transport ?

CSD S-curve; k_{eff} for various insertion positions

PAUL SCHERRER INSTITUT

Doppler constant

Institution	Fissile regions		Fertile regions					
Institution	K _{D1}	K _{D2}	K _{D3}	K _{D4}				
Deterministic methods								
KIT	-623	-606	-314	-305				
PSI-E	-684	-660	-321	-317				
CEA	-661	-637	-327	-321				
GRS	-576	-615	-278	-283				
Stochastic methods								
PSI-S	-661	-572	-335	-255				
HZDR-J	-630	-594	-281	-311				
HZDR-N	-583	-679	-285	-315				
UPM	-584	-619	-273	-303				
CIEMAT	-699	-592	-295	-234				
JRC	-633	-612	-297	-333				
		Y						
D	1: 1500°K	\rightarrow 1200°k	C D3: 900°K	$K \rightarrow 600^{\circ} K$				
D2: 1500°K → 1800°K D4: 900°K → 1200°K								
Fissile average Fertile blanket average								
temperature perturbations								

Expected from physics: $| K_{D1} | slightly > | K_{D2} |$, $| K_{D3} | slightly > | K_{D4} |$

not fulfilled, especially stochastic (statistical uncertainty? not provided)

'<" instead of ">"
'>" instead of "slightly >"

20% spread for fuel temperature decrease ("only" 15% for temperature increase, ?)

30% spread for fertile blanket temperature increase (20% for temperature decrease).

Spread too large

Further clarifying investigations required.

Coolant void worth (different scenarios)

Total voiding negative: - 400 pcm (= + 1200 – 1600) pcm fuel plenum Active core regions: overall agreement. Linearity in space. Plenum: Larger discrepancies, as expected: up to 25% (~400 pcm).

Conclusions

Total voiding negative reactivity effect unanimously confirmed.

- \clubsuit Code-to-code comparison \rightarrow issues requiring clarifications and improvements:
 - Power generation in non-fuel regions.
 Enable capability, photon transport needed or not ?
 - Doppler constant: differences up to 30%, largely unexpected. Simple checks e.g. zero-dimensional models first.
 - Void effect in leakage dominated sodium plenum regions: differences up to 25%.
 - Nuclear data effect (JEFF versus ENDF) mainly on the effective multiplication factor.
- Ongoing: characterization of other reactivity effects due to
 - Thermal expansions of diagrid, wrapper, fuel and cladding.
 - Coolant temperature effects.
- Ongoing: Thermal-hydraulic simulation of void evolution in Na plenum.

The study has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under the grant agreement n. 605172 (Euratom ESNII+) as well as under grant agreement n. 290605 (PSI-FELLOW/COFUND).

