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Abstract – A one-dimension vibration model has been developed in order to simulate a pin 

vibration of period T0 in a one-dimensional core and to determine the noise flux generated by this 

perturbation. We find that this source perturbation excites all multiples of the vibration frequency 

f0=1/T0. In this work, we analyze a new method aimed to improve traditional linear noise theory. 

This technique is similar to the traditional linearized noise equations but it uses a different steady-

state flux. We compare this method with the exact solution of the non-linearized, fully-coupled 

noise equations taking into account all the terms neglected in linear theory. The results of the 

comparisons for a fuel pin vibration in a one-dimensional core are analyzed in four-groups 

diffusion theory. The temporal reconstruction of the noise flux from its Fourier transform shows 

that the second harmonic of the noise source is not negligible and should be taken into account, 

and also that the new method is based on a steady-state flux closer to the stead-state flux of the 

exact solution compared to the steady-state flux of the traditional method. 

 
 
 
 

I. INTRODUCTION 

 

       Neutron noise techniques [1] are widely used by the 

nuclear industry for non-invasive general monitoring, 

control and detection of anomalies in nuclear power plants. 

They have also applications to the measurement of the 

properties of the coolant, such as speed and void fraction. 

Neutron noise appears as fluctuations of the neutron field 

induced by stochastic or deterministic changes in the cross-

sections. The latter may result from vibrations of fuel 

elements, control rods or any other mechanical structures 

in the core, as well as from global or local fluctuations in 

the flow, density or void fraction of the coolant. 

 

       In power reactors, ex-core and in-core detectors can be 

used to detect neutron noise and pinpoint to the causes 

behind it so as to take the necessary measures for 

continuous safe power production. In order to do this, one 

has to simulate noise calculations and compute the changes 

in the neutron field produced by different sources 

representative of the different causes of noise in nuclear 

cores. 

 

       The general noise equations are obtained by assuming 

small perturbations around a steady state in the neutron 

field and then by Fourier transform onto the frequency 

domain. The analysis is conducted with the neutron kinetic 

equations including the coupling with neutron precursors. 

The result is a source equation for the perturbed neutron 

field which can then be solved to predict noise 

measurements at detector locations. For each frequency the 

neutron field has intensity and phase and it is therefore a 

complex function in the frequency domain. 

 

In this paper, we present the noise flux generated by a 

fuel pin vibration in a one-dimensional core in multigroup 

diffusion theory. We find that this source excites all 

multiples of the vibration frequency f0=1/T0. Because the 

traditional linearization method of noise theory is not 

theoretically justified for this type of perturbation [2], in 

this work we analyze a new method aimed to improve 

traditional linear noise theory and compare this method to 

the exact solution. In section II, the general noise theory 

will be briefly discussed, while the new method will be 

presented just as the exact solution method. In section III, 

the vibration model is detailed especially its numerical 

convergence. In section IV, we discuss and compare the 

noise flux in the frequency domain and the total flux in the 

time domain for these different solution methods in case of 

a fuel pin vibration in a one-dimensional core in four-

groups diffusion theory. Finally, section V provides some 

general conclusions. 
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II. NEUTRON NOISE THEORY 

 

In this section, we present the general theory of 

neutron noise. The extension of these equations to 

diffusion theory is straightforward. To simplify our 

notation, we shall omit the velocity variable 𝒗 = (𝐸,𝜴). 
Note that the zero power noise (fluctuations inherent to the 

branching process) is always neglected in power reactor 

noise theory. 

 

II.A. The traditional noise equation 

 

We assume small perturbations of the macroscopic 

cross-sections around the initial critical steady state 

following: 

                       𝐵0,𝑇(𝑟)𝜓0,𝑇(𝑟) = 0 , ∀𝑟 ∈  𝐷.      (1) 

 

where 𝐵0,𝑇 = 𝜴. 𝛻 + 𝛴0 −𝐻0 − 𝑃0 is the initial steady-

state operator with 𝛴0 the steady-state total cross-section, 

𝐻0 the steady-state scattering operator, 𝑃0 the steady-state 

production operator, 𝜓0,𝑇 the initial steady-state angular 

flux and D the geometric domain. We note 𝑘𝑇 ≈ 1 the 

effective multiplication factor. We impose a temporal 

perturbation of the cross-sections so we need to consider 

the kinetic equation: 

 

        [
1

𝑣
𝜕𝑡 + 𝐵𝑇(𝑟, 𝑡)] 𝜓𝑇(𝑟, 𝑡) = 0 , ∀(𝑟, 𝑡) ∈ 𝐷 × ℝ,      (2) 

 

where 𝑣 is the neutron velocity, 𝐵𝑇 = 𝜴. 𝛻 + 𝛴 − 𝐻 −
𝑃 the kinetic operator with 𝛴 the total cross-section, 𝐻 the 

scattering operator, 𝑃 the production operator (with prompt 

and delayed fissions) and 𝜓𝑇  the angular flux. We impose 

a periodic perturbation of the kinetic operator with a period 

T0 :  

 

                       𝐵𝑇(𝑟, 𝑡) = 𝐵0,𝑇(𝑟) + 𝛿𝐵𝑇(𝑟, 𝑡).      (3) 

 

       This perturbation is supposed to start at 𝑡 = −∞ so the 

transition step is over and we are in an established regime. 

As for the kinetic operator 𝐵𝑇 , we break down the flux 

into: 

 

                       𝜓𝑇(𝑟, 𝑡) = 𝜓0,𝑇(𝑟) + 𝛿𝜓𝑇(𝑟, 𝑡).      (4) 

 

       We call “noise flux” the term 𝛿𝜓𝑇 . Finally, 

introduction of perturbation expressions (3) and (4) into 

Eq. (2) leads to a kinetic source equation for the 

perturbation of the flux: 

 

      [
1

𝑣
𝜕𝑡 + 𝐵𝑇(𝑟, 𝑡)] 𝛿𝜓𝑇(𝑟, 𝑡) = −𝛿𝐵𝑇(𝑟, 𝑡)𝜓0,𝑇(𝑟).     (5) 

 

       Next, we assume that we can neglect the product of 

any two fluctuating quantities. The second order term 

𝛿𝐵𝑇𝛿𝜓𝑇  is neglected and we obtain the traditional kinetic 

linearized equation: 

 

       [
1

𝑣
𝜕𝑡 + 𝐵0,𝑇(𝑟)] 𝛿𝜓𝑇(𝑟, 𝑡) = −𝛿𝐵𝑇(𝑟, 𝑡)𝜓0,𝑇(𝑟).     (6) 

 

We want to find the unique periodic solution of this 

equation. We apply the Fourier transform and we obtain 

the traditional noise equation: 

 

𝐵0,𝑇,𝜔(𝑟)𝛿𝜓𝑇(𝑟, 𝜔) = −𝛿𝐵𝑇(𝑟, 𝜔)𝜓0,𝑇(𝑟) , ∀𝜔 ∈ ℝ.    (7) 

 

where 𝐵0,𝑇,𝜔 =
𝑖𝜔

𝑣
+ 𝜴. 𝛻 + 𝛴0 −𝐻0 − 𝑃0,𝜔. Note that we 

define the Fourier transform of a function 𝑓 by 𝑓(𝜔) =

∫ 𝑓(𝑡)𝑒−𝑖𝜔𝑡𝑑𝑡
+∞

−∞
. Because of the kinetic precursor 

equation, the production operator 𝑃0,𝜔 depends on the 

frequency. Because of the Fourier transform, for each 

frequency, the neutron field has intensity and phase and it 

is therefore a complex function in the frequency domain. 

The real and imaginary equations of the noise flux are 

coupled by two terms: 𝑖𝜔/𝑣 and by the production 

operator 𝑃0,𝜔. We call "noise source" the right hand side of 

Eq. (7). 

 

II.B. The ‘new’ steady-state operator 

 

Up to now, we have not made any specific 

assumptions concerning the form of 𝛿𝐵𝑇  excepted that it is 

the consequence of a small physical perturbation. 

Contrarily to what is traditionally assumed, we do not 

assume that the mean value of the perturbed term 𝛿𝐵𝑇  is 

zero. But note that at 𝜔 = 0, Eq. (7) becomes: 

 

     𝐵0,𝑇(𝑟)𝛿𝜓𝑇(𝑟, 𝜔 = 0) = −𝛿𝐵𝑇(𝑟, 𝜔 = 0)𝜓0,𝑇(𝑟).   (8) 

 

Indeed, we have 𝐵0,𝑇,𝜔=0 = 𝐵0,𝑇 . But this equation is 

solvable if the noise source at  𝜔 = 0 is zero i.e. we must 

set the mean value of the noise source to zero. To obtain 

this, we define a new steady-state operator 𝐵0,𝑁𝐹: 

 

                       𝐵0,𝑁𝐹(𝑟) = 𝐵0,𝑇(𝑟) + 〈𝛿𝐵𝑇〉(𝑟),      (9) 

 

where 〈 . 〉 is the time-average operator and NF refers to 

“New Flux”. The kinetic operator 𝐵𝑁𝐹  is now broken down 

into: 

 

                     𝐵𝑁𝐹(𝑟, 𝑡) = 𝐵0,𝑁𝐹(𝑟) + 𝛿𝐵𝑁𝐹(𝑟, 𝑡),    (10) 

 

with 𝛿𝐵𝑁𝐹(𝑟, 𝑡) = 𝛿𝐵𝑇(𝑟, 𝑡) − 〈𝛿𝐵𝑇〉(𝑟). Obviously, if the 

perturbation model implies that the mean value of 𝛿𝐵𝑇  is 

zero, 𝐵0,𝑁𝐹 = 𝐵0,𝑇 and we have no problem at 𝜔 = 0. This 

is the case with a simple cosine perturbation of the cross-

sections but we will see that it is not the case for a 

vibration perturbation. This new steady-state operator 
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defines a new steady-state flux, called 𝜓0,𝑁𝐹, and a new 

eigenvalue, called 𝑘𝑁𝐹. We also break down the flux into: 

 

            𝜓𝑁𝐹(𝑟, 𝑡) = 𝜓0,𝑁𝐹(𝑟) + 𝛿𝜓𝑁𝐹(𝑟, 𝑡).    (11) 

 

As for the traditional method, we use the first linear 

theory and the Fourier transform. Eq. (7) becomes: 

 

    𝐵0,𝑁𝐹,𝜔(𝑟)𝛿𝜓𝑁𝐹(𝑟, 𝜔) = −𝛿𝐵𝑁𝐹(𝑟, 𝜔)𝜓0,𝑁𝐹(𝑟),       (12) 

 

with 𝛿𝜓𝑁𝐹(𝑟, 𝜔 = 0) = 0 because we choose to impose 

〈𝜓𝑁𝐹〉(𝑟) = 𝜓0,𝑁𝐹(𝑟). 
 

Until now, we have introduced this new reference 

steady-state operator 𝐵0,𝑁𝐹  in order to solve a 

mathematical problem but we have to find a physical 

signification of this new decomposition of the kinetic 

operator. In power nuclear reactors, a system of regulating 

rods automatically stabilizes the output power within very 

narrow limits around the nominal or desired power output. 

In the case where a perturbation, such as a local vibration, 

introduces a non-zero amount of reactivity in the steady 

state of the reactor, the regulating rods act to level the 

power around the desired output, which amounts to adding 

reactivity opposite to that introduced by the vibration. The 

action of the regulating rods effectively cancels the time-

averaged reactivity added by the perturbation and has to be 

accounted for in any sensible modeling of neutron noise. 

Since an exact modeling of the rods' action is not realistic, 

a way to implement it is to set the mean value of the 

perturbation to zero, but this modifies the modeling of the 

perturbation itself which should be independent of the 

calculation of the neutron noise. We think that the job can 

be done with less ambiguity by choosing as reference 

operator the time-averaged one adjusting thus the effective 

multiplication factor 𝑘𝑁𝐹 to a value slightly different to 

that for the initial state describes in section II.A. 

 

II.C. The exact solution of the non-linearized, fully-

coupled noise equations 
 

        By iterations, we can take into account the term 

𝛿𝐵𝑇𝛿𝜓𝑇  neglected in linear theory, and thus obtain the 

exact solution of the fully-coupled noise equations. 

However, we must be careful with the noise equation at 

𝜔 = 0. We want to set the noise source at 𝜔 = 0 to zero as 

in section II.B. So, we want to find a reference steady-state 

operator, called 𝐵0,𝑅, and a reference steady-state flux, 

called 𝜓0,𝑅, which permits us to have a nil source at 𝜔 = 0. 

Let: 

 

𝐵𝑅(𝑟, 𝑡) = [𝐵0,𝑇(𝑟) + 𝛼(𝑟)]⏟          
𝐵0,𝑅(𝑟)

+ [𝛿𝐵𝑇(𝑟, 𝑡) − 𝛼(𝑟)]⏟            
𝛿𝐵𝑅(𝑟,𝑡)

,   (14) 

 𝜓𝑅(𝑟, 𝑡) = 𝜓0,𝑅(𝑟) + 𝛿𝜓𝑅(𝑟, 𝑡),    (15) 

 

with 𝐵0,𝑅(𝑟)𝜓0,𝑅(𝑟) = 0 the new steady state (with the 

eigenvalue 𝑘𝑅) and 𝛼 a function of 𝑟. We have: 

 

[
1

𝑣
𝜕𝑡 + 𝐵0,𝑅(𝑟)] 𝛿𝜓𝑅(𝑟, 𝑡) = −𝛿𝐵𝑅(𝑟, 𝑡)𝜓𝑅(𝑟, 𝑡).   (16) 

 

       We apply Fourier transform and we obtain: 

 

𝐵0,𝑅,𝜔(𝑟)𝛿𝜓𝑅(𝑟, 𝜔) = −
1

2𝜋
[𝛿𝐵𝑅 ∗ 𝜓𝑅](𝑟, 𝜔),              (17) 

 

with ∗ the convolution operator. Hence, at 𝜔 = 0 we have: 

 

𝐵0,𝑅(𝑟)𝛿𝜓𝑅(𝑟, 𝜔 = 0) = −
1

2𝜋
[𝛿𝐵𝑅 ∗ 𝜓𝑅](𝑟, 𝜔 = 0)         

  =  − [
1

2𝜋
[𝛿𝐵𝑇 ∗ 𝜓𝑅](𝑟, 𝜔 = 0) − 𝛼(𝑟)𝜓(𝑟, 𝜔 = 0)].  (18) 

        

       We want to cancel out the noise source at  𝜔 = 0 and 

we find that for 

               𝛼(𝑟) =
1

2𝜋
[𝛿𝐵𝑇∗𝜓𝑅](𝑟,𝜔=0)

𝜓𝑅(𝑟,𝜔=0)
= 

〈𝛿𝐵𝑇×𝜓𝑅〉(𝑟)

〈𝜓𝑅〉(𝑟)
,  (19) 

 

the noise source vanishes. Thus, we have a new steady-

state operator 𝐵0,𝑅(𝑟) =  𝐵0,𝑇(𝑟) +
〈𝛿𝐵𝑇×𝜓𝑅〉(𝑟)

〈𝜓𝑅〉(𝑟)
 which 

permits us to have no noise source at 𝜔 = 0 and, as in 

section II.B, to have 𝛿𝜓𝑅(𝑟, 𝜔 = 0) = 0 so that  

〈𝜓𝑅〉(𝑟) = 𝜓0,𝑅(𝑟). 
 

 

III. VIBRATION-GENERATED NOISE SOURCE 

 

In this section, we will detail the principal steps of the 

one-dimension vibration model. Here we do not use the 

Taylor expansion of the noise source [2], [3] and we find 

that this source excites all multiples of the vibration 

frequency f0=1/T0 as it was earlier pointed out [4]. We also 

comment on the numerical convergence of this model. 

 

III.A. A multi-frequency noise source 

     

We will describe the variations of all cross-sections 

when a fuel pin vibrates with an angular frequency  

𝜔0 = 2𝜋/𝑇0  and with a maximal amplitude ΔL. We define 

four perturbed regions in our model which are depicted in 

Fig. 1(a). 
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Fig. 1(a) - The four regions affected by the vibration 

 

Fig. 1(b) - Zoom in on the fourth region 

Fig. 1 - Fuel pin vibration scheme 

        

       We will develop our calculation for the cross-sections 

of region 4 (see Fig. 1(b)). Let 𝑟 ∈  [𝑟0
𝑏𝑑 , 𝑟0

𝑏𝑑 + ΔL] with 

𝑟0
𝑏𝑑 the steady-state position of the right boundary of the 

vibrated pin and 𝜖(𝑡) = ΔLsin (𝜔0t) for all 𝑡 ∈ ℝ. We 

have: 

 

                  𝛿𝛴(𝑟, 𝑡) = ΔΣ 𝐻(𝑟0
𝑏𝑑 + 𝜖(𝑡) − 𝑟),   (20) 

 

where: 

 

 𝛿𝛴(𝑟, 𝑡) is the perturbed cross-section term in 𝑟 at 𝑡  
(𝛴(𝑟, 𝑡) = 𝛴0(𝑟) + 𝛿𝛴(𝑟, 𝑡)), 

 ΔΣ is the amplitude of the cross-section perturbation 

(in our case ΔΣ = 𝛴0,𝑓𝑢𝑒𝑙 − 𝛴0,𝐻2𝑂), 

 𝐻 is the Heaviside function. 

 

       We take ΔL to be a small fraction of the pin size. For 

𝑟 ∈  [𝑟0
𝑏𝑑 , 𝑟0

𝑏𝑑 + ΔL], 𝐻(𝑟0
𝑏𝑑 + 𝜖(𝑡) − 𝑟) = 1 in a 

continuous interval [𝜏(𝑟),
𝑇0

2
− 𝜏(𝑟)]. The Fourier 

transform of the periodic function 𝛿𝛴 is: 

 

   𝛿𝛴(𝑟, 𝜔) = 2𝜋ΔΣ (
1

2
− 2

𝜏(𝑟)

𝑇0
 ) 𝛿(𝜔) 

        −2ΔΣ ∑
sin(2𝑝𝜔0𝜏(𝑟))

2𝑝

𝑝=+∞
𝑝=−∞,𝑝≠0 𝛿(𝜔 − 2𝑝𝜔0)          

        −2𝑖ΔΣ ∑
cos((2𝑝+1)𝑝𝜔0𝜏(𝑟))

2𝑝+1

𝑝=+∞
𝑝=−∞ 𝛿(𝜔 − (2𝑝 + 1)𝜔0),    

(21) 

 

with 𝜏(𝑟) = sin−1 (
𝑟−𝑟0

𝑏𝑑

ΔL
) /𝜔0 and 𝛿 the Kronecker 

symbol. 

       Now, we introduce a meshing in our geometry. We use 

a simple diamond scheme for our numerical solution so the 

flux is space-independent on each mesh. For simplicity we 

use the same mesh size Δmesh in the four regions with 

ΔL = 𝑞Δmesh (with 𝑞 ∈ ℕ∗). We integrate the noise source 

𝛿𝛴(𝑟, 𝜔)𝜓0(𝑟)  on each mesh included in [𝑟0
𝑏𝑑 , 𝑟0

𝑏𝑑 + ΔL]. 
Finally, we derive simple relations between the perturbed 

cross-sections of these four regions (the lower indexes 

1,2,3 and 4 refer to the four regions): 

 

𝛿𝛴2(𝜔) =  −𝛿𝛴4(𝜔), 

          𝛿𝛴1(𝜔) =  𝛿𝛴4(𝜔)𝑒
−𝑖
𝜋
𝜔0
𝜔
, 

                         𝛿𝛴3(𝜔) =  −𝛿𝛴4(𝜔)𝑒
−𝑖

𝜋

𝜔0
𝜔
.           (22) 

  

       In particular, for 𝜔 = (2𝑝 + 1)𝜔0 (𝑝 ∈ ℤ) we have: 

 

          𝛿𝛴1(𝜔) = 𝛿𝛴2(𝜔) = −𝛿𝛴3(𝜔) = −𝛿𝛴4(𝜔),     (23) 

 

and for 𝜔 = 2𝑝𝜔0 we have: 

 

          𝛿𝛴1(𝜔) = 𝛿𝛴4(𝜔) = −𝛿𝛴3(𝜔) = −𝛿𝛴2(𝜔).     (24) 

             

       These results confirm the vibration-generated noise 

source excites all multiples of the vibration frequency f0. 

We remark that the mean value of each perturbed cross-

section term (proportional to 𝛿𝛴(𝑟, 𝜔 = 0)) is not zero as 

we mentioned it previously. 

          

       For the exact solution described in section II.C, we 

choose to impose a convolution centered in 𝛿𝜓𝑅(𝑟, 𝜔 = 0) 
i.e., for all 𝑚 ∈ ℤ∗ : 
 

      [𝛿𝐵𝑅 ∗ 𝛿𝜓𝑅](𝑟,𝑚𝜔0) =
               ∑ 𝛿𝐵𝑅(𝑟, (𝑚−𝑛)𝜔0)𝛿𝜓𝑅(𝑟, 𝑛𝜔0)

𝑛=+∞
𝑛=−∞ .           (25) 

 

If we choose a convolution amplitude of N, we have to 

solve a system of 2N+1 equations with 2N+1 unknowns 

(2N in reality because we impose 𝛿𝜓𝑅(𝑟, 𝜔 = 0) = 0). 
Note that this scheme converges when one increases the 

convolution amplitude. 

 

III.B. Numerical convergence of the vibration model 

 

       One of the most important points about the vibration 

model presented in the previous section III.A is that we 

have to choose a numerical meshing refined enough in 

order to correctly represent the sources for all frequencies 

of interest. For example, if we use only one mesh in each 

region, we obtain (the lower index 4 refers to the fourth 

region): 

 

𝛿𝛴4(𝑟, 𝑡) = ΔΣ [−
𝑖𝜋

2
 (𝛿(𝜔−𝜔0) − 𝛿(𝜔+𝜔0))   

                       −2∑
𝛿(𝜔−2𝑝𝜔0)

4𝑝2−1

𝑝=+∞
𝑝=−∞ ],                  (26) 
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and we lose all the odd frequencies so this meshing is not 

refined enough within a single mesh point. In the same 

way, if we choose to unify regions 3 and 4, we have: 

 

𝛿𝛴3−4(𝑟, 𝑡) = −
𝑖𝜋

2
 ΔΣ(𝛿(𝜔−𝜔0) − 𝛿(𝜔+𝜔0)),  (27) 

 

and this result is the Fourier transform of a simple sine 

oscillation. An infinity of frequencies is lost and only the 

first harmonic outlives this poorly refined meshing. So the 

numerical meshing must be, at a minimal level, greater 

than one mesh per region.  

 

       Next, we check the convergence of the vibration 

model when we increase the refinement of the meshing in 

the four perturbed regions. To do this, we will compare six 

different meshings in a one-dimensional core in two-

groups (fast and thermal) with vacuum boundaries. The 

core is composed by 17 assemblies themselves composed 

by 17 fuel cells. We choose to perturb the central fuel pin 

of this symmetric geometry with a vibration frequency f0 = 

1 Hz and a particularly small amplitude of 0.018 cm (the 

fuel pin size is 1.08 cm and the inter-pin size is 0.36 cm so 

one cell size is 1.44 cm). Here we simply use the 

traditional linearization method of section II.A in diffusion 

theory and we only show the results for the modulus of the 

fast noise flux. Figure 2 illustrates the results. 
 

 

            Fig. 2 (a) - Moduli of the fast noise flux at f0 

 

              Fig. 2(b) - Moduli of the fast noise flux at 7f0 

Fig. 2 - Convergence of the vibration model in function of the 

mesh refinement  

We find that the vibration model converges if we 

increase the refinement of the meshing. We find the same 

convergence with the thermal noise flux. Note that the 

higher the harmonic order is the more the mesh has to be 

refined. 

 
 

IV. ANALYSIS OF A FUEL PIN VIBRATION IN A ONE-

DIMENSIONAL CORE 

 

       In this section, we present the results of a fuel pin 

vibration in the one-dimension diffusion theory with four-

groups (and six precursors groups). Note that the 

fluctuations of the diffusion coefficients are disregarded. 

We also neglect the term 1

𝑣𝑔
 𝜕𝑡  𝐽

𝑔 (with 𝐽𝑔 the scalar 

current of group 𝑔). Groups 1 and 2 are fast groups and 

groups 3 and 4 are thermal groups. We work with the same 

core of section III.B. but we choose to perturb the central 

fuel pin of the third assembly with an amplitude of 0.09 cm 

(with 20 meshes per perturbed region). We use also a 

frequency f0 =1 Hz, a common frequency for a fuel pin 

vibration.  The fuel pin moves to the right side during the 

interval [0,
𝑇0

2
] and to the left side during the interval 

[
𝑇0

2
, 𝑇0]. 

 

       Firstly, we quickly present the global and local 

components of the noise flux in order to understand more 

easily the following results. After that, we compare the 

noise fluxes in the frequency domain and the total fluxes in 

the time domain between three solution methods:  

 

 the traditional method noted 𝛷𝑇 with the steady-state 

flux 𝛷0,𝑇 (section II.A, notation T for “Traditional”); 

 the method with 𝐵0,𝑁𝐹  noted 𝛷𝑁𝐹 with the steady-

state flux 𝛷0,𝑁𝐹 (section II.B, notation NF for “New 

Flux”); 

 the exact solution (in diffusion theory) noted 𝛷𝑅 

with the steady-state flux  𝛷0,𝑅 (section II.C, we 

choose a large convolution amplitude of 15, notation 

R for “Reference”); 

 

       To simplify the analysis, we present the results for 

groups 1 and 4. Group 2 results (resp. 3) are equivalents to 

group 1 results (resp. 4). For all calculations, the maximal 

relative errors of the noise flux and the fission sources 

between two iterations are 10−6. 
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IV.A. General proprieties of the global and local 

components 

        

       The neutron noise in a nuclear reactor can be separated 

into two components: a global and a local components [5], 

[6]. The local component is rapidly changing along the axis 

and is of a high frequency nature while the global 

component is slowly varying in space and is confined to 

low frequencies. The local component corresponds to a 

rapid relaxation in space and so exists only in the vicinity 

of the perturbation, and the global component follows a 

much lower relaxation and impacts the entire core. In the 

time domain, the noise flux is always composed by these 

two components but the balance between them can be 

different in function of the energy group, the vibration 

frequency or the core size. Here we have some important 

proprieties of these components: 

 

 the global component dominates in low frequencies 

while the local in high frequencies; 

 the global component dominates in small or tightly 

coupled core while the local in large or few coupled 

core; 

 the local component affects more the thermal noise 

flux than the fast noise flux; 

 the global component can be described by the point 

reactor model in small core, not in large core; 

 the global component should be more affected by the 

high order terms of the noise flux than the local 

component. 

 

IV.B. The noise flux harmonics in the frequency domain 

 

Figure 3 compares the moduli of harmonics 1, 2, 3 and 

4 of the exact noise flux in groups 1 and 4. We use 20 

meshes per perturbed region so we have a good 

convergence of the noise source for all these harmonics. 

We remark that harmonics 1 and 2 dominate and that the 

contribution of harmonics 3 and 4 (and therefore of the 

higher-order harmonics) can be neglected. We have 

obtained similar results with the other methods. Thus, the 

more important harmonics of the noise source are at f0 and 

2f0.  
 

 

                    Fig. 3(a) - Moduli in group 1 

 

       Fig. 3(b) - Moduli in group 4 (zoom in on the third assembly) 

Fig. 3 - Comparison between the moduli of harmonics 1, 2, 3 and 

4 of the exact noise flux in groups 1 and 4 

        

       This observation can be explained by the fact that, in 

each one of the four regions (see Fig. 1(a)), 𝛿Σ(𝑟, 𝜔) does 

not change of sign for 𝜔0 and 2𝜔0 whereas it changes of 

sign for all others harmonics (see Fig.4). Thus, for 

harmonics greater than two, the noise source changes of 

sign within each perturbed region and, as shown in Fig. 3, 

the final effect is a very small noise flux. Consequently, we 

will only detail the two first components of the noise flux. 

 

 

Fig. 4 - 𝛿Σ in function of mesh and frequency for region 4 with 

20 meshes. 

        

Figures 5 and 6 compare the moduli and the phases of 

the first and second harmonics of the noise flux in groups 1 

and 4 for the three methods. Note that we have zoom in on 

the third assembly for the moduli of group 4. At f0, the three 

methods are very close to each other while at 2f0 we 

observe some significant differences between them. 

 

Let us begin by analyzing the modulus at f0. For group 

1, we have a global component, which has a slow variation 

in space, and a local component in the vicinity of the 

vibration in the third assembly. Its phase is constant in the 

entire core (around -π/2). For group 4, the local component 

strongly dominates in the vicinity of the vibration with 

several rough phase changes. Its phase is constant far from 

the perturbation (around -π/2). Compared to group 1, the 

global component far from the vibration seems to be 

negligible and crushed by the amplitude of the local 
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component. At 2f0, we can observe similar behaviors but 

with a phase around 0 for 𝛷𝑇 and 𝛷𝑁𝐹 and around +π for 

𝛷𝑅.  

 

We can conclude that in the vicinity of the 

perturbation the global and local component for f0 and 2f0 

are visible for the fast group while only the local 

component is visible for the thermal one. Far from the 

perturbation, only the global component exists for all 

groups but its amplitude is greater for the fast group than 

for the thermal group. Moreover, we have a phase shift of 

±π/2 depending on the method between these two 

harmonics.  

  

       Next, we compare the three methods. At f0, 𝛷𝑁𝐹 is 

closer to the exact solution than 𝛷𝑇while at 2f0  𝛷𝑇 is closer 

to the exact solution than 𝛷𝑁𝐹. But as the first harmonic is 

more important that the second harmonic (not always but 

especially in group 4), we have a balance between these 

differences and we cannot say that 𝛷𝑇 is closer to the exact 

solution than 𝛷𝑁𝐹, or conversely. 

 

       The phase shift of π between 𝛷𝑇 or 𝛷𝑁𝐹  and the exact 

solution can be explained by the importance of the 

convolution term [𝛿𝐵𝑅 ∗ 𝛿Φ𝑅](𝑟, 2𝜔0) especially the term 

𝛿𝐵𝑅(𝜔0)𝛿Φ𝑅(𝜔0) which is the more important term of the 

convolution.  

 

       We note that the second harmonic affects more the fast 

group than the thermal one and so affects more the global 

than the local component. We also verify that the global 

component cannot be described by the point reactor model 

in a large core and that the local component affects more 

the thermal noise flux than the fast noise flux. 

 

       Let us precise that some of our observations about the 

global and local components and the first and second 

harmonics are in agreement with [7] but in our case the 

second harmonic is not negligible. 

 

 

 

 
                Fig. 5(a) – Moduli at f0 (blue and red curves are superposed)                                                               Fig. 5(b) – Phases at f0                   
           

  
                                          Fig. 5(c) – Moduli at 2f0                                                      Fig. 5(d) – Phases at 2f0 (green and blue curves are superposed)

  

Fig. 5 - Moduli and phases of the noise flux in group 1 at  f0 and 2f0 
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IV.C. The total flux in the time domain 

 

The total flux in the time domain is here defined by 

the steady-state flux and the first and second harmonics of 

the noise flux: 

  

       𝛷(𝑟, 𝑡) ≈ 𝛷0(𝑟) +
|𝛿𝛷|(𝑟,𝜔0)

𝜋
cos(𝜔0𝑡 + 𝜑(𝑟, 𝜔0))  

                    + 
|𝛿𝛷|(𝑟,2𝜔0)

𝜋
cos(2𝜔0𝑡 + 𝜑(𝑟, 2𝜔0)),   (28) 

 

where 𝛷 is the scalar flux, |𝛿𝛷| is the modulus of the noise 

scalar flux and 𝜑 its phase.  

 

       The eigenvalues of the three steady states are 

𝑘𝑇=1.000016, 𝑘𝑁𝐹=0.9999347 and 𝑘𝑅=0.9999401. These 

eigenvalues are very close to each other. Figure 7 presents 

the steady-state fluxes in groups 1 and 4. We remark that 

the steady-state operator 𝐵0,𝑁𝐹 seems to be a good 

approximation of the exact steady-state operator.  

 

 

       Figures 8 and 9 present the total fluxes of groups 1 and 

4 in the time domain at 𝑡 = 𝑇0/4 i.e. when the fuel pin 

vibration hits its maximal amplitude at the right side.        

 

       Figures 8(a) and 9(a) show that, at this time and at the 

right side of the perturbation, the fast flux is greater than 

the steady-state fast flux and that the thermal flux is 

smaller than the steady-state thermal flux. We also remark 

that, as expected, the global component is more dominating 

in the fast group than in the thermal group while the local 

component dominates more in the thermal group than in 

the fast group. Moreover, Fig. 9(b) points out the rapid 

relaxation length of the local component.  

 

       Figures 10 and 11 show the temporal variations of the 

noise flux in a position 𝑟𝑎 close to the perturbation (see 

Fig. 8(a)) and a position 𝑟𝑏 far from the perturbation (close 

to the core center).  

 

        

 

   
                      Fig. 6(a) – Moduli at f0 (zoom in on the third assembly)                                                                                   Fig. 6(b) – Phases at f0   

 

     
                      Fig. 6(c) – Moduli at 2f0 (zoom in on the third assembly)              Fig. 6(d) – Phases at 2f0 (green and blue curves are superposed) 

 

Fig. 6 – Moduli and phases of the noise flux in group 4 at  f0 and 2f0 
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       For the position 𝑟𝑎 close to the vibration, in group 1, 

the second harmonic is clearly not negligible compared to 

the first harmonic. In group 4, the second harmonic is less 

visible. Moreover, we note the differences between 

𝛷𝑁𝐹  and the exact solution 𝛷𝑅 are more visible in group 1 

than in group 4. But we saw that, close to the vibration, the 

global and local component are visible for the fast group 1 

while only the local component dominates for the thermal 

group 4. So this observation is coherent with the fact that 

the global component should be more affected by the high 

order terms of the noise flux than the local component. It is 

also coherent with the fact that the second harmonic of the 

noise flux impacts more the global than the local 

component.   

      

        For the position 𝑟𝑏 far from the perturbation where the 

global component dominates for all groups, the balance 

between harmonic 1 and 2 is the same for groups 1 and 4 

but the amplitudes of the total flux variations are really 

different. In group 1, the maximal amplitude is around 

2.10−5 while in group 4 is around 7.10−8. As we saw 

previously, the amplitude of the global component is 

clearly more important for the fast group than for the 

thermal group. 

 

 

 

 

        
                                                     Fig. 7(a) – Group 1                                                                   Fig. 7(b) – Group 4 (zoom in on the third assembly) 

 

Fig.7 – Steady-state fluxes in groups 1 and 4 (blue and green curves are superposed) 

 

  
         Fig. 8(a) - The vibrated fuel pin (green regions delimit the perturbed regions)                                     Fig. 8(b) - The third assembly  

 

Fig. 8 - Total fluxes in group 1 at  𝑡 =
𝑇0

4
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       Fig. 9(a) - The vibrated fuel pin (green regions delimit the perturbed regions)                                      Fig. 9(b) - The third assembly  

 

Fig. 9 - Total fluxes in group 4 at  𝑡 =
𝑇0

4
 

           
                                                      Fig. 10(a) – Total fluxes at  𝑟𝑎                                                                     Fig. 10(b) – Total fluxes at  𝑟𝑏 

 

   Fig. 10 – Total fluxes in group 1 at 𝑟𝑎 and 𝑟𝑏 in function of time (same legend of previous figures) 

 

               
                                                      Fig. 11(a) – Total fluxes at  𝑟𝑎                                                                     Fig. 11(b) – Total fluxes at  𝑟𝑏 

 

                                          Fig. 11 – Total fluxes in group 4 at 𝑟𝑎 and 𝑟𝑏 in function of time (same legend of previous figures) 
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V. CONCLUSIONS 

 

       A one-dimension vibration model has been developed. 

This source perturbation excites all multiples of the 

vibration frequency f0. The more important harmonics of 

this noise source are at f0 and 2f0. We noted that the 

modulus of this second harmonic is more important and 

closer to the first harmonic for the global than the local 

component of the noise flux and for fast groups than for 

thermal groups. 

 

       We introduced a new method in order to improve the 

traditional linearization method, which is not theoretically 

justified in case of vibration perturbation. Because in a 

vibration perturbation the mean values of the perturbed 

cross-sections are not zero, in this new method we use a 

new steady-state operator which is the time-average of the 

kinetic operator and not the initial critical operator as in the 

traditional method.  

 

       We compared this new method with the traditional 

method and with the exact solution of the non-linearized,  

fully-coupled noise equations in diffusion theory and for 

four energy groups. We concluded that the second 

harmonic of the noise flux is not negligible, should be 

taken into account and affects especially the global 

component of the noise flux. We also noted that the 

differences between all methods are more important at 2f0 

than f0. Moreover, the new method is based on a steady-

state flux closer to the steady-state flux of the exact 

solution compared to the traditional steady-state flux. 

 

       We also verified that the global (resp. local) 

component of the noise flux dominates in fast (resp. 

thermal) group, that it cannot be described by the point 

reactor model in a large system and more especially that it 

is more affected by the high order terms of the noise flux 

than the local component. 

 

       Thanks to many other calculations not presented here 

with different vibration amplitudes and different system 

sizes, we observed that the modulus of the second 

harmonic is more important and closer to the first 

harmonic for a large system than for a small system and for 

a large vibration amplitude than for a small vibration 

amplitude. Moreover, the high order terms are logically 

more important in case of a large vibration amplitude 

compared to a small vibration amplitude and they are also 

more important for a small system than for a large system. 

 

       In this paper, we use the classical assumptions of noise 

diffusion theory i.e. the fluctuations of the diffusion 

coefficients and the term 1

𝑣𝑔
 𝜕𝑡  𝐽

𝑔 are neglected. Future 

work will investigate these assumptions and will compare 

transport and diffusion results in case of fuel pin vibration 

in two-dimensional systems. 

       Moreover, a new method, which should improve 

traditional linear noise theory, will be presented. This new 

technique respects also the linear theory but improves the 

noise source term by using a more physically realistic 

steady-state flux. 
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