

Développement d'un microsystème de micro liquide à interfaces stabilisées par patterning hydrophobe/hydrophile résistant pour l'analyse des radionucléides

C. Mariet, G. Cote, A. Chagnes, C. Guyon, S. Cavadias, M. Tatoulian, W.

Aboussaoud

▶ To cite this version:

C. Mariet, G. Cote, A. Chagnes, C. Guyon, S. Cavadias, et al.. Développement d'un microsystème de micro liquide à interfaces stabilisées par patterning hydrophobe/hydrophile résistant pour l'analyse des radionucléides. Journées scientifiques Chimie Paristech, Jan 2015, Paris, France. cea-02506802

HAL Id: cea-02506802 https://cea.hal.science/cea-02506802

Submitted on 12 Mar 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Plasmas, Processes, Microsystems (Dir. Prof. Michael TATOULIAN)

Développement d'un microsystème de micro-extraction liquide-liquide à interfaces stabilisées par patterning hydrophobe/hydrophile résistant pour l'analyse des radionucléides

Soutien Chaire Areva 2014-2015 Chaire ParisTech Ingénierie

1. CEA - C. MARIET - SAC/DEN/DPC/SEARS/LANIE

2. Equipe Ressources et Matériaux pour un Monde Durable/ IRCP (ENSCP, CNRS UMR 8247) G. COTE, A. CHAGNES

> 3. Equipe Procédés, Plasmas, Microsystèmes /IRCP (ENSCP, CNRS UMR 8247)
> C. GUYON, S. CAVADIAS, M. TATOULIAN W. ABOUSSAOUD (ATER)

Contexte : analyses radiochimiques

Analyses nucléaires au laboratoire

Une voie d'amélioration : la miniaturisation

Concept de la microfluidique

Manipuler des fluides à une échelle micrométrique

une des dimensions est inférieure à 100 µm

Apports de la microfluidique

			BATCH	MICROSYSTEME	GAIN
•	Réduction des volumes	(REACH, chimie verte)	≈ 100 mL	≈ 500 nL	1/10 ³ à 1/10 ⁶
•	Réduction du temps d'ana	lyse	min ou h	quelques s ou min	1/10 à 1/10 ³

- Réduction de l'exposition des opérateurs
- Réduction des coûts
- Automatisation des analyses, couplages

Décentralisation des analyses (portabilité)

Une voie d'amélioration : la miniaturisation

La microfluidique dans le domaine du nucléaire

- Peu d'études dans le nucléaire et en milieu acide ⁽¹⁻³⁾
- Largement étudiée en biologie

retour d'expérience des biologistes

en biologie : PDMS

dans le nucléaire : COC pour les prototypes et verre pour les microsystèmes au design finalisé

1. Janssens-Maenhout, Nuclear Engineering and Design, 2007, 237, 1209-1219 2. Nichols, Journal of the American Chemical Society, 2011, 133, 15721-15729 3. Bruchet, Talanta, 2013, 116, 488-494

3- objectif: mIniaturiser l'extraction liquide-liquide en microsystème

U(VI) / Aliquat[®] 336

- Echangeur d'anions
- Cinétique rapide ^[5]

Phase aqueuse :

- analyte : U(VI) 10⁻⁵ M
- milieu aqueux : HCI 5 M

Phase organique :

- extractant : Aliquat® 336 10-2 M
- diluant : n-dodécane
- modificateur de phase : 1-décanol 1% (v/v)

Eu(III) / DMDBTDMA

- Extractant neutre
- Cinétique lente ^[6]

Phase aqueuse :

- analyte : Eu(III) 10-2 M
- milieu aqueux : HNO₃ 4 M

Phase organique :

- extractant : DMDBTDMA
- diluant : n-dodécane

1 M

Principe et montage expérimental

Montage expérimental

Microsystèmes en verre (IMT, Japon)

Acides concentrés, solvants agressifs, radionucléides

Chimie Paris

Géométrie

largeur H = 100 μm ; profondeur W = 40 μm

longueur L = 8 cm ; 12 cm ; 20 cm

Stabiliser les écoulements: en fonctionnalisant les microcanaux

Microcanaux fonctionnalisés par procédés plasmas

Augmentation du nombre de couples de débits utilisables → surtout vers des débits plus faibles → économie de solvants

Objectifs du projet et stratégie suivie

Objectifs à court terme :

Développer un microsystème en COC permettant de définir la géométrie optimisée du microsystème final et de faire un screening des conditions opératoires

Objectifs à long terme :

Développer un microsystème en verre, permettant une élimination aisée après utilisation

Stratégie :

1- Tests de résistance aux acides des revêtements hydrophiles (silice) et hydrophobes (Teflon like) et optimisation du procédé de dépôt

2- Développement d'un microdispositif en COC (définition de la géométrie et réalisation du patterning hydrophile/hydrophobe selon les conditions optimisées

3- Etude de la microextraction liquide-liquide

(Détermination du domaine d'utilisation (Concentrations, T^{° 9}, pH,...),

recherche et criblage de nouveaux extractants, etudes cinétiques...)

Définition d'un plasma et modifications de surfaces induites par plasma

3. Dépôt de couches minces (PECVD: Plasma enhanced CVD)

Inorganique (SiO₂, DLCs, diamond, a-Si:H, etc.) et organique (silicone-, PEO- teflon-like, etc.)

2. Gaz Polymerisable \rightarrow PECVD

PE-CVD PLASMA ENHANCED CHEMICAL VAPOR DEPOSITION

Inorganic (SiO₂, DLCs...) and organic (silicone-, PEO- teflon-like...) coatings can be deposited. PLASMA POLYMERIZATION is jargon name for PE-CVD of organic coatings;

Réacteur PECVD (Plasma-enhanced chemical Vapor deposition) Dépôt chimique en phase vapeur assisté par plasma pour élaboration de revêtements organiques/inorganiques

Plasmionique

VIDEO ICI

How to control the selectivity of the process?

Polymerization under continuous wave plasma

increasing period or decreasing DC (low W_{eff})

film with a higher teflon character

Traitement plasma COC

Cyclyc Olefin Copolymer

Cyclyc Olefin Copolymer : Microreactor material

Well-suited as microreactor material

Microsystemes en COC

High purity and rigidity

- Glass-like transparency
- Very good chemical resistance to solvents, acids and alkalis
- Raman detection

Low Tg ~140 ° C
Hydrophobic
Use of a dedicated process

Well-suited as microreactor material

Dépôt hydrophile→ Dépôt de silice SiOx

Paramètres clés

Rapport monomere/ O_2 input power (fragmentation)

PECVD of SiO₂-like films CH₃ CH₃ Si-O-Si CH_3 $+O_{2}$ CH_3 CH₃ $\mathbf{CO} \quad \mathbf{O}_2 \left(\mathbf{O} \right)$ CH_v Si(CH_x)_v OSi(CH_x) CO H H(OH)CO ĈH (CH₃)₂CO SiO Si CH₄ H_2O,OH \dot{C}_2H_2 22 (powders) () H_2O CO₂ QH QH CH₃ CH_2 Si Si Si Si `OH ,OH **O** HO CH_2 Si Si Si Si 0 Si Si CH_2 PET

Silanols drill holes in high density SiOx

Surface modification of COC

Stable surface modifications can be obtained on polymeric materials...

Test de résistance aux acides

- **CFx sur Silicium ***
- **CFx sur COC**
- Silice sur Silicium *
- Silice sur COC
- Silicium sans dépôt
- COC sans dépôt

Acides testés : HCl et HNO3 à 6 mol/L

Durées d'attaque : 2, 4 et 6 heures (en mode statique)

Méthodes de caractérisation : FTIR, angle de contact, Spectroscopic ellipsometry *

Analyses FTIR

Fonction correspondante au Si-O toujours identifiée après 6h d'attaque

Chimie Paris

Angle de contact

durée d'exposition (h)

Epaisseur du dépôt (Spectroscopic ellipsometry)

	Avant attaque	Après attaque HCL (<mark>2 heures</mark>)	Après attaque HNO ₃ (2 heures)
CFx/Silicium	12,695 nm	10,182 nm	10,613 nm
	± 0,392	± 0,544	± 0,418
Silice/Silicium	37,946 nm	37,001 nm	36,906 nm
	± 0,397	± 0,540	± 0,516

Epaisseur du dépôt quasiment inchangée après 2h d'attaque aux acides

Conclusion

Les dépôts CFx et Silice résistent à l'attaque des acides HNO_3 et HCL (6 mol/L) après 6 heures d'exposition (en mode statique).

Stratégie :

1- Tests de résistance aux acides des revêtements hydrophiles et hydrophobes et optimisation du procédé de dépôt

2- Développement d'un microdispositif en COC (définition de la géométrie et réalisation du patterning hydrophile/hydrophobe selon les conditions optimisées

3- Etude de la microextraction liquide-liquide (Détermination du domaine

d'utilisation (Concentrations, T°, pH,...)

Solution de dépôt de silice par plasma atmosphérique

Buse d'injection

Disposif d'injection de précurseur

- Précurseur liquide de type HMDS
- Gestion précise du débit de précurseur et de gaz porteur
- Pilotage par écran tactile
- buse d'injection compatible ULS
- Version autonome ou OEM

Elaboration de couche de type SiO₂ par dépôt plasma à pression atmosphérique

VIDEO ICI

Pression	Puissance (W)	Temps (s)	Température substrat (°C)	Débit Air (l/min)	Débit HMDSO (µl/min)
Atm	500-900	-	25	35	10

Perspectives

- Possibilité de réaliser des microsystèmes en verre : Machine laser pour graver et découper présente depuis peu à l'IPGG

Exemple de réalisation: canal largeur 1 mm, profondeur ~ 120 um

L'IPGG...

5 teams will be gathered in a same building...

IPGG: 5000 m² dedicated to microfluidic and its applications...

TECHNOLOGICAL PLATFORM: 550 m2

Incubator: 500 m²

Remerciements

Partnership & Collaborators

Macromolecules and microsystems in biology and medecine (J.L. Viovy/ Curie):

Application of physics and chemistry to biology and medicine/development of diagnosis tools for Alzheimer's disease...

Microfluidics, MEMS et nanostructures (P. Tabeling/ ESPCI):

Activity is centered on Microfluidics, i.e the study and realisation of fluid flows, single or multiphase, in micro-systems

CEA - C. MARIET - SAC/DEN/DPC/SEARS/LANIE

Equipe Ressources et Matériaux pour un Monde Durable/ IRCP (ENSCP, CNRS UMR 8247) G. COTE, A. CHAGNES

Fundings

Cédric Guyon

Stephanie Ognier

ier Fréderic Rousseau

Isabelle Mabille

Michaël Tatoulian

Jacques Amouroux

Olivier Lesage

Guillaume Schelcher

Merci

Daniel Morvan

Siméon Cavadias

Bradley Da Silva

Rafik Benrabbah

Alexandre Ma

Maxime Cloutier Magdalena Nizio

Rao Xi

Erick Martinez

Ines Hauner

Mengxue Zhang

2PM

Atouts-attraits du sujet...

Intérêt des études en flux segmentés pour

microsystèmes séparatifs innovants pour l'analyse nucléaire

pour l'hydrométallurgie, la pétrochimie,... (compatibilité avec les milieux corrosifs)

A plus long terme

- Recherche et criblage de nouveaux extractants
- Etudes cinétiques
- Détermination du domaine d'utilisation (Concentrations, T°, pH,...)
- Réacteurs intensifiés servant au test des nouveaux procédés (1 L/heure sur une durée de 10 heures)

a. Microchannel Formation

