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Plants use solar radiation as energy source for photosynthesis. They also take advantage
of the information provided by the varying properties of sunlight, such as wavelength,
orientation, and periodicity, to trigger physiological and developmental adaptations to a
changing environment. After more than a century of research efforts in plant photobiology,
multiple light signaling pathways converging onto chromatin-based mechanisms have
now been identified, which in some instances play critical roles in plant phenotypic
plasticity. In addition to locus-specific changes linked to transcription regulation, light
signals impact higher-order chromatin organization. Here, we summarize current
knowledge on how light can affect the global composition and the spatial distribution of
chromatin domains. We introduce emerging questions on the functional links between
light signaling and the epigenome, and further discuss how different chromatin regulatory
layers may interconnect during plant adaptive responses to light.
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INTRODUCTION

From the early studies on daylength and flowering time by Julien Tournois and Georg Albrecht
Klebs before the first World War (reviewed in Sage, 1992), a century of research efforts in plant
photobiology has permitted the identification of sensory mechanisms that allow plants to cope with
fluctuating light conditions over their lifetime (Chory, 2010). Intensity, direction, and spectral
composition of light constitute crucial sources of spatio-temporal information for a plant about its
environment, for example about photoperiod, season, and presence of neighboring or shade-
producing competitors. In addition, while being essential for plant growth and development light
can also be harmful at high intensities. Overloading the photosynthetic electron transport chain
notably leads to the production of reactive oxygen species (ROS), which can cause irreversible
damage to cellular components. Exposure to strong sunlight further exposes plants to the
detrimental effects of ultraviolet (UV) radiations on photosynthetic activity, cell integrity, and
genome stability. Balancing the needs of photon harvesting for photosynthesis with photoprotection
and developmental responses to changing light conditions is therefore at the nexus of plant fitness
(Li et al., 2009; Croce and van Amerongen, 2014; Rochaix, 2014; Demarsy et al., 2018).

Plants can integrate light signals through a set of cytosolic or nuclear photoreceptors (Figure 1).
Photoreceptors allow sensing specific solar wavelengths through an associated chromophore (red
and far-red light by phytochromes, blue light by cryptochromes, phototropins, and Zeitlupe) or
through tryptophan residues in the case of UV RESISTANCE LOCUS 8 (UVR8) (Reviewed in
Galvão and Fankhauser, 2015; Demarsy et al., 2018). When excited by photons, photoreceptors
initiate complex regulatory cascades ultimately controlling the expression of vast repertoires of
light-responsive genes. In the Arabiopsis model plant species, key signaling components are the
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photomorphogenesis master repressors DE-ETIOLATED-1
(DET1) and CONSTITUTIVE PHOTOMORPHOGENIC 1
(COP1) proteins that control the stability of photoreceptors
and transcription factors, such as the PHYTOCHROME
INTERACTING FACTORS (PIFs) and ELONGATED
HYPOCOTYL 5 (HY5) (reviewed in Casal, 2013; Galvão and
Fankhauser, 2015; Seluzicki et al., 2017). Among these factors,
the discovery of DET1 association to nucleosomes has
constituted a first molecular function linking light signaling
and chromatin (Benvenuto et al., 2002). The precise impact of
this evolutionarily conserved factor and of related proteins on
chromatin has just started to be unveiled (reviewed in Fonseca
and Rubio, 2019). More generally, functional genetic studies have
now unveiled the importance of chromatin-level control of gene
expression in plant adaptive responses to light conditions. Under
high light irradiance, chromatin responses to damaging doses of
UV or to stressful plastid activity further contribute to preserving
genome activity and stability.

Multiple histone post-translational modifications and
chromatin-bound factors act sequentially or in combination to
fine-tune the transcriptional activity of light-responsive genes. A
first set of genome-wide studies allowed identifying a range of
histone marks and nucleosome organization dynamics that
Frontiers in Plant Science | www.frontiersin.org 2
contribute to efficient gene expression regulation during
Arabidopsis cell adaptation to light (Charron et al., 2009;
Bourbousse et al., 2012; Sullivan et al., 2014; Pass et al., 2017).
At a larger scale, cytological approaches have identified dynamic
changes of chromosomal domains and of specific genes into the
nuclear space in response to light signaling. The corresponding
pathways converging onto specific chromatin loci or regulating
either abundance or activity of chromatin machineries have also
started to emerge. Here we report the main advances in
understanding the chromatin mechanisms used by plants to
cope with solar radiation.
LIGHT PERCEPTION TRIGGERS MASSIVE
NUCLEAR REORGANIZATION

Heterochromatin Dynamics
The monitoring of nuclear architecture variations during
Arabidopsis post-embryonic cotyledon development has
unveiled a serial reorganization process during germination
and seedling establishment that relies on light perception
(Figure 2). In dry seeds, cotyledon nuclei are extremely small
while heterochromatic domains, mostly constituted of
FIGURE 1 | Sunlight absorption by Arabidopsis cell compounds. Most sunlight visible wavelengths penetrate the atmosphere, whereas harmful UV-C and part of
UV-B/A are absorbed by ozone in the atmosphere. Photosynthetic pigments, such as the carotenoids and chlorophyll a and b (Chla/b) harvest photons in the 400- to
700-nm waveband, which correspond to photosynthetically active radiations (PAR). A battery of nuclear photoreceptors sensitive to blue, red, far-red, or UV-B light
trigger specific adaptations of plant development and metabolism to the local environment. Finally, aromatic DNA bases and methylated cytosines absorb light in the
UV waveband, enhancing DNA susceptibility to genotoxic damages and mutations. Adapted from Fondriest Environmental, Inc., (2014) and from Kami et al. (2010).
January 2020 | Volume 10 | Article 1728

https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


Bourbousse et al. Plant Chromatin Catches the Sun
centromeres, pericentromeres, and silent repeat elements, such
as Transposable Elements (TEs) (reviewed in Simon et al., 2015),
are highly compacted in two to four subnuclear foci. This
peculiar nuclear phenotype may constitute a protective
mechanism to desiccation (van Zanten et al., 2011). Upon seed
imbibition, a first transition involves an extensive relaxation of
heterochromatin and moderate nuclear expansion (Figure 2;
Phase➀), which is achieved under either dark or light conditions
(Bourbousse et al., 2015). A second step occurring 3 days after
imbibition involves additional increase of nuclear size and the re-
compaction of dispersed heterochromatin regions into 8 to 10
sub-nuclear regions referred to as chromocenters (Mathieu et al.,
2003; Douet et al., 2008; van Zanten et al., 2011), a typical
organizational scheme observed in most cell types of Arabidopsis
adult plants (Fransz et al., 2002). This second step is dependent
on light signaling (Phase ➁) as the formation of conspicuous
chromocenters relies on blue light sensing by cryptochromes. In
the absence of light, heterochromatin compaction is both
inhibited by the DET1 and COP1 signal integrators (Phase ➂).
This arrest is rapidly released during de-etiolation (Phase ➃)
suggesting that nuclear development is poised prior to the
acquisition of phototrophy (Bourbousse et al., 2015).

Upon transition to adult developmental stages, Arabidopsis
nuclear architecture also undergoes several reorganizational
events driven by light signals (reviewed in van Zanten et al.,
2012). This is notably the case in rosette leaf mesophyll cells
during the transition from vegetative to reproductive growth.
Leaves integrate endogenous and environmental signals to
Frontiers in Plant Science | www.frontiersin.org 3
trigger the conversion of apical shoot meristems into flowering
meristems. Remarkably, in leaf mesophyll nuclei, most
chromocenters undergo a significant disruption a few days
before bolting with the dispersion of 5S rDNA and
pericentromeric repeats (Tessadori et al., 2007). This transient
phenomenon is developmentally controlled, as chromocenters
are restored 3 days after bolting. The decompaction process relies
on cry2-mediated blue light sensing, which therefore has an
opposite effect during this transition than during cotyledon
morphogenesis where it triggers chromocenter formation.
Flowering time is delayed when CRY2 function is impaired
(Guo et al., 1998), suggesting that a large-scale chromatin
decompaction episode is linked to the flowering transition
(Tessadori et al., 2007).

A link between light fluence rate and chromatin spatial
organization is further suggested by the observation that
exposure to low light intensity for a few days triggers the
dispersion of most chromocenters in rosette mesophyll cells
(Tessadori et al., 2009; van Zanten et al., 2010b; van Zanten
et al., 2010a). Again, this event is reversible and relies on light
signaling through cry2 and phyB photoreceptors (reviewed in
van Zanten et al., 2010a). Interestingly, this mechanistic link
might be adaptive in the wild, as population genetics analysis of
Arabidopsis thaliana accessions identified a correlation between
latitude of origin, PHYB amino acid sequence polymorphisms
and heterochromatin compaction levels in mesophyll cells
(Tessadori et al., 2009; Snoek et al., 2017). Heterochromatin
compaction might therefore be an integral part of the plant
FIGURE 2 | Light-dependent nuclear organization dynamics in cotyledons. During the first 2 days of germination, seed imbibition initiates nuclear expansion and
heterochromatin decondensation, as shown by the dispersed signal of methylated DNA immunolabeling in both dark and light conditions (Phase 1). From the third
day of germination, light perception triggers further nuclear expansion and the re-compaction of pericentromeric domains within cytologically observable
chromocenters (Phase 2), whereas in the absence of light, heterochromatin is further decondensed (Phase 3). Skotomorphogenic nuclear phenotypes can rapidly be
converted to a photomorphogenic-type organization during cotyledon de-etiolation (Phase 4). Cotyledon de-etiolation also involves the relocation of light-inducible
genes to the nuclear periphery (such as the CAB locus), and the aggregation of photoreceptors and downstream signaling components, such as phyB, COP1, PIFs,
and TZP into sub-nuclear speckles referred to as photobodies. d; days post-imbibition.
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response to short-term fluctuating light as well as to the annual
light radiation regime sensed by phytochrome photoreceptors
having evolved different sensitivities to local sunlight conditions.

Light Regulation of Sub-Nuclear Micro-
Environments
In addition to heterochromatin dynamics, Arabidopsis nuclei are
subjected to several reorganization events in response to light,
which directly impact euchromatic loci, and therefore also
protein-coding genes. A landmark study using single-locus
cytological experiments unveiled that several light-inducible
genes, such as CAB (chlorophyll a/b-binding proteins) and
RBCS (Rubisco small subunit), are re-positioned from the
interior to the periphery of nuclei during Arabidopsis
cotyledon de-etiolation (Figure 2 Phase ➃). In this context, the
physical movement of genes might hypothetically facilitate
mRNA export through nuclear pore complexes. Being
promoted by phytochrome-dependent red light sensing and
inhibited by COP1, DET1, and PIFs, this process appears to be
controlled by light signaling (Feng et al., 2014a). Still, as for
heterochromatin condensation dynamics, the functional
implications of light-dependent gene motion on transcription
or on mRNA processing and export remain to be assessed. This
could possibly be achieved by artificially tethering a given locus
to distinct sub-nuclear compartments and monitoring its
resulting transcriptional activity.

Gene repositioning is a dynamic process that echoes the rapid
relocalization of light signaling components within conspicuous
nuclear speckles, a process observed in both dicotyledonous and
monocotyledonous plants when exposed to light.More precisely,
upon photoexcitation most nuclear-localized photoreceptors,
including the five phytochromes phyA-E, UVR8, cry2, and
possibly also cry1, concentrate into nuclear bodies referred to
as “photobodies.” The function and composition of the diverse
types of photobodies remain elusive. They have been envisioned
as either subnuclear sites of light signaling, of protein
degradation or as transcription hubs (Van Buskirk et al., 2012),
three functions that might be dynamically interconnected. The
colocalization of multiple transcriptional regulators such as
COP1, PIFs, and TANDEM ZINC-KNUCKLE PLUS3 (TZP)
within nuclear microenvironments supports this scenario
(reviewed inVan Buskirk et al., 2012; Perrella andKaiserli, 2016).

Other Types of Light-Induced Nuclear
Reorganization Events
Light perception directly influences nuclear DNA content, a
feature with potential high impact on nuclear organization and
activity. Low light intensity dampens endoreduplication, for
example maintaining low ploidy levels in Arabidopsis leaves
(Cookson et al., 2006). A similar trend is at play in etiolated
hypocotyls where darkness triggers an additional endocycle
(Gendreau et al., 1997) while, conversely, cotyledon de-
etiolation engages an increase of DNA ploidy levels (Lopez-
Juez et al., 2008). This contrast illustrates the organ-specificity of
genome responses to light. DNA content and nuclear volume
Frontiers in Plant Science | www.frontiersin.org 4
being positively correlated in angiosperms (Jovtchev et al., 2006),
endoreduplication presumably allows for a rapid increase in
nucleus and cell size, which is promoted in hypocotyls during
seedling etiolation.

There is evidence that ploidy may then influence nuclear
organization and gene expression during photomorphogenesis.
Firstly, the sub-nuclear positions of chromocenters tend to vary
with ploidy level and nuclear volume in Arabidopsis pavement
cells, highly endoreduplicated nuclei having more internal
chromocenters (Poulet et al., 2017). Second, nuclei with
elevated ploidy levels display lowly condensed heterochromatin
and low chromatid cohesion (Schubert et al., 2012). Of note,
endopolyploidy potentially also influences gene expression by
gene dosage effects (Doyle and Coate, 2018). Finally, exposure to
high light intensity appears to stimulate endopolyploidy in
epidermal pavement cells of Arabidopsis and Phaseolus
(Kinoshita et al., 2008). Increasing genome copy number may
in this case allow to cope better with the mutagenic effects of UV
light exposure (Gegas et al., 2014).

Plant responses to damaging solar irradiations constitute
another type of light-related process of particular interest,
especially if considering not only the deleterious effect of UV
on DNA but also the plant capacity to use UV-B perception to
modulate photomorphogenesis (Jenkins, 2017; Yin and Ulm,
2017). Despite the presence of sunscreen components and of
efficient DNA-repair pathways induced by light, UV radiations
have now been shown to impact plant epigenomes in multiple
ways (reviewed in Kimura and Sakaguchi, 2006). The role played
by chromatin processes in plant DNA repair after UV damage
and the mechanisms of chromatin restoration after the
completion of repair have been detailed elsewhere (see for
example Donà and Mittelsten Scheid, 2015; Molinier, 2017).
On a different note, damaging doses of UV-B increase the
appearance of heritable DNA mutations with higher frequency
on 5-mC cytosines, especially in TC sequence contexts. This
highlights the influence of the epigenome on genome integrity
(Willing et al., 2016). This effect might relate to the high UV-B
absorbance by methylated pyrimidines, which potentially
enhances the formation of photoproduct dimers (reviewed in
Molinier, 2017). Vice versa, UV-C induced photolesions have
recently been shown to be a source of DNAmethylation changes
in heterochromatin (e.g. , over pericentromeric TEs)
(Graindorge et al., 2019). These findings unveil intricate links
between DNA repair factors and the accurate maintenance of
epigenome integrity.

UV exposure has further been shown to trigger large-scale
heterochromatin rearrangements in Arabidopsis (Graindorge
et al., 2019). Still, as for blue-light induced chromocenter
relaxation, their functional meaning remains unappreciated. In
mammals, heterochromatic regions appear to be particularly
prone to DNA mutations, possibly representing a peripheral
umbrella to harmful radiation for genes located in the
euchromatic interior of the nuclei (Schuster-Böckler and
Lehner, 2012; Takata et al., 2013; Smith et al., 2017). Future
studies might assess whether different plant heterochromatin
January 2020 | Volume 10 | Article 1728
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organizational patterns or variations in genome topology differ
in mutational rates.
LIGHT SIGNALING MODULATES THE
EPIGENOME LANDSCAPE

Light Signaling Controls the Abundance
of Chromatin Modifiers and Homeostasis
of Histone Marks
Landmark work by the Gray's laboratory allowed linking histone
acetylation with nucleosome occupancy and transcription at the
PetE photosynthetic gene promoter in green and etiolated shoots
of pea seedlings (Chua et al., 2001; Chua et al., 2003). From then,
an ever increasing number of studies have dissected the role
played by chromatin modifying activities in light-regulated gene
expression (reviewed in Li et al., 2012; Barneche et al., 2014;
Perrella and Kaiserli, 2016; Xiao et al., 2017; Duarte-Aké, 2019).
Accordingly, several mutants affected in the deposition or the
removal of histone post-translational modifications display
photomorphogenesis-related phenotypes. For example,
Arabidopsis mutants in the GCN5 and TAF1 histone
acetyltransferases (HAT) display shorter hypocotyls and lower
expression of light-inducible genes, and so, are hyposensitive to
light. On the contrary, knocking-out HD1 or HDA15 histone
deacetylase (HDAC) genes trigger exaggerated inhibition of
hypocotyl elongation and other light hypersensitivity
phenotypes (Benhamed et al., 2006; Liu et al., 2013). Histone
acetyltransferases such as HAF1 and HAC1 are also at play to
control gene expression and adaptive developmental responses
to UV-B signaling (e.g., plant growth inhibition, flowering time
acceleration) (Fina et al., 2017). Hence, photomorphogenesis
appears to involve a tight balance between the opposing activities
of histone acetyltransferases and deacetylases. In line with these
findings, DET1 hypomorphic mutants display a wide
deregulation of histone acetylation levels (Nassrallah et al.,
2018). A gene-specific regulatory mechanism involves the
light-controlled nucleo-cytoplasmic partitioning of the HDA15
histone deacetylase and its physical association with the
transcription factors HY5, PIF3, and NUCLEAR FACTOR-Y C
(NF-YCs) in the nucleus (Alinsug et al., 2012; Liu et al., 2013;
Tang et al., 2017; Zhao et al., 2019) (Figure 3A). Finally, a
forward genetic screen aimed at identifying novel regulators of
carbon and light signaling identified SDG8, a histone
methyltransferase responsible for maintaining high levels of
H3K36me3 towards 3′-end of many photosynthetic and
metabolic genes (Li et al., 2015).

Other than histone modifiers, the regulation of chromatin
functional states in response to light also involves chromatin
remodelers. By displacing nucleosomes or facilitating histone
exchange, these factors can modulate nucleosome positioning
and histone–DNA interactions, thereby influencing local access
to transcriptional machineries [reviewed in (Han et al., 2015)].
The importance of such regulatory mechanisms in plant
adaptations to light is illustrated by the hundreds of
Frontiers in Plant Science | www.frontiersin.org 5
photodynamic DNase/MNase Hypersensitive Sites (DHS)
identified in Arabidopsis during seedling de-etiolation or
during cell adaptation to light, which typically lie next to light-
responsive genes (Sullivan et al., 2014; Pass et al., 2017). A
member of the CHD3 family of chromatin remodelers,
PICKLE (also referred to as Enhanced Photomorphogenesis 1)
has been identified in a forward genetic screen for negative
regulators of photomorphogenesis (Figure 3B). PICKLE
accumulates and associates with the promoter of hypocotyl
elongation promoting genes in darkness, thereby preventing
deposition of the repressive Polycomb-associated histone mark
H3K27me3 (Jing et al., 2013). PICKLE interacts with the master
regulatory transcription factors HY5, PIF3, and BZR1, which
target its chromatin remodeling activity to light-responsive loci
(Jing et al., 2013; Zhang et al., 2014). Similarly, two subunits of
the SWI/SNF-type ATP-dependent family of chromatin
remodelers also show a light-dependent accumulation.
Following exposure to light, the accessory subunit BAF60 (also
named CHC1 or SWP73B) accumulates and is recruited to the
promoters of genes regulating hypocotyl elongation, possibly
antagonizing PIF activity through competitive binding onto G-
box motifs (Jégu et al., 2017). Reciprocally, abundance of the
BRAHMA SWI2/SNF2-type ATPase is lowered upon exposure
to light, thereby promoting expression of chlorophyll
biosynthetic genes. The PIF1 transcription factor physically
associates with BRAHMA, again mediating a cis-regulatory
gene repression mechanism (Zhang et al., 2017). Taken
together, these findings exemplify how light signaling pathways
target distinct chromatin remodeling machineries to operate a
tight and fine tuning of the light-responsive gene repertoire.
They also unveiled how light perception influences the
availability of chromatin machineries, a regulatory mechanism
potentially mediating large effects over the epigenome.

Correspondingly, bulk levels of histone marks are themselves
controlled during cell specification, a critical process in human
cancer (Berger, 2000; Jeusset and McManus, 2019) that emerged
in plant systems first in the context of gamete formation (Baroux
et al., 2007; She et al., 2013; He et al., 2019). For example,
a bundan c e o f l i n k e r h i s t on e v a r i a n t H1 . 3 and
monoubiquitinated histone H2B (H2Bub) is globally regulated
in Arabidopsis seedlings in response to light (Rutowicz et al.,
2015; Nassrallah et al., 2018). While the function of H1.3 gene
induction by low light remains unclear, establishment of the
H2Bub mark is thought to facilitate RNA Polymerase II
processivity across nucleosomes, notably through co-
transcriptional cycles of histone H2B ubiquitination/de-
ubiquitination (Henry et al., 2003). In Arabidopsis, H2Bub
deposition is necessary in cis for efficient inducibility of
hundreds genes during de-etiolation (Bourbousse et al., 2012).
Recent work further unveiled that the C3D complex (made of
COP10, DET1, DDB1, and DDA1) associates with an H2Bub
deubiquitination module (DUBm) that regulates H2Bub levels
over most, if not all, Arabidopsis genes (Figure 3C). Ubiquitin-
mediated proteasomal degradation of this DUBm in response
to light appears to allow for a tight control of H2Bub
homeostasis (Nassrallah et al., 2018). Low H2Bub abundance
January 2020 | Volume 10 | Article 1728
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over most genes during skotomorphogenesis might
hypothetically be linked to the globally low RNA Pol II
activity observed in etiolated cotyledons (Bourbousse et al.,
2015). These studies echo the recent report of low Polymerase-
Associated-1 (PAF1) complex subunits expression and slow
RNA Pol II elongation in dark-adapted Arabidopsis plants
(Godoy Herz et al., 2019).

In brief, besides gene-specific targeting mechanisms and
spatial rearrangements of chromatin domains, light appears to
modulate the homeostasis of several histone marks, notably
through a tight control of chromatin modifiers' availability.
Light therefore not only reshuffles chromatin states at induced
and repressed genes but also deeply modify chromatin
composition as a whole. Such genome-level chromatin changes
might enable an adjustment of the chromatin landscape to the
cell transcriptional status (Figure 3C).
Direct Paths From Light Signals to
Chromatin States
As presented in the previous sections, chromatin modifiers and
remodelers can be targeted to specific loci by the means of light-
controlled transcription factors thereby constituting direct
signaling pathways. Noteworthy, phytochromes also interact
with PIFs (Ni et al., 1998; Leivar and Quail, 2011),
Frontiers in Plant Science | www.frontiersin.org 6
cryptochromes with CIB1 and PIF4 (Liu et al., 2008; Ma et al.,
2016; Pedmale et al., 2016) and UVR8 can interact with BES1
(BRI1-EMS-SUPPRESSOR1) and BIM1 (BES1-INTERACTING
MYC-LIKE 1) (Liang et al., 2018). Profiling of the PHYA, PHYB,
CRY1, and CRY2 association to chromatin further shed light on
the genomic distribution of photoreceptors in seedlings exposed
to either white, blue, far-red, or low blue-light conditions,
respectively (Chen et al., 2014; Jung et al., 2016; Ma et al.,
2016; Pedmale et al., 2016). The reported binding sites largely
overlap with those of light-regulated transcription factors
suggesting that photoreceptors bind chromatin indirectly via
protein-protein interactions. Yet, following the first cytological
observations of Arabidopsis CRY2 association to mitotic
chromosomes (Cutler et al., 2000), this protein has been
reported to display intrinsic DNA-binding properties (Yang
et al., 2018). Finally, based on its sequence similarity to human
RCC1 (REGULATOR OF CHROMATIN CONDENSATION 1)
and on nucleosome binding assays, the UV-B photoreceptor
UVR8 has long been hypothesized to act directly on chromatin
(Brown et al., 2005; Cloix and Jenkins, 2008; Favory et al., 2009;
Binkert et al., 2016). The functional meanings of UVR8 in vitro
association to chromatin findings remain to be established. These
physical associations imply the existence of extremely short
paths linking light sensing and molecular implementation in
the epigenome.
FIGURE 3 | Light signaling controls the abundance of chromatin modifiers and the homeostasis of histone marks. (A) Light signaling modulates the sub-cellular
partitioning of HDA15, a histone deacetylase that tends to relocate to the nucleus in response to light. In darkness, low amounts of HDA15 retained in the nucleus could
target specific light-induced genes through physical association with PIF3. Under light conditions the bulk of HDA15 proteins locate in the nucleus and can associate with
NF-YC and HY5. (B) The availability of chromatin remodeler subunits is influenced by light conditions. PICKLE and BRAHMA are abundant in darkness whereas BAF60 is
expressed and stabilized under light where it may antagonize PIF4 activity. Direct interactions with key TFs of the light-signaling pathway have been demonstrated for
PICKLE (with HY5 and PIF3) and for BRAHMA (with PIF1). (C) The co-transcriptional H2Bub histone mark is more abundant over most genes in light than dark-grown
seedlings. The C3D complex associates to non-acetylated histone H2B and controls the stability of a de-ubiquitination module (DUBm), notably through targeted
ubiquitin-mediated proteolytic degradation in darkness. Modulation of H2Bub homeostasis over the epigenome may be related to dampened RNA Pol II activity in
cotyledon nuclei in darkness.
January 2020 | Volume 10 | Article 1728

https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


Bourbousse et al. Plant Chromatin Catches the Sun
In addition to photoreceptors, other nuclear light signaling
components have the capacity to associate with histones and can
therefore be considered themselves as chromatin factors.
Noteworthy, DET1 displays high affinity for non-acetylated
histone H2B both in vitro and in vivo and therefore potentially
associates to poorly transcribing genes (Benvenuto et al., 2002).
Accordingly, Arabidopsis DET1 triggers efficient transcription
inhibition when targeted to reporter genes in plants or in a yeast
heterologous system (Maxwell et al., 2003; Lau et al., 2011). Still,
it remains unclear whether DET1 repressive activity relies
directly on targeted degradation of the H2Bub DUBm at
regulated chromatin loci in cis (Nassrallah et al., 2018) and
whether that process is targeted by DET1-associated
transcription factors such as HY5 and PIFs (Osterlund et al.,
2000; Dong et al., 2014).

Being located close to chromatin, photo-excited
photoreceptors or downstream light signaling components
therefore have the potential to couple light sensing with a
functional rewiring of chromatin in situ. Such a direct coupling
between light sensing and chromatin may allow for rapid
transcriptional reprogramming, thereby resembling metazoan
nuclear receptors that combine transcription factor and ligand-
binding activities (Perissi and Rosenfeld, 2005). Additionally, the
lack of a signal amplification cascade may prevent spontaneous
activations that are usually avoided by negative feedback
regulations (Kiel et al., 2010).
Retrograde and Metabolic Signals
to Chromatin?
Besides the direct perception of light by nuclear photoreceptors,
photosynthetic light harvesting might also impact plant nuclear
organization and chromatin states through more indirect paths.
Photon harvesting by photosystem antennae directly influences
the energetic and redox status of plant cells (Eberhard et al.,
2008). Plastids can therefore act as environmental sensors and
communicate information about ambient light conditions to the
nucleus, notably through retrograde signaling mediated by
metabolite and protein signals (Chan et al., 2016). The extent
to which retrograde signaling impacts on epigenome
organization and function remains largely unexplored. Still,
identification of a nuclear topoisomerase VI (Topo VI; Yin
et al., 2002) as being essential for the activation of nuclear
genes in response to a plastid-derived photo-oxidative stress
exemplifies the importance of chromatin-level control of nuclear
responses to high light (Šimková et al., 2012). Loss of Topo VI
subunits leads to heterochromatin disorganization (Kirik et al.,
2007), as observed under dark and low light conditions. In
addition, several chromatin modifying enzymes catalytic
activity directly relies on the availability of substrate
metabolites, such as acetyl-CoA, S-adenosyl methionine (SAM)
and adenosine tri-phosphate for histone acetyltransferases,
histone/DNA methyltransferases and chromatin remodeling
ATPases, respectively. In mammals, direct coupling between
redox homeostasis and chromatin state involves the histone
deacetylases from the Sirtuin family (reviewed in Suganuma
and Workman, 2018), whose activity requires NAD+ as a
Frontiers in Plant Science | www.frontiersin.org 7
cofactor. In plants as well, an Arabidopsis Sirtuin-like protein,
AtSIRT1, has recently been involved in stress tolerance and
metabolic regulations (Liu et al., 2017a). Further investigation
is needed to identify how metabolic and redox cellular status
impact on chromatin organization and function. In particular,
much remains to be explored on the influence of plastid
biogenesis and photosynthesis on the chromatin landscape
during cell adaptations to environmental changes.
LINKING VARIATIONS IN LOCAL
CHROMATIN STATUS WITH 3D RE-
ORGANIZATION EVENTS

Temporal correlations between light-induced gene motion and
chromocenter formation suggested that genome 3D
reorganization is an integral part of Arabidopsis de-etiolation
(Barneche et al., 2014; Kaiserli et al., 2018). Gene re-positioning
or photobody formation could be facilitated when chromatin is
globally decompacted. In this scenario, a relaxed chromatin
status might retain high flexibility to specify different genome
topologies in response to environmental conditions that plant
may predictably face. Accordingly, heterochromatin
decompaction is an evolutionarily conserved feature common
to undifferentiated eukaryotic cells, as shown for mammalian
embryonic stem cells or plant protoplasts (Probst and Almouzni,
2011). Dynamic control of the chromatin association of light
signaling components might not only allow for targeted gene
regulation but potentially also modulate nuclear organization.

As described above, many light signaling components and
transcription factors relocate within photobodies upon
photoreceptors excitation. Concentrating light transcriptional
regulators within a small number of nuclear micro-domains
might functionally organize genes that are similarly regulated
by light but distantly encoded in the genome. In the absence of
clear evidence for “transcription factory” foci in plant nuclei,
determining whether photobodies actually correspond to
transcriptional foci and whether they contain light-regulated
genes might help better understanding the spatial regulation of
transcription in plant systems.

Still, although higher-order heterochromatin dynamics
usually coincide with genome expression reprogramming
events, we lack information on the extent to which
chromocenter dispersion in the nucleoplasm actually relies, at
the molecular level, on physical changes in the structure or
composition of heterochromatic domains. We also do not know
how heterochromatin relaxation events functionally impact on
euchromatic domains and in particular on protein-coding genes
(Feng et al., 2014b; Liu et al., 2017b). Generating high-resolution
maps of genome topological variations in response to changing
light regimes therefore represents a critical step to characterize
gene motion in cell types with distinct light-response
specific i t ies . The implementat ion of chromosomal
conformation capture derived approaches (3C; Bickmore and
van Steensel, 2013), super-resolution microscopy or adapted
chromatin profiling techniques (Re-ChIP, ChIA-PET, etc)
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applied to peripheral components as in (Bi et al., 2017) or to
specific nuclear regions will surely boost these research efforts in
the coming years.

PERSPECTIVES

Recent findings unveil that cell differentiation during many plant
adaptive responses to light involves large and rapid
rearrangements of the epigenome landscape and of genome
topology in photosynthetic cells. Still, the functional impact of
chromocenter formation, photobody dynamics, and gene re-
positioning on transcription remain speculative in most
instances. It is also currently unclear whether heterochromatin
reorganization and gene motion are mechanistically or
functionally interconnected. Regarding Arabidopsis de-
etiolation case studies, it remains to be assessed whether
nuclear architectural adaptations occurring upon the initial
seedling adaptation to light are linked to the dramatic changes
in metabolic activity following chloroplast biogenesis, to cell
cycle control, to the process of cell differentiation itself or more
directly to the cell transcriptional regime. Vice versa, chromatin
architecture dynamics may also impact photon transmission
through plant cell nuclei. An inverted nuclear organization
with heterochromatin being concentrated toward the interior
of the nucleus indeed constitutes a crucial adaptation of rod cells
for nocturnal lifestyle, thereby allowing a more efficient
channeling of light (Solovei et al., 2009; Solovei et al., 2013).
Whether light-regulated heterochromatin rearrangements can
allow for biophysical adaptations favoring photon penetration
into certain plant cell layers is largely unexplored. Finally, the
potential capacity of light to trigger long-term somatic adaptive
Frontiers in Plant Science | www.frontiersin.org 8
responses though priming mechanisms (transcriptional memory)
or through trans-generational inheritance of UV-regulated
epigenetic processes remain poorly investigated as compared to
other plant stresses (Müller-Xing et al., 2014).
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