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ABSTRACT 

In this paper we analyze the efficiency of the Domain Decomposition Method associated to 
the Coarse Mesh Finite Difference acceleration. We evaluate the effectiveness of the algorithm for 
shared memory parallelism. We also present the advantages of the Hybrid OpenMP/MPI 
parallelism to perform high-fidelity large scale calculation. We show that CPU time for a best-
estimate 2D whole core calculation can be reduced from several days to few minutes on computer 
cluster. Finally high-fidelity 3D full assembly color-set calculation is compared to Monte Carlo 
simulation. This particular test shows the challenges for advanced neutron transport simulations in 
3D. This work is part of the development program for the neutronic code APOLLO3®. 

Key Words: Domain-Decomposition, Coarse-Mesh Finite Difference, Hybrid parallelism, 
Discrete Ordinates 

1 INTRODUCTION 

Massively parallel computing is the nowadays solution to extend the range of solvable 
numerical problems. However, massively-parallel high-performance machines are not available 
for daily calculation and this is why intermediate solution would be useful. The objective of this 
work is to realize a proficient use of daily computational resources for a “quick” best-estimate 
transport calculation to overcome infinite lattice approximation. The latter approximation, which 
is generally employed for the generation of the cross section libraries used in the reactor analysis, 
is a critical source of error in the core simulations. The computational resource we consider as a 
starting point is a desk computer with multi-core shared memory architecture. In this case the 
number of cores is of the order of 10 with a limited amount of memory available which is a 
notable constraint for the problem we aim to solve. For 2D full core depletion, the amount of 
memory required is about 1TB due to the huge number of material involved. Hybrid 
MPI/OpenMP parallelism has been developed to give access to distributed memory on computer 
cluster.   

A best-estimate deterministic calculation needs hundreds of energy groups, a sizable 
number of directions and a fine description of the geometry. In the case of a typical PWR 2D 
assembly calculation, we use 281 energy groups, 40 directions and around 300 regions. A single 
processor calculation of this assembly needs tens to hundreds of seconds to converge and around 
1Gb of memory. The amount of memory is mainly due to numerical coefficients and cross 
section library. The most important costs regarding CPU time consumption are the transport 
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sweep and the fissions and, especially, the scattering sources computation. Indeed for the latest, 
the whole multigroup flux and transfer cross sections are embedded in the routine performing 
this part. If the size of the cross section library and the flux is larger than the processor cache, it 
leads to memory swap and pagination, resulting in a slowdown of the runtime.  

These observations lead us to consider a Domain Decomposition Method (DDM) where the 
global geometry, i.e. a color-set up to the whole core, is split in several sub-geometries where a 
full multigroup source problem is solved. This is based on the assumption that for a given 
computer architecture, we can find an optimal problem size to use most efficiently a single 
processor. It results in a set of non-overlapping subdomains coupled by the interface angular 
flux. The exchange of the interface angular fluxes guarantees the neutron conservation and the 
preservation of the quality of the global solution. In this DDM, the size of the subdomains has to 
be chosen regarding both the optimization of the cache of the processors and the convergence 
ratio. It is known that DDM without overlapping suffers from a poor convergence ratio. As a 
consequence, the Coarse Mesh Finite Difference (CMFD) acceleration method at the global level 
has been implemented to speed-up the communication between subdomains. More than using 
efficiently computer’s resources, the DDM offers the possibility to parallelize the subdomain 
calculations. Indeed, each calculation unit is independent from the others. One can also note that 
the independent multigroup iteration in each subdomain limit the communications between 
subdomains and thus minimize the number of synchronizations between the parallel processes. 
The new incoming interface flux is only set once the whole multigroup problem has been solved 
for each subdomain. The DDM for full multigroup subdomain problems accelerated by the 
CMFD seems to be a good compromise to perform large scale transport calculation using 
efficiently computer’s resources. This work is partially inspired by the research of professor 
Aragones and his research team. [1] [2] 

Firstly, we present the efficiency of the DDM+CMFD regarding the use of CPU and 
subdomain size with single processor tests. The subdomain calculations have been parallelized 
with shared memory parallelism (OpenMP) which is the most common for optimization on 
standard workstations (load balance, exchanges between subdomains and CMFD acceleration). 
Scalability tests have been performed on a standard workstation. The drawbacks of shared 
memory parallelism (lack of memory and number of cores) lead us to consider Hybrid 
MPI/OpenMP parallelism. The benefits are highlighted by realistic 2D whole core transport 
calculation where both CPU time and memory are constraints for high fidelity depletion 
calculation. Finally, we present here a 3D full assembly color-set calculation which permits to 
face present challenges for neutron transport simulation. 

2 CALCULATION ALGORITHM 

The method consists in dividing the entire problem domain into N non-overlapping 
subdomains with α=1,…,N denoting the subdomain index. The interfaces between subdomains 
are reduced to shared interface surfaces [3] [4]. The angular flux is transmitted between 
neighboring subdomains to guarantee the conservation of the solution of the global problem. 
Each subdomain is considered as a boundary-value multigroup problem with boundary and 
volume fixed source. 

Our iteration strategy consists in 4 steps detailed in [5]: 
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- For the initialization, the subdomain boundary fluxes and volume sources are initialized 
from un-converged infinite lattice calculation. 𝑄𝑄𝛼𝛼 = 𝐹𝐹𝛼𝛼𝜙𝜙𝛼𝛼

𝜆𝜆𝛼𝛼
  is the fission sources with a locally 

computed eigenvalue.  
- The second step consists in solving a multigroup fixed-source problem in each 

subdomain with the fine transport:  

�
(L − H)𝛼𝛼Ψ𝛼𝛼(𝑥𝑥) = 𝑄𝑄𝛼𝛼(𝑥𝑥),  𝑥𝑥 ∈ X𝛼𝛼 ,

Ψ𝛼𝛼−(𝑥𝑥) ,  𝑥𝑥 ∈ 𝜕𝜕X𝛼𝛼− .                                      ( 1 ) 

The operator (𝐿𝐿 − 𝐻𝐻)𝛼𝛼 ≡ 𝛺𝛺.∇ + 𝛴𝛴𝛼𝛼(𝑥𝑥) − ∫𝑑𝑑𝑥𝑥′𝛴𝛴𝛼𝛼(𝑥𝑥′ → 𝑥𝑥) is locally inverted to provide 
a fine transport solution in each subdomain. Ψ 𝛼𝛼−(𝑥𝑥) is the angular entering flux at subdomain 
boundary. The boundary conditions of each subdomain are given either by the outgoing flux of 
neighbor subdomain (here noted β) or by the boundary conditions given on the boundary of the 
domain, 

Ψ𝛼𝛼−(𝑥𝑥)  = �
Ψ𝛽𝛽+(𝑥𝑥),  𝑥𝑥 ∈ 𝜕𝜕X𝛼𝛼 ∩ 𝜕𝜕X𝛽𝛽 ,
Ψ−(𝑥𝑥),  𝑥𝑥 ∈ 𝜕𝜕X𝛼𝛼 ∩ 𝜕𝜕X .

                                   ( 2 ) 

- The local transport solution feeds a global whole-domain non-linear diffusion operator. 
This is the CMFD operator defined on a coarser phase space Y with fewer energy groups and 
homogenized regions. The inversion of the coarse operator permits to stabilize both scattering 
and fission source distribution over the whole domain and provides new eigenvalue for the local 
fine transport calculations. 

- Finally, the iteration ends by the correction of the local transport volume and boundary 
fluxes as follow: 

Ψ𝛼𝛼(𝑥𝑥) = Ψ𝛼𝛼(𝑥𝑥)𝑓𝑓𝛼𝛼      ;   Ψ𝛼𝛼+(𝑥𝑥) = Ψ𝛼𝛼+(𝑥𝑥)𝑓𝑓𝛼𝛼    ;   𝑓𝑓𝛼𝛼 =   
𝜙𝜙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑦𝑦)

∫ 𝑑𝑑𝑑𝑑Ψ𝛼𝛼(𝑑𝑑)𝐲𝐲

                 ( 3 ) 

The eigenvalue in each subdomain is provided by the CMFD solution 
𝜆𝜆𝛼𝛼 = 𝜆𝜆𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑 in order to compute the new volume source 𝑄𝑄𝛼𝛼 = 𝐹𝐹𝛼𝛼𝜙𝜙𝛼𝛼

𝜆𝜆𝛼𝛼
. 

Convergence is checked for eigenvalue, the fission source distribution and the interfaces 
currents between subdomains as described in [5]. 

The fine transport problem is solved with the IDT SN solver [6] [7] [8]. The transport 
operator is discretized with the method of short characteristic on Heterogeneous Cartesian Cells 
which allows pin-by-pin transport calculation without homogenization. We presented the 
accuracy of the DDM implemented in IDT in previous work [5].  

3 EFFICIENCY OF THE DDM ON 3X3 COLORSET 

A numerical experiment has been set on a 3x3 color-set based on 16x16 pin-cells PWR-
like assemblies, as presented in Fig. 1. We try to find the best compromise to optimize the 
utilization of the cache of the processor. Moreover, we try to experiment the gain offered by 
using the parallel algorithm on desk computer. 

The color-set does not present any spatial symmetry due to the asymmetric burn-up 
distribution. The assembly cross sections are self-shielded and discretized with 281 energy group 
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based on the SHEM discretization and a P1 scattering kernel. [9] The cross sections are self-
shielded at the assembly level and regrouped in 7 types of pin-cells for each burn-up step as 
described in in Figure 1b. The total number of region is 13392 for the cluster geometry. We use 
linear spatial expansion and 40 directions and 3 sub-surfaces per pin-cell for the discretization of 
the interface angular flux. 

 
Figure 1. Description of the cluster 

3.1 Intrinsic Efficiency of DDM: Single Processor Run 
This test aims to evaluate the performances of the DDM regarding the use of processor 

cache and memory pagination. For this purpose, the number of floating-point operations to 
perform transport calculations is fixed in 5 transport sweeps per each group and in 10 multigroup 
iterations. We defined one material per spatial region, i.e. 13392 materials and associated sets of 
cross sections. This accounts for about 4.6 GB of memory. The calculations are run on a 6-proc 
Intel(R) Xeon(R) X2620 2.00GH 15.3 MB of cache per processor, 64 GB of memory which is 
one of the standard workstation available in our laboratory. The same calculation is performed 
with different Domain Decompositions (DD) going from 1 single domain up to 2304 subdomains 
(1 pin cell per subdomain). The calculations are run on a single processor (no parallelism). The 
test is oriented to search a set DD in which the method guarantees the resources optimization in 
terms of memory utilization and CPU work. The efficiency, defined as the ration between the 
elapsed time of the direct calculation (1 single domain) and the elapsed time of the calculation 
performed with n subdomains, 𝐸𝐸(𝑛𝑛) = 𝑇𝑇(1) 𝑇𝑇(𝑛𝑛)⁄ , has been measured and showed in Figure 
2a). The picture shows that the efficiency is above 1 for subdomains sized from 16x16 pin-cells 
to 4x4 pin-cells respectively composing 9 to 144 subdomains. The over-efficiency has a 
maximum of 7% at 12x12-pin-cell sized subdomains. The total time has been decomposed in the 
inner-time, which includes 1 spatial and angular transport sweep for each energy group, the 
source time which accounts for multigroup scattering source computation, the exchange time 
which takes into account the exchange of boundary fluxes between subdomains and, finally, the 
CMFD time which includes the CMFD matrix construction, the CMFD solver iterations and the 
update of the transport fission integrals.  

In Figure 2b), we analyze the single behavior of the above mentioned elapsed times. The 
computationally demanding parts of the calculation are the inner iterations and the scattering 
sources computation. The first depends especially on the number of spatial regions per 
subdomain while the second depends on the size occupied by the transfer matrix cross sections. 
Both times benefits from DD: as the Figure 2b) shows, the inner iteration time starts to decrease 
from 9 subdomains while the scattering source computation starts to decrease from 16 
subdomains. The inner transport sweep is mainly a floating-point demanding area whereas the 
source computation stresses the memory utilization.  
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Figure 2. (a) Efficiency of the DDM. Fig (b) Multigroup time analysis 

A deeper understanding of the benefits of the DDM for the source computation is given 
in Table I. In this table we estimate the average memory occupation for the scattering source 
computed for one arrival group and the memory occupation of the multigroup flux with P1 
expansion. The total memory occupation of the subroutine devoted to such calculation embeds 
both multigroup flux and the transfer matrix together with several auxiliary arrays. The memory 
occupation becomes lower than the cache size from 16-subdomain. One can see the same kind of 
behavior for the transport sweep with a gain about the 10% of computational time (Figure 2a)). 
The pictures show that the calculation time increases when the subdomains are too small. The 
processor loads too small data in its cache while communications increase. The test suggests us 
that an optimal configuration for the DDM can be run from 256-pin-cell per subdomain down to 
16-pin-cell per subdomain for a reference 2D calculation.  

Table I. Estimation of memory occupation by 1 subdomain during scattering source computation in MB 
(evaluation for 1488 regions, 3 spatial moments, 6 angular moments) 

# of subdomains 1 4 9 16 36 64 144 
# of regions / subdomain 13392 3348 1488 837 372 204 93 
Memory per arrival group for 
transfer matrix / subdomain (MB) 80.4 20.1 8.9 5.0 2.2 1.2 0.6 

Memory for multigroup flux / 
subdomain (MB) 67.0 16.7 7.4 4.2 1.9 1.0 0.5 

Total amount of memory per 
arrival group / subdomain (MB) 156.2 39.1 17.4 9.8 4.3 2.4 1.1 

 

3.2 Performances of CMFD Acceleration Applied to DDM: Single Processor Run 
The DDM without overlapping suffers from poor convergence ratio. We attempt to 

mitigate this lack of convergence with CMFD acceleration at global level [10]. In previous work 
[5] we presented some optimization of the CMFD parameters in term of the size of the coarse 
spatial regions and the size of the coarse energy groups. In this study we find out that an optimal 
2x2 homogenized pin cells coarse mesh and a 26-group coarse energy mesh can efficiently 
accelerate the DDM iterations. In the following test we run the previous DD set of calculations 
until convergence on a single processor. The convergence criteria are 10-5 for the eigenvalue, 104 
for the fission source and 10-3 for the interface currents. 
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The Figure 3 shows the elapsed time for the 3x3 colorset for different DD from 1 single 
domain to pin-by-bin DD. We set 2 coarse spatial meshes; the first is a pin-by-pin 
homogenization while the second is a 2x2 pin-cells homogenization. As the picture shows, the 
CMFD mesh influences the convergence of the method. From 2x2 subdomains up to 12x12 
subdomains, the DDM calculation time is almost identical to the direct calculation time. This 
implies the possibility to achieve the ideal scalability. In this range, the CMFD stabilizes the 
number of outer power iterations despite of the number of subdomains. 

 
Figure 3. Elapsed time vs. # of subdomains. The number of power iterations is indicated for each calculation. 

It is also interesting to note that when subdomain is too small, the number of iterations 
increases.  As the size of the subdomains decreases, the local scattering sources are more 
influenced by the entering angular flux from the neighbor subdomains. We found an optimal 
subdomain size around the typical PWR assembly size where the slowing down of the neutrons 
is very important in the water. That could be quite different for other kind of reactors where the 
optical thickness is lower. 2D PWR core would imply o(200) assemblies. Since the DDM is 
efficient down to 36 pin-cells per subdomain, which counts for 8 subdomains per assembly, the 
number of subdomains for a full-core DDM calculation would be o(1000). This allows for a 
proficient application of the DDM to large scale parallel computer before reaching the scalability 
limit.  

4 OPENMP SCALABILITY OF DDM+CMFD 

A series of weak and strong scaling studies were performed with shared memory 
parallelism (OpenMP). These tests have been performed on a 12-proc Intel(R) Xeon(R) X5645 
2.40GH 12.3 MB of cache per processor, 24 GB Memory. We fixed the number of operations to 
perform the transport calculations (5 angular-spatial sweeps and 10 multigroup iterations) to 
focus on the parallel performances. The number of threads for both weak and strong scaling 
varied from 1 to 24. For the weak scaling, the amount of work per thread is constant. The 
number of threads is equal to the number of subdomains. The geometry is composed of n 
assembly-sized subdomains, with n going from 1 to 24. For the strong scaling, the size of the 
problem is always the same (3x3 colorset) but the number of subdomains increases from 1 to 24. 
The number of threads is always equal to the number of subdomains. The speed-ups for weak 
scaling and strong scaling are respectively defined as:  

𝑆𝑆𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤(𝑛𝑛) = 𝑛𝑛 𝑇𝑇(1) 𝑇𝑇(𝑛𝑛)⁄       𝑎𝑎𝑛𝑛𝑑𝑑     𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑛𝑛) = 𝑇𝑇(1) 𝑇𝑇(𝑛𝑛)⁄                  ( 4 ) 

Here n is the number of threads. 
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Figure 4. (a) weak scaling speed-up and (b) Strong scaling speed-up 

The Figure 4a) and Figure 4b) show respectively the speed-up for the weak and the 
strong scaling. The processor has only 12 cores and the hyper-threading is activated, this justifies 
the gap occurring beyond 12 threads. In both cases, the linearity is respected until hyper-
threading is reached. The reason for super-linear scaling is certainly explained by the better use 
of cache, highlighted in the previous chapter. When the hyper-threading is activated, even if the 
curves deviate from the ideal line, the speed-up reaches 15 for 24 threads. This behavior of 
shows us that efficient daily calculations can run with OpenMP parallelism on desk computer 
when the total amount of memory can be supported by a single node. 

5 2D FULL CORE CALCULATION – OPENMP/MPI HYBRID 
PARALLELISM 

In [5] we presented a 2D configuration of a large LWR with heavy reflector at BOC [11], 
the calculation has been parallelized using the OpenMP library. In that case we limited the 
number of materials to about 300. For a full depletion of a 2D core, one needs to store almost 
half a million of materials which needs 281 energy groups and P1 expansion for a total of 1TB. 
This large amount of memory is not available on a single workstation. The limitations of the 
shared memory parallelism lead us to consider a Hybrid OpenMP/MPI parallelism which gives 
access to this huge amount of memory. As depicted in Figure 5 the core is loaded with 241 fuel 
assemblies surrounded by a heavy baffle (homogeneous media including water and steel). All 
cross sections were self-shielded at the assembly level with the lattice code APOLLO2 and 
stored in 281-groups cross-section libraries without homogenization. There are 9 types of 
assemblies: 5 UOx assemblies and 4 UOx-Gd assemblies at different burn-up.  

 
Figure 5. Description of the a large LWR core (heavy reflector) and the mapping between  

subdomains and nodes 

The UOx pins were discretized with 6 regions per pin cell: 4 self-shielded rings for the 
fuel and 2 materials respectively for the clad and the coolant. A total of 130 materials were 
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defined for the 5 UOx assemblies. In the UOx-Gd assemblies, the gadolinium pin-cells were 
discretized with 11 self-shielded rings in the fuel and 2 regions in the clad and the coolant for a 
total of 160 materials for the 4 assemblies. The reflector baffle has been computed by smearing 
5% of water in the steel, the cross sections have been self-shielded in a 1D simplified geometry 
composed by a fuel assembly and a slab of reflector. The whole geometry is described with 
439,542 regions. The reference calculation was obtained by running the Monte Carlo code 
TRIPOLI-4® [12]. The results compared to IDT-DDM are synthetized in Table II. 

Table II. Error of IDT-DDM vs. reference TRIPOLI-4® calculation 

IDT – DDM P1 
Reactivity Error -49 pcm 
Max pin-by-pin Power Error 2.10% 
Min pin-by-pin Power Error -1.10% 
Fraction of pin-cells in 3σ 54% 

 
IDT-DDM calculations were run in 3 configurations. The first is an OpenMP coarse 

grained parallelism run on 6-proc Intel(R) Xeon(R) X2620 2.00GH 15.3 MB of cache per 
processor whit 64 GB of memory, and parallelized on 12 threads. In this calculation the number 
of materials was limited to 300 for a total of 35GB of memory. A second calculation benefits 
from the hybrid parallelism and is run on a 15 nodes cluster. Each node is 2x10-proc Intel(R) 
Xeon(R) E5-2680 V2 2.80GH with 128 GB of memory. In this calculation we use both MPI and 
OpenMP directives to parallelize the DD sweep. The number of materials is the same as for the 
previous calculation. This first comparison illustrates the memory and communication overheads 
due to the distributed memory architecture. The third calculation is a full depletion of the core 
where we stored 1 material per spatial region. The later demands the storage of 1TB in P1 
expansion. We implemented the hybrid solution as a 2-level DD. The first one consists in 
allocating groups of subdomains on several MPI processes. The Figure 5c) shows the mapping 
between subdomains and nodes for the 2D core calculation. Each color corresponds to 1 MPI 
process. Then at the second level, the OpenMP directives solve in parallel the subdomains 
associated to the node. This solution is a first attempt to save some benefits from shared memory 
parallelism while eliminating its drawbacks. We attempted to have a good load balance by 
considering two assembly-sized chunks of reflector as one fuel assembly. 
Table III. 2D Full core calculation. Case A: OpenMP parallelism. Case B: hybrid calculation. Case C: hybrid 

core depletion calculation (*includes MPI communication) 

Designation A-OpenMP B-Hybrid C-Hybrid 
# of materials (including duplication) 292 2984 ~4x105 

Memory (GB) 20 20 1,000 
Number of threads – Number of Nodes 12 – 1 300-15 300-15 

Total elapsed time 2h35 11 min 17 min 
Time for transport solver 83% 39% 44% 

Time for CMFD (coef* + solv. ) 15% (13.5+1.5) 60% (38+22) 50% (37+13) 
Time for flux exchange* < 1.3% 13.30% 5% 

# of outer iterations 22 18 18 
Total CPU time 1.25 days   
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Table III shows the performances of the 3 calculations for the P1 expansion of the 
scattering. We analyzed the number of materials, the total memory occupation, the total elapsed 
time and the partial times spend in the transport sweeps, in the CMFD solver and in the interface 
flux exchanges. 

A first comparison is made between the OpenMP calculation (columns A in the Table III) 
and the hybrid implementation (column B). Memory duplication is observable for the hybrid 
calculation dues to the copy of the transport coefficients and the cross sections. In this case, the 
memory overhead is negligible with respect to the storage that is needed for the flux. The hybrid 
parallelism seems to preserve the ideal scalability of the transport iterations. However, for the 
hybrid implementation, the fraction of time for flux exchanges and for the CMFD acceleration 
becomes important. In fact, the CMFD time occupies 60% of the total elapsed time compared to 
only 15% when only the shared memory is used. Moreover the time for flux exchange is not 
negligible anymore. We underline that, at the present stage of the implementation, the CMFD 
solver is not parallelized and a considerable reduction of its computational time can be gained 
from this. On the other hand, the absolute time for flux exchange remains constant between the 
OpenMP and the hybrid parallelization. Column C shows the capability to run a full depletion of 
the core in a reasonable amount of time. 15 nodes offer the enough memory amounts to store the 
cross sections for half a million of materials for a total of 1 TB. The calculations time for one 
burn-up steps becomes also interesting running over 17 minutes. Because of the full depletion, 
the time required for the computation of the transport coefficients is not negligible in this case. It 
takes about 100 seconds per assembly parallelized on 10 threads. 

This hybrid parallelism preserves the OpenMP qualities within each node. By this way, 
we save the good scalability performances obtained with shared memory architecture. We save 
memory, avoiding copy of shared data belonging to the same node while preserving a fast 
interface flux communication between subdomains. The CMFD acceleration is solved by the 
master MPI process. This is a bottleneck since local CMFD coefficients have to be sent from all 
process to the master (MPI_REDUCE) before solving the diffusion system, and then the solution 
have to be spread to all processes from the master (MPI_BCAST). 

6 3D FULL ASSEMBLY 3X3 CLUSTER CALCULATION 

The Figure 6 depicts 3-D color-set geometry. It is composed by 9 PWR assemblies: 4 UOx 
assemblies having 3 different burn-up, 4 UOx-Gd assemblies having 4 different burn-up and one 
central UOx assembly with a control rod partially inserted. The assemblies are modeled in their 
full height, i.e. a total height of 400 cm for the fuel pins plus 20 cm of reflector at the top and at 
the bottom of the geometry (mix between water and steel for the reflector) for a total of 440 cm. 
The boundary conditions are the specular reflection on the radial boundaries while the vacuum 
on the top and bottom surfaces. A control rod is inserted in the central assembly at half of the 
total height (cf. Figure 6b)). The cross section libraries are the same as for the 2D core 
calculation which represents about 30 materials per assembly and 281 energy groups with P1 or 
P3 expansion. An additional library was generated for the rodded assembly. The latter is 
composed by fresh UOx fuel pins, with a B4C absorber inserted in guide tubes. The absorber pin 
has a coarse model composed by 2 materials, the absorbed and its cladding. A water gap between 
the absorber cladding and the tube has also been modeled. The upper and lower reflectors have 
been computed by smearing 50% of water in the steel, the cross sections have been self-shielded 
in a 1D simplified geometry similarly to the heavy baffle for 2D core calculation. 
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Figure 6. (a) 2D spatial discretization for the pin-cells used in the 3D Heterogeneous Cartesian Cells. (b) 

color-set configuration. (c) Axial power distribution per assembly 

We compared our deterministic solution to a Monte Carlo simulation obtained with the 
TRIPOLI-4® code (version 9). For the latter calculation, the continuous-energy cross sections 
have been used while the statistics has been done by running ~2500 independent simulations 
(independent random number seed). Each simulation is characterized by 2200 batches having 104 
particles per batch (the first 200 batches are discarded to stabilize the fission source and the 
eigenvalue). The runtime of a single Monte-Carlo simulation is around 1 day. A fist comparison 
between IDT-DDM and TRIPOLI4® in term of reactivity error and runtime is sketched in Table 
IV where the comparison is done using the P1 and the P3 libraries. 

Table IV. IDT-DDM vs. TRIPOLI-4®, reactivity error and elapsed time 

 IDT – P1 IDT – P3 
Nb threads – Nb Nodes 198 – 11 198 – 11 

K-eff (Delta Reac T4 (pcm)) 1,05815 (28) 1,05816 (29) 
# of outer iterations 27 26 

Total time (elapsed time) 4h19 7h47 
Time for transport solver 81% 87% 

 
A deeper understanding of the quality of the solution was obtained by calculating the 

Monte-Carlo power distributions on three different Cartesian-meshes corresponding to various 
scales (fuel assembly and pin-by-pin). The first one is devoted to the average radial pin-power 
distribution. The whole height of the cluster is integrated while the radial mesh is discretized 
with 51x51 Cartesian cells at pin-cell scale. The second one is used to compare the axial power 
distribution. It is composed by 100 axial planes; each plane has 4 cm in height and is radially 
integrated over the cluster assemblies. Finally, the third one is the 3D power distribution 
combining the first radial description with the second axial discretization. As depicted in Figure 
6 (c), the axial power distribution undergoes a 3-order of magnitude excursion between the 
active part and the rodded part. This kind of decoupled system is difficult to simulate for both 
deterministic and probabilistic codes.  
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Figure 7. IDT-DDM vs. TRIPOLI-4® on the 3D rodded color-set problem 

Figure 7 (a), (b), (c) depicts respectively the average radial power-distribution for the 
TRIPOLI4® simulation, the standard deviation associated to the calculation and the relative error 
on the pin-by-pin power distribution with respect to the IDT-DDM calculation. We observe that 
the standard deviation associated to radial power distribution of the TRIPOLI-4® calculation 
goes up 4.3%. With such quality of the Monte-Carlo solution, the 100% of the pin-cells fits the 
standard deviations of the Monte-Carlo simulation.  

 
Figure 8. IDT-DDM vs. TRIPOLI-4®, on the 3D rodded color-set problem. (a) axial power distribution, (b) 

Relative pin Power per-cent Error (RPE) 

A bigger discrepancy between the deterministic and the Monte-Carlo simulation is 
observed by analyzing the axial power distribution. Figure 8 (a) and (b) show, respectively, the 
axial power distribution for both TRIPOLI-4® and IDT-DDM and the Relative pin Power per-
cent Error (RPE). The RPE is defined as:  

𝜀𝜀𝑝𝑝,𝑤𝑤 = 𝜀𝜀𝑤𝑤 ∗
𝑃𝑃𝑘𝑘
𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎

                                                                ( 5 ) 

Here 𝜀𝜀𝑤𝑤 is the relative per cent error between TRIPOLI-4® and IDT-DDM while Pk and 
Pavg are respectively the IDT-DDM average power in the layer “k” and the global average power. 
The RPE gives an estimation of the total amount of error for the pin power distribution 
calculation. Such error has a maximum of 17% in the active part and a minimum of -12% in the 
rodded part. Analyses are in progress to determine the origin of such discrepancies. For the 
deterministic simulation, the 2D self-shielding model used for the cross section library 
generation is not sufficient to handle the 3D axial effect at the interface between the B4C rodded 
assembly and the fresh UOx-Gd assembly. On the other hand, we are presently analyzing the 
statistics of the Monte Carlo simulation, in particular the convergence of the sources involved in 



R.Lenain et al 
 

 Page 
12 of 14 

 

the power iterations. In this particular test, the rodded and the active parts are quite decoupled. 
The analysis at the pin-cells scale of the axial statistical fluctuations of the source shows that the 
convergence of the sources distribution has to be improved. An analysis is in progress to evaluate 
the optimum number of discarded batches per simulation. 

7 CONCLUSIONS AND PERSPECTIVES  

This work has been devoted to the synergy between the DDM and the CMFD acceleration 
by implementing a hybrid parallelism. The numerical tests point out the strength and the 
weakness of the method. Certainly, the DDM+CMFD method can be tuned for finding the 
optimum use of both CPU and cache. A shared memory parallelism shows a very good 
scalability: high fidelity calculation can be obtained in a reasonable amount of time with standard 
workstation using only the OpenMP directives, as for the 2D whole core calculation. However, 
such calculation also points out the weakness of the shared memory parallelism: lack of memory 
for a full depletion of the core. We mitigate this drawback by introducing an MPI layer in order 
to get the possibility to run calculation on computer clusters. Using the hybrid parallelism, full 
core 2D calculation can be run in roughly ¼ of hour using only 15 nodes, guaranteeing high-
fidelity calculations in a reasonable amount of time and resources. The optimization of the MPI 
communications together with the parallelization of the CMFD solver still have to be performed 
to present a conclusive scalability study. The extent of memory provided by the distributed 
memory parallelism allows for a full depletion of the core by depleting up to 400,000 different 
materials.  

We have also explored a challenging 3D color-set with a control-rod-in configuration, 
where we have compared the IDT-DDM solution with the Monte-Carlo TRIPOLI4® results. 
This realistic test case has revealed as a computationally demanding problem for both 
deterministic and Monte-Carlo codes. The quality of the solutions has to be improved in both 
sides. The deterministic code needs a more consistent 3D self-shielding model for the cross 
section generation at the axial interface between heterogeneous materials. Moreover, we are 
investigating an increasing discretization of the interface angular flux and quadrature formulas. 
On the other hand, the Monte-Carlo solution needs to be improved in order to face the source 
convergence challenge in a 3D geometry that represents hundreds of neutron mean-free-paths in 
the axial direction. A partial mitigation of this issue can be obtained by increasing both the 
number of particles and the number of discarded batches. Concerning the application of the 
DDM to 3D problems, we have not yet explored the tuning of the method in terms of the optimal 
axial and radial discretization of the subdomain mesh. This study will be part of our future 
works. 

The DDM+CMFD method opens the door to many numerical research fields such as 
approximated 3D transport solutions and the 2D/1D fusion method. This method allows for the 
combination of locally defined discretization: the memory load for the discretization of each 
subdomain is locally managed by the processor. Regarding our future works about hybrid 
parallelism, we would like to explore different strategies for the load distribution over the MPI 
nodes, with a particular attention to asynchronous algorithms.  
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