

Thermodynamics of the uranium defluoration process and its application for efficient recycling of fluorine in the nuclear fuel cycle

J.M. Borgard, F. Herbelet, B. Gwinner, J.L. Fleche DEN/DPC/SCCME DEN/DTEC/SCGS

Liquid-vapor equilibrium of HF/H2O at 1 bar

How can we get over the azeotrop ?

T=60°C, 1% O_2 in purge gas, Test time = 7 days

Solutions to limit corrosion:

- Avoid the azeotropic zone
- Avoid/limit O₂

Main steps of the defluoration process

7

Option 1 : Pyrolysis dewatering

Dewatering equation :

 $UO_2F_2 + H_2O(g) = 1/3 U_3O_8 + 1/6 O_2(g) + 2 HF(g)$ (2a) $UO_2F_2 + 1/3 H_2(g) + 2/3 H_2O(g) = 1/3 U_3O_8 + 2 HF(g)$ (2b)

 $\begin{array}{l} \underline{\text{Mikrokinetic model}^*: 3 \text{ majors steps}:} \\ \textbf{UO}_2 F_2 + \textbf{H}_2 \textbf{O} = \textbf{UO}_3 + 2 \text{ HF(g) (3)} \\ \textbf{UO}_3 = \ \textbf{UO}_{2,9} + 1/10 \ \textbf{O}_2(\textbf{g}) \ \textbf{(4)} \\ \hline \textbf{Followed by either}: \\ \textbf{UO}_{2,9} = 1/3 \ \textbf{U}_3 \textbf{O}_8 + 7/60 \ \textbf{O}_2(\textbf{g}) \ \textbf{(5a)} \\ \textbf{UO}_{2,9} + 7/30 \ \textbf{H}_2(\textbf{g}) = 1/3 \ \textbf{U}_3 \textbf{O}_8 + 7/30 \ \textbf{H}_2 \textbf{O}(\textbf{g}) \ \textbf{(5b)} \end{array}$

Issue : Equation (3) : **DG** \approx **0** in operational temperature range recycling HF => slow down the process and impact purity of U₃O₈ product

Pyrolysis dewatering : concept

Equation : $UF_6 + (x+1)H_2O(I) + y HF(I) = UO_2F_2 (H2O)_x(HF)_y + 2 HF(g) (\Delta G_{50^{\circ}C} \approx - 200kJ/mol U)$

!! large amount H₂O / HF in the solid product

Liquid phase HF% weight	Wet residue HF % weight	Wet residue UO ₃ % weight	Drying energetic cost kJ/mol UO ₂ F ₂
51.41	37.97	31.26	1397
64.69	49.16	22.6	2167
70.11	55.77	19.13	2562
78.64	61.31	20.1	3057
91.4	76.07	14.11	3145

Too high energetic cost !

Sequoyah Fuel pilote scheme

Mikrokinetic modeling : $UF_6 + H_2O(g) = UOF_4 + 2 HF(g) (3) (\Delta G_{250^{\circ}C} \approx -70 kJ/mol U)$ $UOF_4 + (x+1)H_2O(g) = UO_2F_2 (H2O)_x + 2 HF(g)$ (4) ($\Delta G_{250^{\circ}C} \approx -95 kJ/mol U$)

Looks good but two majors issues on the pilot plant :

Distillation of HF-H2O azeotropic mixture with O₂: major corrosion issue!
 Stability of the distillation column with variable H₂O/HF input due to side-reactions in hydrolyser

Gaseous exit : side-reactions

All contribute to variable HF-H₂0 output in the recycling loop

Option 4 : Overazeotropic flash :

	Pyrolysis recycling	Hydrolysis recycling + Azeotropic distillation	Liquid hydrolysis	Overazeotr opic Flash
Corrosion in recycling loop	high	high	high	low
extra energy cost ((kJ/mol U)	> 700	250 (+ 360 cold source)	1500-4000	200-300
Recycling loop stability	Weak + quality of product issue	weak	Average	good

Recycling fluorine in nuclear fuel :

Main thermodynamical issue : azeotrop in HF-H2O mixture Corrosion issue : high close to azeotropic point

According to Thermodynamics :

- Dewatering possible using UF6 hydrolysis chemical reaction and chemical loop (pyrolysis of uranyl difluoride not recommended)
- Use of overazeotropic range HF instead of azeotropic recommended to limit corrosion
- Efficient separation can be done using a simple flash in high concentrated acid

Thanks for your attention !!

Energetic analysis using simpilfied flowsheet simulation

Simulation results

Component	Aqueous HF	Azeotropic distillation	Overazeotropic flash
Hydrolyser	- 80 kJ (200°C)	- 80 kJ (200°C)	- 80 kJ (200°C)
Cooler	 298kJ (200- 50°C) 24 kJ (0°C) 	 130 kJ (200- 120°C) 30 kJ (120-25°C) 	 - 306 kJ (200°C- 75°C) - 200 kJ (75- 25°C)
HF separation unit	Not applicable	104. kJ (110°C) - 355 kJ (20°C)	- 75 kJ (50°C)
AHF compressor	Not applicable	30 kJ (el)	30 kJ (el)
AHF condensor and cooler	Not applicable	- 145 kJ (65°C) - 12 kJ (20°C)	 145 kJ (65°C) 12 kJ (20°C)
Boiler	80 kJ (100°C, pure water)	146 kJ (110°C, 38% HF)	288 kJ (50-105°C, 75% HF)
Compressor HF/H2O recycling loop	3 kJ (el)	5 kJ (el)	15 kJ(el)
Global energy demand after heat integration	80 kJ heat (200°C) 3 kJ (el)	80 kJ(200°C) 120 kJ (110°C) 35 kJ (el) Extra cooling required 367 kJ at 20°C	80 kJ (200°C) 45 kJ (el) Extra cooling required 212 kJ (75- 20°C)

Heat integration

