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ABSTRACT

Context. Frequency-dependent and hybrid approaches for the treatment of stellar irradiation are of primary importance in numerical
simulations of massive star formation.
Aims. We seek to compare outflow and accretion mechanisms in star formation simulations. We investigate the accuracy of a hybrid
radiative transfer method using the gray M1 closure relation for proto-stellar irradiation and gray flux-limited diffusion (FLD) for
photons emitted everywhere else.
Methods. We have coupled the FLD module of the adaptive-mesh refinement code RAMSES with RAMSES-RT, which is based on
the M1 closure relation and the reduced speed-of-light-approximation. Our hybrid (M1+FLD) method takes an average opacity at the
stellar temperature for the M1 module, instead of the local environmental radiation field. Due to their construction, the opacities are
consistent with the photon origin. We have tested this approach in radiative transfer tests of disks irradiated by a star for three levels of
optical thickness and compared the temperature structure with the radiative transfer codes RADMC-3D and MCFOST. We applied it
to a radiation-hydrodynamical simulation of massive star formation.
Results. Our tests validate our hybrid approach for determining the temperature structure of an irradiated disk in the optically-thin (2%
maximal error) and moderately optically-thick (error smaller than 25%) regimes. The most optically-thick test shows the limitation of
our hybrid approach with a maximal error of 65% in the disk mid-plane against 94% with the FLD method. The optically-thick setups
highlight the ability of the hybrid method to partially capture the self-shielding in the disk while the FLD alone cannot. The radiative
acceleration is ≈100 times greater with the hybrid method than with the FLD. The hybrid method consistently leads to about +50%
more extended and wider-angle radiative outflows in the massive star formation simulation. We obtain a 17.6 M� star at t' 0.7τff , while
the accretion phase is still ongoing, with a mean accretion rate of '7× 10−4 M� yr−1. Finally, despite the use of refinement to resolve
the radiative cavities, no Rayleigh–Taylor instability appears in our simulations, and we justify their absence by physical arguments
based on the entropy gradient.
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1. Introduction

Massive stars shape the dynamical and chemical evolution of
galaxies because of their powerful feedback in radiation, winds,
explosions in supernova, and metal-enrichment. However, their
formation remains a long-standing problem. Observationally,
massive stars are embedded in dense clouds; they form on
timescales much shorter than their low-mass counterpart (Motte
et al. 2007) and are likely to be located at distances larger than
1 kpc from us, which makes their formation process challeng-
ing to observe. Two major scenarios are under active studies:
the competitive accretion model and the turbulent core accretion
model. In the competitive accretion model (Bonnell et al. 2004),
all stars form in clusters and stars located at the center of the
gravitational potential gain more mass and eventually become
massive stars, via accretion and possibly merging processes. In
this scenario, the initial-mass function (IMF) is built-up natu-
rally. On the other hand, the turbulent core model (McKee &
Tan 2003) is an extension of the low-mass star formation sce-
nario. A massive and turbulent prestellar core gravitationally
collapses while fragmentation is limited by turbulent, radiative,
and magnetic support (e.g. Commerçon et al. 2011a). The IMF is

therefore linked to the prestellar core mass function since more
massive stars form in more massive cores. For reviews on the-
ories of massive star formation, we refer the reader to Beuther
et al. (2007), Zinnecker & Yorke (2007), Tan et al. (2014), and
Krumholz (2016).

There is no consensus regarding the accretion process and a
way to probe it is to study outflows. Indeed, magnetic outflows
are often associated with accretion (Blandford & Payne 1982;
Pelletier & Pudritz 1992) as they remove the angular momentum
from an accretion disk and they do not require strong magnetic
fields. It is then possible to study the physics of accretion via
the outflow properties (Pudritz et al. 2006) and in particular
the accretion rate from the outflow velocity (Pelletier & Pudritz
1992). In the case of massive stars, they can act as a channel
for radiation to escape. Moreover, accretion modes differ from
one scenario to another. Disk accretion is more likely to occur
in the turbulent core accretion model, with high accretion rates
(Ṁ∼10−4−10−3 M� yr−1; McKee & Tan 2003). More chaotic
accretion mechanisms are associated with the competitive accre-
tion model or with models including accretion via filaments.
Recent observations by Goddi et al. (2018) reveal signatures
of outflows whose direction varies through time. If they are
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perpendicular to the accretion disk (Blandford & Payne 1982)
this indicates that the plane of accretion changes with time,
favoring accretion via filaments and competitive accretion. The
study of outflows can indeed help to distinguishing the accre-
tion modes and these questions highlight the need for realistic
outflow models (magnetic and radiative) in numerical simula-
tions. Regarding the radiative outflows, this means the use of
a radiative transport method well-suited in the optically-thin
regime. Current and past studies of massive star formation have
mainly focused on its radiative aspects. In a 1D spherically-
symmetric approach, the radiative force of a massive (proto)star
is expected to counteract gravity up to the point where accretion
is stopped as computed analytically (Larson & Starrfield 1971)
and then numerically (Kuiper et al. 2010a). Their results showed
that the highest mass reached was 40 M�. Two-dimensional and
3D numerical simulations have permitted the emergence of a
new accretion mode, the “flashlight effect” (Yorke & Sonnhalter
2002) which allows the radiation to escape freely in the poles
while material is accreted through the disk (Krumholz et al.
2009; Kuiper et al. 2010a; Rosen et al. 2016; Harries et al. 2017).

Monte-Carlo approaches are often used for solving radia-
tive transfer problems for their accuracy but they are particularly
expensive and their computational time scales with the number
of radiative sources. This justifies the use of fluid description
models such as the flux-limited diffusion (FLD) and the M1
methods for radiation-hydrodynamics (RHD). The first RHD cal-
culations relied on the FLD closure relation for its simplicity and
advantageous computational cost. However, it is more suited for
the optically-thick regime while the use of a flux-limiter corrects
the propagation speed in the optically-thin regime (Levermore &
Pomraning 1981). In addition, the FLD method does not per-
mit to capture shadows behind very optically-thick gas. In the
context of massive star formation, the flashlight effect is due to
the nonisotropic character of the radiation field because the opti-
cal thickness is very different in the disk direction and in the
cavities direction. Therefore, numerical developments regarding
radiative transfer have been made, especially in the optically-thin
limit. Recent approaches treat stellar irradiation in a more consis-
tent way with ray-tracing (Kuiper et al. 2010b; Kim et al. 2017),
long-characteristics (Rosen et al. 2017), Monte-Carlo radiative
transfer (Haworth & Harries 2012; Harries et al. 2017, who
took advantage of the independency between photon packets to
parallelize efficiently the Monte-Carlo step), and the M1 clo-
sure relation (Levermore 1984; González et al. 2007; Aubert
& Teyssier 2008; Rosdahl et al. 2013; Kannan et al. 2019; this
work).

Multi-dimensional simulations using the FLD approximation
or hybrid approaches show stars with mass above the 40 M� limit
obtained in 1D: with the FLD method only, Yorke & Sonnhalter
(2002) and Krumholz et al. (2009) form a star of ≈42 M� from a
120 M� and 100 M� prestellar core, respectively. The additional
treatment of direct irradiation in hybrid approaches has been
shown not to impact the stellar mass significantly: Klassen et al.
(2016) have obtained stars as massive as 43.7 M� from an initial
mass of 100 M�, the simulations of Rosen et al. (2016) show a
40 M� star and Kuiper et al. (2010a) obtain a 56.5 M� star from
a 120 M� prestellar core in several free-fall times. Most of these
works put lower-limit on the stellar mass because the accretion
phase is not finished yet at the end of the run (except for Kuiper
et al. 2010a). These investigations have also noted the forma-
tion of polar cavities dominated by the stellar radiative pressure,
enhanced by the particular treatment of stellar irradiation.

In addition, Krumholz et al. (2009) and Rosen et al. (2016)
observe the onset of radiative Rayleigh–Taylor instabilities in

the radiation-pressure-dominated cavities that feed the star-disk
system and help accreting mass onto the central star via the flash-
light effect. However, these instabilities have not been observed
in the work of Kuiper et al. (2010a) and Klassen et al. (2016).
Kuiper et al. (2012) argue that a gray FLD model, as used in
Krumholz et al. (2009), underestimates the radiation force in
the cavity and can artificially lead to the apparition of these
instabilities. With a frequency-dependent hybrid model and a
Cartesian grid, Klassen et al. (2016) did not obtain such insta-
bilities while Rosen et al. (2016) did. The difference in their
results can be explained by the use of refinement by Rosen
et al. (2016) to resolve the seeds of the instabilities, the small-
est modes being the more unstable (Jacquet & Krumholz 2011).
Contrarily, the spherical grid without additional refinement in
the cavities used by Kuiper et al. (2012) would not permit to
refine them. It is thus unclear yet whether this mechanism is
at work during the formation of massive stars. Meanwhile, it is
clear that disk-accretion is sufficient to reach masses consistent
with the massive stars observed. Our hybrid method, imple-
mented in the Cartesian adaptive-mesh refinement (AMR) code
RAMSES (Teyssier 2002) help us to establish the importance of
these accretion mechanisms by capturing the nonisotropy of the
radiation field.

This paper is organized as follows. Section 2 presents the
equations of the flux-limited diffusion method and the M1
method, along with their coupling and implementation in the
RAMSES code. We present the tests and the validation of our
hybrid approach in Sect. 3 and its application to the collapse of
a massive prestellar core leading to the formation of a massive
star in Sect. 4. We discuss our results in Sect. 5

2. Methods

In this section, we present the equations of the hybrid radiative
transfer approach and its implementation: the M1 method for the
stellar irradiation and the flux-limited diffusion method for the
dust emission.

2.1. Coupling flux-limited diffusion and M1

The FLD method (Levermore & Pomraning 1981) and the M1
method (Levermore 1984) are fluid descriptions of the radiation
field. They are based on moments of the equation of radiative
transfer, that is, the equation of conservation of the radiation spe-
cific intensity Iν(x, t; n) with the propagation, the absorption and
the emission (Mihalas 1984)

1
c
∂Iν
∂t

+ n · ∇Iν = −κνρIν + ην. (1)

Here, Iν(x, t; n) is the amount of energy of a photon beam at
a given position x and time t, in direction n and per unit fre-
quency. c is the speed of light, κν is the extinction coefficient
(absorption and scattering contributions), ρ is the local density
and ην is the emission coefficient. The sum of dust and gas con-
tributions to the medium opacity weighted with the dust-to-gas
ratio are encapsuled in κν. We assume local thermodynamical
equilibrium (LTE) and do not consider scattering (see the justi-
fication in Appendix A), hence the emission coefficient ην is a
source function proportional to the Planck function Bν(T ) and
the extinction coefficient κν is just an absorption coefficient.
Equation (1) must be solved at each hydrodynamical timestep to
evolve the radiation field, which still depends on six variables
(x, n, ν). In addition, we want to couple it to hydrodynamics.
This motivates the need for taking moments of the equation of
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radiative transfer. Hence we lose some of the angular information
but it reduces the number of variables to four, at each timestep.
The radiative energy density Eν, the radiative flux Fν and the
radiative pressure tensor Pν are defined as the 0th, 1st and 2nd
moments of the radiative intensity Iν, respectively.

Each system of moment equations involves the ith and the
(i + 1)th moments, hence we need a closure relation. The FLD
scheme is based on the diffusion approximation, which is suited
for high optical depths, when photons propagate in a random
walk in the material (e.g., in stellar interiors). It has been com-
monly used as a first step to introduce radiation into hydrody-
namical codes (Krumholz et al. 2007; Kuiper et al. 2008; Tomida
et al. 2010). In the FLD model, the equation to be solved is the
equation of conservation of the radiative energy. Once integrated
over all frequencies (often called a gray approximation) it gives

∂Er

∂t
− ∇ ·

(
cλ
κR ρ
∇Er

)
= κP ρc

(
aT 4 − Er

)
, (2)

where Er is the frequency-integrated radiative energy, λ is the
flux-limiter and is built to recover the right propagation speed in
optically-thin and -thick media (Levermore & Pomraning 1981).
The opacities are given by κP and κR, which are are Planck’s
and Rosseland’s mean opacities, respectively. Thermal radiation
is modeled as the Planck function B(ν,T ), therefore under the
gray model Planck’s and Rosseland’s opacities are respectively
defined as

κP =

∫ ∞
0 κνB(ν)dν∫ ∞

0 B(ν)dν
, (3)

and

κR =

∫ ∞
0

∂B(ν,T )
∂T dν∫ ∞

0
1
κν

∂B(ν,T )
∂T dν

, (4)

where the temperature derivatives appear from the chain rule
applied to ∇B. The aT 4 term in Eq. (2) arises from the integral
of the Planck function over all frequencies, with a the radiation
constant. We approximate the mean opacity of the radiative
energy term as the Planck mean opacity.

On the other hand, with the M1 method we take the
zeroth and first moments of the equation of radiative transfer
(Levermore 1984). Within the M1 method we obtain the follow-
ing system for the radiative energy and flux conservation, in the
gray approximation as well

∂Er

∂t
+ ∇ · Fr = −ρκPcEr + Ė?

r ,

∂Fr

∂t
+ c2∇ · Pr = −ρκPcFr,

(5)

where Ė?
r is the rate of radiative energy injected from stellar

sources. Fr and Pr are the frequency-integrated radiative flux and
pressure respectively.

One main asset is that the directionality of the photons beam
is well-retained. The M1 method is able to model shadows to
some extent (see González et al. 2007), in an irradiated accretion
disk for instance, while FLD is not. In addition, as a moment
method the computing cost does not scale with the number of
sources.

Our goal is to take advantage of both methods, that is,
the FLD method for an optically-thick medium and M1 for
irradiation. Both FLD and M1 methods described above can

involve several groups of photons or only one with frequency-
averaged opacities. In our study however we restrict ourselves to
one group of photons treated with each method.

In massive star formation simulations the dynamical influ-
ence exerted by the radiative feedback is of main importance as
well as the thermal structure of the accretion flow (e.g., for frag-
mentation). However, doing so requires to retain to some extent
the directionality of the photons emitted by the star to compute
the direct radiative force. Breaking this isotropy is consistent
with probing nonisotropic modes of accretion (disk or filaments).
Secondly, it requires to distinguish the opacities between stellar
photons, which have a UV-like energy and relatively high opaci-
ties, and photons emitted by the dust, which have a IR-like energy
and relatively low opacities.

Our method is to inject the stellar photons into the group of
photons treated with the M1 scheme. The gray opacity used with
the M1 corresponds to the Planck mean opacity at the stellar tem-
perature, κP(T?), written κP,? for the sake of readability. Once
these photons are absorbed by the medium they are depleted
from the M1 group as they heat the gas. The gas reemission is
treated with the FLD method. In a first approach we do not deal
with ionization states and leave this to further work. The set of
equations that are to be solved are

∂EM1

∂t
+ ∇ · FM1 = −κP,? ρcEM1 + Ė?

M1,

∂FM1

∂t
+ c2∇ · PM1 = −κP,? ρcFM1,

∂Efld

∂t
− ∇ ·

(
cλ
κR,fld

∇Efld

)
= κP,fld ρc

(
aT 4 − Efld

)
,

Cv
∂T
∂t

= κP,? ρcEM1 + κP,fld ρc
(
Efld − aT 4

)
,

(6)

where Ė?
M1 is the stellar radiation injection term, and κP,?ρcEM1

couples the M1 and the FLD methods via the equation of evolu-
tion of the internal energy. We use the ideal gas relation for the
internal specific energy ε = CvT where Cv is the specific heat
capacity at constant volume. This equation closes the system and
is used to evolve the gas temperature together with the radiative
quantities.

2.2. Radiative acceleration

In addition of improving the thermal coupling between stellar
irradiation and gas, our implementation is meant to affect the
gas dynamics via a more accurate and less isotropic approach
for the radiative acceleration than the FLD approximation thanks
to the equation of evolution of the stellar radiative flux. We are
interested in comparing the radiative acceleration with the hybrid
method and with the pure FLD method.

In the frame of RHD (for the full expression of RHD
equations we refer the reader to Mihalas 1984), the radiative
acceleration at a given frequency is equal to

arad,ν = κνFν/c. (7)

However, gray FLD and M1 methods do not share the same
expression for the radiative flux. On one hand, the M1 model
includes the Planck mean opacity as the flux-averaged opacity –
which means that momentum is transferred each time a photon
is absorbed – so the radiative acceleration is given by

arad,M1 = κP,?FM1/c. (8)
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On the other hand, the gray radiative acceleration in the FLD
approximation is given by

arad,fld = −λ
ρ
∇Efld. (9)

Taking the asymptotic values of λ into account (see
Levermore 1984), we get

∥∥∥arad,thin
∥∥∥ = κREfld in the limits of low

optical depth and arad,thick = 1
3ρ∇Efld for high optical depth.

We recall that κR is a harmonic mean which favors low
absorption bands while κP is an arithmetic mean which favors
high absorption bands. As a consequence, we expect a higher
radiative acceleration with the hybrid method than with the FLD
method.

2.3. Implementation

The RAMSES code (Teyssier 2002) is a 3D adaptive-mesh refine-
ment Eulerian code. We use a version of RAMSES which has
been widely used for star formation simulations (Commerçon
et al. 2011a, 2012; Joos et al. 2012; Hennebelle et al. 2016; Vaytet
et al. 2018).

The hydrodynamical solver of RAMSES relies on finite vol-
ume methods (variables are volume-averaged over the cell) and a
second-order Godunov method is used to evolve hydrodynamical
variables. This code includes the FLD (Commerçon et al. 2011b,
C11 hereafter) and the M1 method within RAMSES-RT (Rosdahl
et al. 20131, R13 hereafter), both coupled to the hydrodynamics.
For the FLD method, a time-splitting approach is performed. A
predictor-corrector MUSCL scheme is used, where the predictor
step is made under the diffusion approximation so the radiative
pressure is isotropic and nonisotropy is taken into account in the
corrector step. The hyperbolic part of the FLD solver relies on
the second-order Godunov scheme of RAMSES and fluxes are
estimated with an approximate Riemann solver (Lax-Friedrich,
HLL, HLLD, etc.). The diffusion and radiation-matter coupling
are handled in the implicit part of the time-splitting scheme.
The diffusion part of the FLD solver is second-order accurate in
space. The M1 module estimates fluxes with a Riemann solver
(HLL or GLF). In this work we use the GLF solver because it
captures better the isotropy of stellar radiation than HLL, and
the reduced flux approximation for the direct radiative force (see
Appendix B of Rosdahl et al. 2015 and discussion in Hopkins &
Grudić 2019).

The radiative transfer puts a heavy constraint on the timestep
because the Courant-Friedrich-Lewy (CFL) condition forbids
the propagation of signals through more than one cell in one
timestep, for explicit schemes. For the hydrodynamics this speed
is the sound speed but for radiative transfer this is the speed
of light and this would impose a timestep ∼1000 times shorter.
Therefore, both C11 with the FLD method and R13 with the M1
scheme have used a workaround.

On one hand, the FLD solver for diffusion and radiation-
matter coupling is implicit and therefore is unconditionally
stable. The system composed of the internal energy and the
radiative energy equations in their discretized form leads to the
inversion of a matrix computed with the conjugate gradient or
biconjugate gradient algorithm, in the case of multigroup radia-
tive transfer (González et al. 2015). The number of iterations
to converge scales with the number of cells. We note that the
isotropic radiative pressure contributes to the total pressure in
1 They express quantities in terms of photon number densities and
consider several photo-absorbing species (H I,He I and He II) while we
focus on a dust-and-gas mixture.

the explicit solver of RAMSES, which therefore must satisfy the
CFL condition. As a consequence, the radiative pressure must be
taken into account when computing the timestep allowed by the
CFL condition (Commerçon et al. 2011b).

On the other hand, the M1 solver is fully explicit with a
first-order Godunov scheme, thus it obeys the CFL condition.
The trick used here is the reduced speed-of-light approximation
(Gnedin & Abel 2001). In this approximation, the propagation of
light is not restricted by the speed of light but by the speed of the
fastest wave, which is the speed of ionization front in the origi-
nal paper and the fastest hydrodynamical speed in our case. An
additional subcycling method relaxes this constraint. This leads
to a timestep set by the hydrodynamical CFL condition.

The injection of energy from the stellar source into the M1
photons is made via a sink algorithm (Bleuler & Teyssier 2014).
In this work, we retrict ourselves to one stellar source for the M1
photons. The M1 module ensures the propagation and absorption
of the stellar radiation while the FLD module deals with the heat-
ing by the stellar radiation and treats the reemission. We test the
accuracy of the hybrid approach with respect to the FLD mod-
ule alone, since it was used in previous massive star formation
calculations with the RAMSES code (Commerçon et al. 2011a).

3. Numerical tests

We test the hybrid method in a pure radiative transfer case (i.e.,
no hydrodynamics): a static disk irradiated by a star. We compare
the temperature structure obtained with results from Monte-
Carlo radiative transfer codes. We explore three levels of optical
thickness integrated along the disk mid-plane: τ = 0.1, τ = 100
and τ = 103. The parameters and results are summarized in
Table 1. We refer the reader to Appendix B for performance tests.

3.1. Optically-thin and moderately optically-thick regimes:
Pascucci’s test

3.1.1. Physical and numerical configurations

The first test we have performed is taken from Pascucci et al.
(2004) and consists of a star irradiating a static disk made of
dust and gas. We use it to probe the behavior and accuracy
of our method in the optically-thin and moderately optically-
thick regimes. In particular, we compare our results once the
temperature structure is converged with respect to time with
those obtained with Monte-Carlo RT codes such as RADMC-3D
(Dullemond et al. 2012) and MCFOST (Pinte et al. 2006).

This is a 2D test of a static flared disk of a given analytical
profile for the gas density, depending on the cylindrical radius r
and on the vertical height z. The disk extends from rin = 1 AU to
rout = 1000 AU. The density ρ(r, z) in cylindrical coordinates is
given as

ρ(r, z) = ρ0 f1(r) f2(r, z), (10)

where ρ0 is the density normalization and is linked to the only
free-parameter, the integrated optical-depth throughout the mid-
plane of the disk, τν =

∫ rout

rin
κνρ(r, z = 0) dr. The two functions f1

and f2 are given by

f1(r) =

(
r
rd

)−1

, (11)

and

f2(r, z) = exp

−π4
(

z
h(r)

)2 , (12)
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Table 1. Results from pure radiative transfer tests.

Ref. τ T? (K) Method (∆T )max,r (%)

Pascucci et al. (2004) 0.1 5800 FLD 62
Hybrid 2

0.1 15 000 FLD 65
Hybrid 3

Pascucci et al. (2004) 100 5800 FLD 36
Hybrid 25

100 15 000 FLD 57
Hybrid 31

Pinte et al. (2009) 103 4000 FLD 94
Hybrid 65
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Fig. 1. Frequency-dependent opacities and blackbody spectra for Tdisk =
300 K and T? = 5800 K. Opacities are absorption (blue pluses), scat-
tering (red crosses) and extinction (black dots) coefficients for the
dust-and-gas mixture used in the Pasccuci test. The table contains 61 fre-
quency bins and data are taken from Draine & Lee (1984). Apart from
the broad opacity features at about 10 and 20 µm, which correspond
to Si-O vibrational transitions, the opacity generally increases with the
photon frequency. The opacity at stellar-like radiation frequencies is
generally greater than at disk-like radiation frequencies.

where the flaring function is

h(r) = zd

(
r
rd

)1.125

. (13)

In this setup, rd = rout/2 = 500 AU and zd = rout/8 = 125 AU
are the scale-radius and the scale-height. The star is not resolved
but its luminosity is based on its physical radius and temperature.
In this test, it has a radius R? = 1 R� and can have two possible
surface temperature: T?,1 = 5800 K and T?,2 = 15 000 K.

The integrated optical depth (for extinction, as in the liter-
ature) is taken to be either τ = 0.1 or τ = 100 at 550 nm to
probe the optically-thin and moderately optically-thick regimes,
respectively. The dust-to-gas mass ratio is equal to 0.01. Dust is
made of spherical astronomical silicates of radius 0.12 micron
and density of 3.6 g cm−3. Frequency-dependent dust opacities
are taken from Draine & Lee (1984) as in Pascucci et al. (2004)
and are displayed in Fig. 1. In these setups we only take the
absorption into account and do not consider scattering. The cor-
responding Planck and Rosseland mean opacities used in the
gray M1 and FLD modules are displayed in Fig. 2. We recall
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Fig. 2. Planck’s (blue dashed curve) and Rosseland’s (orange dot-
dashed curve) mean opacities, as a function of temperature in the
Pascucci setup.

that we take the M1 absorption coefficient as the Planck mean
opacity at the stellar temperature, κP (T?).

Boundary conditions are chosen to be a fixed temperature
of 14.8 K and a density floor of 10−23 g cm−3. The same den-
sity floor is applied between the star and the disk edge to mimic
the vacuum that RADMC-3D and MCFOST strictly apply
since their respective cylindrical and spherical grids begin at Rin.
The 14.8 K temperature is applied throughout the computational
domain as initial condition and is at equilibrium with radiation.

We run the simulations with AMR levels between 5 and 14,
which results in a finest resolution of ∆x = 0.12 AU where ∆x
is the cell width. This makes possible to have several (≈9) cells
between the star and the disk edge and the star to have a negligi-
ble size with respect to the disk thickness (≈0.01 AU against
≈0.04 AU for the disk height at rin). Secondly, it permits to
resolve several times the mean free-path at the disk inner edge:
the local optical depth is κP ρmax ∆x≈ 0.15 < 1, where ρmax is the
density at the disk inner edge for the case τ = 100. Refinement is
performed on the density gradient so that the disk inner edge is
at the highest refinement level. We consider that the temperature
structure is converged when the relative change between succes-
sive outputs decreases below 10−4 (see Ramsey & Dullemond
2015).

3.1.2. Temperature structure

The RAMSES grid is Cartesian while the grids of MCFOST
and RADMC-3D are cylindrical and spherical, respectively.
Therefore, we interpolate temperature values on their grids to
compute the relative error at the location on the RAMSES grid.
Figure 3 plots the gas temperature in the disk mid-plane against
the x-axis for the most optically-thin case, τ = 0.1, once the tem-
perature structure is converged with respect to time. The location
is given by the distance to the disk inner edge, r − rin. For T?,1
and T?,2 the FLD run produces an important error through-
out the disk mid-plane, up to ≈62% and ≈65%, respectively,
and always underestimates the temperature. On the opposite, the
hybrid method is quite accurate with a maximal error of ≈2%
while RT codes (MCFOST and RADMC-3D) agree within 1%
in this test (in accord with Pascucci et al. 2004). This impor-
tant difference between FLD and hybrid methods comes from
the regime of validity of each method: the FLD is not well-suited
for optically-thin media. In the hybrid method, since there is not
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Fig. 3. Radial gas temperature profiles in the mid-plane of the disk following the test of Pascucci et al. (2004) for τ = 0.1. We compare the gas
temperature computed using MCFOST (black dotted-line) and RADMC-3D (red dashed-line), the hybrid method (M1+FLD, blue dots) and the
FLD method alone (orange dots) in RAMSES. Left: central star temperature T?,1 = 5800 K; right: T?,2 = 15 000 K.
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Fig. 4. Same as Fig. 3, but for τ = 100.

much absorption because of the low optical-depth, the M1 mod-
ule is mainly at work and is adapted to optically-thin media (as
tested in Rosdahl et al. 2013), which justifies its good accuracy.

For direct irradiation, the Planck mean opacity in the FLD
implementation is computed at the local temperature even
though the radiation has been emitted by the star. A direct con-
sequence is that the stellar radiation is absorbed by the disk with
an opacity coefficient computed at the disk temperature, which is
much lower than the stellar temperature. As the opacity increases
with the temperature (see Fig. 2), the absorption opacity with the
FLD is lower and hence the temperature is lower than that given
by RT codes and by the hybrid approach. The situation worsens
from T?,1 to T?,2 at the disk edge and the error increases from
≈30 to ≈60%. It also illustrates the need for a better approach for
treating massive stars irradiation.

The left panel of Fig. 4 shows the radial temperature pro-
file in the disk mid-plane for the moderately optically-thick case,
τ = 100, and for T?,1. The error made by the hybrid method is
higher than for the τ = 0.1 case and reaches a maximal value of
≈25% whereas the FLD method alone makes a maximal error
of ≈36%. Also, the error made by the hybrid method is quite
uniform with respect to the error made by the FLD method
alone. For T?,1 and T?,2 (left and right panels of Figs. 3 and 4,

respectively), the FLD method underestimates the temperature
between the star and the disk edge because the medium is opti-
cally thin and because of the Planck opacity considered, as
explained above. For T?,2, both methods converge toward a sim-
ilar temperature at large radii. Absorption is stronger here than
in the most optically-thin case, and stronger than for T?,1 (see
Fig. 2), so the M1 photons are quickly absorbed and the FLD
module of our hybrid method is at work. Therefore a significant
error is expected from the gray opacity employed in the FLD
module of the hybrid method. Indeed, the temperature varies
significantly throughout the disk (between ≈20 and 350 K for
T?,1 and between ≈20 and 1000 K for T?,2). As a consequence,
a disk cell is crossed by photons of very different frequencies
and the gray approach induces errors. Conversely, the frequency-
dependence of RADMC-3D method permits one to distinguish
the photons that are quickly absorbed (the most energetic ones)
from those at lower energy that penetrate the disk more deeply
and contribute to the disk heating at larger radii.

To examine the behavior of both methods with respect to
the nonisotropy of the setup, we plotted the vertical temperature
profile at a cylindrical radius of 20 AU (Fig. 5). This visualiza-
tion is important for this type of tests, because an optically-thick
disk produces self-shielding in the mid-plane and we expect
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Fig. 5. Vertical gas temperature profiles at a cylindrical radius of 20 AU, following the test of Pascucci et al. (2004). We compare the gas temperature
computed using MCFOST, the hybrid method (M1+FLD) and FLD alone in RAMSES for T?,1, τ = 0.1 (left) and τ = 100 (right).

the hybrid method to capture it better than the FLD method
(González et al. 2007). Here we take the temperature given by
MCFOST rather than RADMC-3D because its grid is cylin-
drical (and not spherical) and thus errors of interpolation are
avoided. The left panel of Fig. 5 shows the temperature profile
for the most optically-thin case, τ = 0.1. No self-shielding is
expected and the temperature should decrease slowly as the verti-
cal height increases. Such a behavior is obtained with MCFOST
as well as with the hybrid method. The temperature obtained
with the FLD method is uniform with z, which is likely due to the
isotropic nature of the FLD method. The relative error is compa-
rable to the one in the radial profile: up to ≈47% with the FLD
method and less than 1% with the hybrid approach.

On the right panel of Fig. 5, τ = 100, and MCFOST gives a
lower temperature in the mid-plane than for τ = 0.1, as expected.
Conversely, the FLD method does not capture at all the non-
isotropic nature of the radiation onto the irradiated disk: the
temperature is fairly uniform. The hybrid method reproduces
partly this feature, even though the error can be as large as ≈20%.

We conclude that the FLD method is not capable of repro-
ducing the temperature profile in the optically-thin and moder-
ately optically-thick regime. The hybrid method is very accurate
in the optically-thin regime (less than ≈2%). In the moderately
optically-thick regime, the hybrid method gives a non-negligible
error (up to ≈31% for a 15 000 K star) in the transition between
optically-thin and -thick media which shows its limitations but
this is a major improvement with respect to the ≈57% error made
with the FLD method. In addition, the hybrid approach captures
partially (≈20% error) the self-shielding in the disk mid-plane
while the FLD approximation does not.

3.1.3. Impact on the radiative acceleration

We look at the radiative acceleration maps obtained with the
FLD and the hybrid methods for the moderately optically-
thick case (τ = 100). Figure 6 shows the radiative acceleration
perpendicularly to the disk plane as obtained after tempera-
ture convergence with the FLD method (left) and the hybrid
method (right). The left panel shows two peculiarities of the
FLD solver. First, we recall that the FLD radiative acceleration
has two asymptotic values depending on the optical regime (see
Sect. 2.2): in the optically-thin limit it is proportional to the
radiative energy and in the optically-thick limit it is equal to the

radiative energy gradient divided by the density. Farther from the
star, the disk structure is visible (the dark blue zones) because of
the density dependence in the radiative acceleration. Second, the
aspect of the FLD acceleration closer to the star is mainly due to
grid effects.

The right panel of Fig. 6 shows the sum of the FLD and
M1 radiative accelerations in the hybrid case. The combination
of the optically-thin and -thick methods permits to capture the
nonisotropy of the radiative acceleration. The hybrid radiative
acceleration is ∼100 greater than the FLD acceleration. This
result holds in the four tests: τ = 0.1, τ = 100 and T?,1, T?,2. It is
in agreement with the study of Owen et al. (2014). This is mainly
due to the temperature at which the M1 opacity is taken. Stellar
photons are at a frequency that is ∼10 times greater than that of
photons emitted by the surrounding gas, which implies an opac-
ity ∼100 greater (see Fig. 1). As shown previously, the radiation
transport in the optically-thin limit is accurately treated with our
hybrid approach and leads to a strong improvement for the radia-
tive acceleration due to the direct irradiation, which is one of
the main contributors expected in the dynamics of massive star
formation.

3.2. Optically-thick regime: Pinte’s test

The second test is a similar but more challenging setup with a
higher integrated optical depth and a sharper density profile than
Pascucci et al. (2004) at the disk edge, as presented in Pinte et al.
(2009). The disk extends from a cylindrical radius rin = 0.1 AU
to rout = 400 AU and the integrated optical depth (for extinc-
tion) is τ810nm = 103. The flared disk density profile ρ(r, z) is
analytically given by

ρ(r, z) = ρ0

(
r
rd

)−2.625

exp

−1
2

(
z

h(r)

)2 , (14)

where the flaring function h(r) is as before, rd = rout/4 = 100 AU
and zd = rout/40 = 10 AU. The star has a radius R? = 2 R� and
the stellar surface temperature is T? = 4000 K.

We use the opacity table from Weingartner & Draine (2001)
which gives the absorption opacity of dust grains with respect
to the wavelength. These opacities were calculated for spherical
astronomical silicates (see Draine & Lee 1984) of size 1 micron
and density 3.6 g cm−3.
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Fig. 6. 1000 AU disk edge-on slices of the radiative acceleration, following the test of Pascucci et al. (2004) obtained with RAMSES after stationarity
is reached. Left: FLD run; right: hybrid run. Star and disk parameters: τ = 100 and T?,1. The hybrid radiative acceleration is about 100 times greater
than the FLD one.

The sharp increase in density at the disk inner edge makes
this test particularly challenging because the local variation of
optical depth must be resolved while the discretized equations
involve locally constant absorption opacities. At the same time,
it is crucial to resolve the local mean free path to prevent an
excess of photon absorption, which leads to overestimating the
temperature. Resolving both is even more challenging for AMR-
grid codes than for cylindrical-grid codes with no material inside
Rin and a logarithmic scale. In RAMSES we choose to refine the
grid based on a density gradient criterion so that the disk edge
is at the finest resolution and the transition from optically-thin
to -thick is as resolved as possible. There is a drawback: having
the greatest resolution at the disk inner edge is very computa-
tionally expensive because, first, it affects many more cells than
if the refinement is operated on the central cell (as usually done
because the sink particle is located there). In addition, two adja-
cent cells cannot differ by more than one level of refinement and
generally the number of cells at the same AMR level is much
higher than two. Therefore, it also means a higher resolution
at larger radii. For that reason, Ramsey & Dullemond (2015)
choose not to use AMR but instead, a logarithmically-scaled grid
particularly adapted to this setup. Figure 7 shows the AMR level
needed to resolve the local mean free path as a function of the
radius in the disk midplane along with the AMR level set with
RAMSES. Hence, we perform our calculations with lmax = 22,
which gives a finest cell width of 1.9× 10−4 AU, so that the mean
free path at the disk inner edge is resolved. The computational
cost does not make possible to extend the zone over which the
mean free path is resolved, nor to compare the temperature over
the entire disk radius with RADMC-3D.

The left panel of Fig. 8 plots the radial temperature profile
in the disk mid-plane obtained with RAMSES with the FLD and
hybrid methods versus RADMC-3D. FLD underestimates the
temperature at the disk inner edge, as in the test of Pascucci et al.
(2004). The temperature slope given by the hybrid method is in
a better agreement with RADMC-3D than the one given by the
FLD method. For the hybrid method, the temperature at the inner
edge of the disk is accurately computed (up to ≈7% error) but is
overestimated at larger radii where it becomes fairly constant at
≈65% error. It can be seen that the error made by the hybrid
approach is not negligible as the mean free path becomes unre-
solved (Fig. 7). The temperature profile obtained with our hybrid
method is very similar to what has been obtained in comparable
studies (see Fig. 8 of Ramsey & Dullemond 2015).

Fig. 7. AMR level needed to resolve the mean free path (mfp) of pho-
tons (red dashed-line) and effective AMR level (black dots) in the disk
midplane following the test of Pinte et al. (2009).

The right panel of Fig. 8 shows the vertical temperature pro-
file. The temperature profile shape given by the hybrid method
is similar to RADMC-3D but with self-shielding partially cap-
tured (up to ≈61% error), unlike in the FLD method. The hybrid
method then recovers the correct temperature (≈2% error) at a
larger disk height.

This setup highlights the need to resolve the mean free path
of photons to obtain the correct temperature at the disk edge
and it shows that the hybrid approach is more accurate than
the FLD approximation to compute the temperature structure
of an optically-thick disk. Moreover, this setup is challenging
for our hybrid method because most of the direct irradiation is
absorbed in the inner parts of the disk so the rest of the disk tem-
perature structure is mainly obtained with the FLD method. As
shown in Ramsey & Dullemond (2015), a frequency-dependent
irradiation scheme is not more accurate in this test. However, a
multigroup FLD method (González et al. 2015) would improve
this, as mentioned by Ramsey & Dullemond (2015).

4. Collapse of an isolated massive prestellar core

We use the newly implemented and tested hybrid method in
the context of a massive star formation and study the influence
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Fig. 8. Left: radial gas temperature profile in the mid-plane of the disk following the test of Pinte et al. (2009). Right: vertical gas temperature profile
at a cylindrical radius of 0.2 AU in the disk. We compare the gas temperature computed using RADMC-3D, the hybrid method (M1+FLD) and
the FLD method alone in RAMSES. The integrated optical depth in the disk mid-plane is τ810 nm = 103 and the stellar temperature is T? = 4000 K.

of using such a radiation transport method with respect to the
previously used flux-limited diffusion approximation.

4.1. Included physics

Our simulations are run with the RAMSES code (Teyssier 2002)
which includes a hydrodynamics solver, sink particle algorithm
(Bleuler & Teyssier 2014), and radiative transfer with either the
flux-limited diffusion module alone (which we call the FLD
run) or coupled to RAMSES-RT (the HY run) within our hybrid
approach. The opacities were originally used in the low-mass
star formation calculations of Vaytet et al. (2013) which include
frequency-dependent dust opacities (T < 1500 K, Semenov et al.
2003; Draine 2003). We modify the gray opacities to account
for dust sublimation, because its importance for the shielding
properties of massive disks has been highlighted in Kuiper et al.
(2010c). We model it in the same way as Kuiper et al. (2010a,
Eqs. (21) and (22) therein) with a dust-to-gas ratio that decreases
with temperature, and a sublimation temperature that increases
with the density. The profile of the dust-to-gas mass ratio is given
by

Mdust

Mgas
(ρ,T ) =

(
Mdust

Mgas

)
0

(
0.5 − 1

π
arctan

(
T − Tevap(ρ)

100

))
(15)

where
(

Mdust
Mgas

)
0

is the initial dust-to-gas mass ratio, and the

evaporation temperature is given by

Tevap(ρ) = gρβ (16)

with g = 2000 K cm3 g−1, β = 0.0195 (Isella & Natta 2005). At
high temperature, when all dust grains are evaporated, the gas
opacity is dominant and is taken equal to 0.01 cm2 g−1 for com-
parison purposes with previous studies, such as Krumholz et al.
(2009); Kuiper et al. (2014); Rosen et al. (2016); Klassen et al.
(2016).

4.2. Setup

We start from initial conditions similar to Rosen et al. (2016): a
150 M� spherical cloud of radius 0.1 pc in a box of size 0.4 pc

to limit boundary effects. The density profile is spherically-
symmetric and ρ(r) ∝ r−1.5. The free-fall time is then

τff =

√
3π

32 Gρ̄
' 42.5 kyr, (17)

where G is the gravitational constant and ρ̄ is the mean den-
sity computed for a uniform sphere. The density at the border
of the cloud is 100 times the density of the ambient medium.
The cloud is in solid-body rotation around the x-axis with rota-
tional to gravitational energy of ≈4%, typical of observed cores
(Goodman et al. 1993). The initial dust-to-gas mass ratio is(

Mdust
Mgas

)
0

= 0.01.

The base resolution is level 7 (1283) and the finest resolution
is 40963 (i.e., level 12, five levels of refinement), which gives a
physical maximum resolution of 20 AU. In order to limit arti-
ficial fragmentation (Truelove et al. 1997), we impose to have
at least 12 cells per Jeans length. Sink particles can only form in
cells refined to the highest level. Sink creation sites are identified
with the clump finder algorithm of Bleuler & Teyssier (2014).
The clump finder algorithm marks cells whose density is above a
given threshold (3.85× 10−14 g.cm−3 in these calculations). The
marked cells are attached to their closest density peak, which
form a “peak patch”. We check connectivity between the patches,
then the significance of a peak patch is given by the ratio between
the peak density and the maximum saddle density lying at a
boundary of the peak patch. If the peak-to-saddle ratio is lower
than a given value (2 here) the patch is attached to the neigh-
bor patch of highest saddle density. The remaining peak patches
are labeled as clumps. Each clump must then meet two condi-
tions to lead to a sink creation: it has to be bound and subvirial.
The region around a sink particle is also refined to the high-
est level. The accretion scheme is based on a density threshold.
Consider a cell located within the accretion radius: its accreted
mass by the sink is ∆m = max(0.25(ρ − ρsink) × ∆x3, 0), where
∆x is the maximum resolution. We merge sinks when they are
located in the same accretion volume, while the accretion radius
is set to 4∆x ≈ 80 AU. The radius and luminosity of the star
mimicked by the sink are computed from the pre-main sequence
evolution models of Kuiper & Yorke (2013) and depend on their
time-averaged accretion rate and their mass.
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Fig. 9. Time evolution of the main sink mass (top-left panel), accretion rate (top-right), disk mass (bottom-left), and outflow mass (bottom-right).

4.3. Results

We run one simulation with FLD only (denoted as FLD) and
one with FLD+M1 (denoted as HY) until t ' 30 kyr' 0.71 τff .
As the initial density profile is peaked, a sink particle is expected
to form in a few kyr. Both runs lead to the formation of several
sink particles, one of which is much more massive than the other
sink particles and that we refer to as the main sink or star. A disk
and radiative outflows form around the main sink. The criteria
for determining the disk and outflows are explained below. We
identify a disk on a cell-basis after converting Cartesian coordi-
nates into cylindrical coordinates centered on the main sink and
aligned with the rotational axis, according to the several criteria
of Joos et al. (2012):

– The disk is a rotationally-supported structure (i.e., not ther-
mally supported): ρv2

φ/2 > fthresP, where vφ is the azimuthal
velocity and P is the thermal pressure. The value of fthres = 2
is chosen, as in Joos et al. (2012). The use of fthres > 1
leads to a stronger constraint on the identification of cells
belonging to the disk;

– In order to avoid large low-density spiral arms, a gas number
density threshold is set: n > 1 × 109 cm−3;

– The gas is not on the verge of collapsing radially: vφ >
fthresvr, where vr is the radial velocity;

– The vertical structure is in hydrostatic equilibrium: vφ >
fthresvz, where vz is the vertical velocity.

We define outflows as gas flowing away from the central star at
a velocity greater than the escape velocity, which corresponds to
vr > vesc =

√
2GM?/r, where r is the distance between the sink

and the cell and M? is the sink mass.
The time evolution of the main sink, disk and outflow

masses, along with the accretion rate, are displayed in Fig. 9.
First, the sink masses are almost equal in both runs before
t ' 14 kyr and M? = 5 M�. Even though their evolution differs

between 14 and 20 kyr, their values remain similar and the diver-
gence appears only at t ' 20 kyr, when M? = 12 M� (in the HY
run). At that point, the radiative cavities appear in the HY run
(see the bottom-right panel of Fig. 9). They appear in the FLD
run after the massive star has reached 16 M�. From this time on,
the sink mass increases more slowly in the HY run, this can be
seen on the accretion rate (top-right panel of Fig. 9). The final
stellar mass is M? = 23.3 M� in the FLD run and 17.6 M� in the
HY run.

As it is shown on the top-right panel of Fig. 9, the stars expe-
rience bursts of accretion separated by ∼100 yr to a few kyr.
These bursts are due to a low-mass companion (sink particle)
being accreted by the most massive star. In each run, the main
sink experiences accretion rates of M�∼10−4−10−2M� yr−1,
which is consistent with previous numerical studies (Klassen
et al. 2016) and observations (review by Motte et al. 2018 and
references therein). In total, eight companions are formed and
accreted in each run. These accretion events contribute to a total
of 6.7 M� in the FLD run and 3.9 M� in the HY run, hence
about 28 and 22% of the final primary star mass, respectively. All
sinks appeared after the primary mass was greater than 10 M�
and were accreted in less than 3 kyr (except one, formed at large
radius and which does not fall directly onto the primary sink). In
each run, the most massive secondary is ∼2 M� and gathers most
of its mass when orbiting close to the primary, in the disk dens-
est regions. Our merging criterion can lead to overestimating
the mass of the primary star and affect the system multiplicity.
Assessing the impact of the merging criterion would require a
dedicaded study, which is beyond the scope of this paper.

4.3.1. Disk properties

As shown in the bottom-left panel of Fig. 9, the disks obtained
are massive (≈17 M� at the end of the simulation) and similar
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Fig. 10. Radial rotational velocity profile in the disk cells for the HY run
at t = 30 kyr and Keplerian profile computed with the main stellar mass.
The slope of the velocity profile is consistent with Keplerian rotation.

in mass in both runs. Observational constraints on the disk mass
remain sparse (Motte et al. 2018) but the disk mass we obtain
is consistent with the previous numerical work of Klassen et al.
(2016).

We investigate the disk stability by computing the Toomre
parameter Q defined by

Q =
csκ

πGΣ
, (18)

where cs is the sound speed, κ is the epicyclic frequency and is
equal to the rotation frequency for a Keplerian disk and Σ is the
column density. We recall that the Toomre parameter computes
the ratio of the thermal support and differential rotation sup-
port over gravitational fragmentation and that the disk is locally
unstable if Q < 1. The gas in our simulation is initially in solid-
body rotation but the disks formed indeed exhibit rotation curves
consistent with Keplerian rotation, as shown in Fig. 10. As a
result, the epicyclic frequency κ is equal to Ω, the Keplerian
rotational frequency.

To calculate Q, we have taken the column density integrated
over the x-axis (perpendicular to the disk). Moreover, the selec-
tion given by the criteria presented above gives a disk with a
vertical structure. Therefore, we evaluate the Toomre Q parame-
ter in the disk selection, then we average Q over the disk height.
For completeness, we have also computed Q with cs and κ
evaluated in the disk midplane and have obtained very similar
results.

We also take the radiation into account as an extra-support
against fragmentation because the radiative pressure contributes
to the sound speed (Mihalas 1984, Eq. (101.22) therein)

c2
s = Γ1

P + Pr

ρ
, (19)

where P is the gas pressure, Pr is the radiative pressure; Γ1 = 5/3
for a non-radiating fluid (Pr = 0, pure hydrodynamical case), and
Γ1 ' 1.43 if Pg = Pr). Therefore, we argue that even for a disk
in a strong radiation field and gas-radiation coupling (Pr∼Pg),
Q only increases by a factor of '1.3 as compared to the pure
hydrodynamical case. Figure 11 displays the local Toomre Q
value taking the radiative support into account but the values
of Q without the radiative support lead to the same conclusions.

As shown in Fig. 11, the disks obtained in both runs are
Toomre unstable close to the massive star and in the spiral arms.
This is consistent with the regular creation of sink particles in

those spiral arms. Eight low-mass short-lived companions are
generated in both runs. Even though the appearance of sink
sparticles is quite resolution-dependent, we limit it with our
refinement criterion based on the Jeans length.

The left panel of Fig. 12 shows the main star mass against
the disk mass. Both generally increase with time but the disk
also undergoes losses of mass as it feeds the main sink parti-
cle. Indeed, the main accretion mode in our simulation is disk
accretion, although the accretion bursts are due to the accretion
of sink particles recently created in the Toomre unstable spiral
arms of the disk. The accretion in our simulation is more stable
than what is obtained in the work of Klassen et al. (2016), where
the global disk instability leads to an increase of '10 M� in a
few kyr in their 100 M� run.

4.3.2. Radiative cavities – outflows

As mentioned in Sect. 4.3: we define outflows as gas flowing
away from the central star at a velocity greater than the escape
velocity. In the FLD run, radiative cavities appear at t ' 22 kyr
(bottom-right panel of Fig. 9). They develop earlier and at lower
stellar mass (M? = 12 M�, t ' 20 kyr) in the HY run than in
the FLD run (M? = 16 M�, right panel of Fig. 12). In both
runs, the cavities grow symmetrically with respect to the disk
plane until they reach an extent of '2000 AU in the FLD run
and '3000 AU in the HY run at t ' 30 kyr (see Fig. 13). The
right panels of Fig. 13 display a slice of the density within the
outflow selection of cells. The gas velocity is also higher in
the HY run, ≈25 km s−1, against ≈15 km s−1 in the FLD run.
As displayed in Fig. 14, gas is pushed away by the radiative
force, which locally exceeds gravity. It illustrates the flashlight
effect: the radiative force dominates in the poles while the grav-
ity, and hence the accretion, dominates in the disk plane. The
consequence of the stronger radiative force is that the outflows
in the HY run are able to transport higher density gas than
in the FLD run (see right panels of Fig. 13), mainly because
it spans a wider angle, particularly in the vicinity of the star
(see Fig. 14). Indeed, the outflows displayed in Fig. 13 have
masses Mo,HY ' 0.6 M� >Mo,FLD ' 0.06 M�, as displayed on the
bottom-right panel of Fig. 9. During almost all the simulations
the outflows in the HY run are more massive than in the FLD
run. In addition, the temporal evolution at t' 30 kyr seems to
show that this mass is still going to increase in the HY run but
not in the FLD run. We finally note that the peak in the outflow
mass at t' 20 kyr is due to the launching of the outflows in a
high-density medium close to the star, which therefore gives a
higher outflow mass: the low-density cavity has not formed yet.

4.3.3. Rayleigh–Taylor instabilities

No Rayleigh–Taylor instabilities appear in the aforementioned
runs (FLD and HY). They have been shown to contribute sig-
nificantly to the star-disk system evolution and to the final mass
of the star in several studies (Krumholz et al. 2009; Rosen et al.
2016, 2019). Discussions about the presence of these instabilities
in massive star formation simulations lean on arguments of
numerical resolution, since the smaller-scale modes are the most
unstable (Jacquet & Krumholz 2011). Here we try to tackle this
problem by cranking up the resolution to see if we get any.

We conduct a run whose spatial resolution permits one to
resolve the seeds of radiative Rayleigh–Taylor instabilities. We
call this run HY-RTi, based on the HY run restarted at the time
when radiative cavities appear. We rely on the AMR frame-
work to resolve the radiative cavities interfaces with a refinement
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Fig. 11. Density slices of the disk selection (left panels) and Toomre Q parameter (right panels) in a (2000 AU)2 region centered on the location of
the most massive sink particle (left panels), in the FLD run (top) and the HY run (bottom), at t = 30 kyr.

Fig. 12. Primary star mass versus disk mass (left) and outflow mass versus star mass (right), for both FLD and HY runs.

strategy based on the gradient of the stellar radiation
∇EM1∆x

EM1
< 10%, (20)

where EM1 is the M1 module radiative energy and ∆x the cell
width. This means that if the radiative energy of the M1 mod-
ule changes by more than 10% between two adjacent cells, these
cells are flagged for refinement. We add a second and a third
conditions to flag a cell: EM1 > Ethres = 3 × 10−12 erg cm−3, and
‖x‖> 1500 AU (over and under the sink-disk plane). The last
condition is applied once the cavities are developed beyond this
height. The second and third criteria are necessary to not over-
refining other regions than the interfaces of the cavities, which
would explode the cost of the simulation.

The left panel of Fig. 15 shows the radiative cavities in the
HY-RTi run with AMR level contours overplotted and the right
panel of Fig. 15 displays the M1 radiative energy with respect to
the radius. The zone within the contours “11” is at the AMR level
12, which is the highest level. Contours show that the radiative
energy drop around R = 5000 AU is resolved to the AMR level
12, which is the highest level. As a result, the finest resolution is
put on the cavity interfaces. Despite this refinement strategy, no
radiative Rayleigh–Taylor instability has developed in any of our
simulations. We explain below why this result is not numerical
but physical.

We compare the typical advection time of the flow τadv and
the growth time of the instability τinstab; the condition for the
instability to develop is τadv > 3τinstab (Foglizzo et al. 2006).
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Fig. 13. Left panels: density slices perpendicular to the disk in a (10000 AU)2 region. Right panels: density in outflow selections in a (8000 AU)2

region. Top panels: FLD run; bottom panels: HY run. t = 30 kyr. Figures are centered on the location of the most massive sink particle.

Fig. 14. Radiative force to gravitational force normalized ratio in the FLD run (left panel) and HY run (right panel) in a (10 000 AU)2 region
perpendicular to the disk. t = 30 kyr. Figures are centered on the location of the most massive sink particle. Regions of outflows (see Fig. 13) are
dominated by the radiative force.

First, the flow in the bubble has supersonic speeds and forms
a shock of thickness H ' 300 AU (measured on the density
profile) when it encounters the accretion flow. In the shock
frame (whose velocity is 2 km s−1), we measure a gas velocity
of 10 km s−1. Hence, the advection timescale of the gas in the
shock is τadv ' 0.1 kyr.

We now compute the growth rate of the Rayleigh–Taylor
instability for the shortest perturbations we can capture (of spa-
tial scale λ = ∆xmin = 20 AU, which is the fastest growing mode)

using the equation (80) from Jacquet & Krumholz (2011). We
obtain a growth rate of ω' 4.5 kyr−1, hence a growth timescale
of τinstab ' 0.2 kyr. This is longer than the advection timescale
τadv, so the gas is advected before the instability develops. Fur-
thermore, the calculation in Jacquet & Krumholz (2011) is based
on the adiabatic approximation which is valid when the cavity
edge temperature is taken to be equal to the dust sublimation
temperature (∼1100 K). Numerically, we get a temperature of a
few ∼100 K at the cavity edge, thus the adiabatic approximation
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Fig. 15. HY-RTi run at t∼0.7τff . Left panel: density slice perpendicular to the disk in a (10 000 AU)2 region. Right panel: scatter plot of the M1
radiative energy against the radius. Contours show the AMR level. The cavity edges are zones of primary absorption for the stellar radiation and
are resolved to the highest level (12).

breaks down in our simulation. Physically, the cavity edge is
mainly heated by stellar radiation, which is geometrically diluted
in the optically-thin cavity. Therefore, it can be shown that the
cavity edge should have a temperature of a few 100 K at a dis-
tance of ∼3000 AU from a ∼105 L� source. Moreover, the cavity
interior is optically-thin and thus is not adiabatic, as mentioned
in Jacquet & Krumholz (2011). If compressed, the gas radi-
ates away its energy instead of heating as an optically-thick gas
(adiabatic) would.

For these reasons, we go one step further and relax the adi-
abatic approximation in the cavity interior. Hence, the entropy
within the cavity cannot account for radiation. We compute the
total entropy (gas plus radiation) as a function of the coupling
between gas and radiation via the local optical depth τ

stot =
kB

m(γ − 1)
ln

(
Pg ρ

−γ) + min(τ, 1)
4Pr

ρT
, (21)

where kB is Boltzmann’s constant, m is the molecular hydrogen
mass, Pg is the gas pressure, and Pr is the radiation pressure. The
maximum growth rate is given by the Brunt-Väisäla (or buoy-
ancy) frequency, which is the oscillation frequency of a fluid
particle in a stratified medium

ω =

√
γ − 1
γ

geff∇S , (22)

where S is the total entropy stot normalized by kB/m and geff

is the effective gravity geff = g − κF/c, with κF/c the radiative
acceleration. We compute ω in our simulation at the bubble
edge and get ω. 10 kyr−1, which gives τinstab & 0.1 kyr 'τadv.
Therefore, no Rayleigh–Taylor instability should develop in our
simulation.

5. Conclusions and discussion

We have implemented a new hybrid radiative transfer method
in the AMR code RAMSES based on the flux-limited diffusion
(FLD) module (Commerçon et al. 2011b) and M1 module in
RAMSES-RT (Rosdahl et al. 2013), in order to treat accurately
both the stellar irradiation and the diffuse component around
a massive protostar. Our hybrid approach takes advantage of
the M1 module fully tested in the optically-thin regime and of
the FLD module in the optically-thick limit. Moreover, in con-
trast to the consideration of local photons inherent to the FLD

approach, our method keeps the frequency information of the
stellar photons propagated with RAMSES-RT, which leads to
an improvement in the treatment of coupling with the dust-gas
mixture via the temperature and the radiative force.

We tested this improvement in pure radiative transfer tests
of a star irradiating a static disk structure (Pascucci et al. 2004,
Pinte et al. 2009). Our results show that the hybrid method is
very accurate is the optically-thin regime (≈2% maximal error,
≈62% with the FLD method alone), and more accurate than
the FLD method in the optically-thick regime (≈25% instead
of ≈36% with the FLD method). It is also capable of capturing
partially the self-shielding in the disk mid-plane, because it is
shielded from stellar radiation by the disk inner region. There-
fore, the hybrid method is suited to determine accurately the
gas temperature structure in different regimes of optical thick-
ness. In addition, because stellar photons are treated apart from
the photons emitted by the dusty disk, the associated radiative
force is computed more consistently with the hybrid method
and its value is about ∼100 times greater than with pure FLD.
This shows the need for such an hybrid method, beyond the
diffusion approaches.

After testing our hybrid approach in pure radiative transfer
cases, we have applied it to a radiation-hydrodynamical prob-
lem: the collapse of a massive prestellar core. Both runs lead to
the formation of a massive star. The multi-dimensionality of our
simulations leads to accretion via the flashlight effect: accretion
occurs through a disk while radiation escapes via the poles
(Yorke & Sonnhalter 2002). Low-mass sink particles are created
in the Toomre unstable spiral arms of the disk, they move
together with the fluid and are rapidly accreted onto the central
massive star. At the end of the simulation (t ' 30 kyr ' 0.71τff),
the star mass is 23.3 M� in the FLD run and 17.6 M� in the
HY run, showing no signs of decrease in the accretion. This
difference is explained by the direct radiative pressure onto the
disk, which lowers the accretion rate. When the star reaches
12 M� (HY run) or 16 M� (FLD run), radiative polar cavities
develop because of the stellar radiative pressure. Radiative
outflows in the HY run are ∼50% more extended than in the
FLD run.

Our method also contains a few assumptions and limita-
tions we shall discuss. As shown above, the hybrid method is
accurate within ≈25−65% in the optically-thick limit. In the
prestellar core collapse problem, the accretion disk around the
protostellar source is very optically-thick (&103) and the photon

A42, page 14 of 17

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201936605&pdf_id=0


R. Mignon-Risse et al.: A new hybrid radiative transfer method for massive star formation

mean free path is barely resolved in AMR codes with current
computational facilities. The disk midplane temperature is there-
fore affected by this error: it is generally overestimated, which
increases the Jeans length and therefore stability. Yet, the hybrid
method clearly performs better than the pure FLD approach in
predicting the mid-plane temperature. Also, the temperature in
the optically-thin cavities is computed more accurately with the
hybrid method.

In this study, we have focused on a gray approach for both
the direct and the diffuse radiations. However, the gray radiative
transfer is not inherent to our model and multifrequency methods
have been implemented in RAMSES-RT (Rosdahl et al. 2013)
and in the FLD module (González et al. 2015). We have cho-
sen to work with the gray methods to save computational time
and memory. The multifrequency version of our hybrid method
is beyond the scope of this paper. We have also focused on the
irradiation by one source with the M1 method. However, the sev-
eral sinks produced in these simulations were rapidly accreted
by the primary one, so this does not change our conclusions.
Moreover, the irradiation can be generalized to several sources
via one photon group per frequency band or per source, and we
leave this to further work. Finally, ionization processes were not
taken into account here. They can be relevant for massive star
formation, but the opening of the ionized cavities and the disk
photo-evaporation has been shown to occur toward the end of
our simulation (Kuiper & Hosokawa 2018). These physics will
be included in further works.

RAMSES includes magneto-hydrodynamics (Fromang et al.
2006), and the interplay between the radiation (modeled with
FLD) and the magnetic field has been proven: magnetic brak-
ing enhances the accretion speed and hence the radiative shock
energy release (Commerçon et al. 2011a). This energy heats the
disk and prevents further fragmentation. The treatment of direct
stellar irradiation within our hybrid method can modify this
interplay because the disk self-shielding will be captured better
than with the FLD method (if the mean-free path is resolved, see
Sect. 3.2), and also via the launching of magnetic and radiative
outflows. Thus, the hybrid method offers new perspectives for
the radiation-magneto-hydrodynamics simulations of massive
star formation.

Acknowledgements. Part of this work was supported by the CNRS “Programme
National de Physique Stellaire” (PNPS). The numerical simulations presented
here were run on the CEA machines Irfucoast and Alfvén. The visualisation of
RAMSES data has been executed with the OSYRIS python package. We thank the
referee for constructive comments. R.M.R. acknowledges C. Pinte for MCFOST
data, and J. Ramsey, R. Kuiper, and S. Fromang for useful discussions. R.M.R.
finally thanks T. Foglizzo for his fruitful insight on Rayleigh–Taylor instabilities.

References
Aubert, D., & Teyssier, R. 2008, MNRAS, 387, 295
Beuther, H., Churchwell, E. B., McKee, C. F., & Tan, J. C. 2007, in Protostars

and Planets V, eds. B. Reipurth, D. Jewitt, & K. Keil (Tucson: University of
Arizona Press), 165

Blandford, R. D., & Payne, D. G. 1982, MNRAS, 199, 883
Bleuler, A., & Teyssier, R. 2014, MNRAS, 445, 4015
Bonnell, I. A., Vine, S. G., & Bate, M. R. 2004, MNRAS, 349, 735
Commerçon, B., Hennebelle, P., & Henning, T. 2011a, ApJ, 742, L9
Commerçon, B., Teyssier, R., Audit, E., Hennebelle, P., & Chabrier, G. 2011b,

A&A, 529, A35
Commerçon, B., Launhardt, R., Dullemond, C., & Henning, T. 2012, A&A, 545,

A98
Draine, B. T. 2003, ApJ, 598, 1026
Draine, B. T., & Lee, H. M. 1984, ApJ, 285, 89

Dullemond, C. P., Juhasz, A., Pohl, A., et al. 2012, Astrophysics Source Code
Library [record ascl:1202.015]

Foglizzo, T., Scheck, L., & Janka, H. T. 2006, ApJ, 652, 1436
Fromang, S., Hennebelle, P., & Teyssier, R. 2006, A&A, 457, 371
Gnedin, N. Y., & Abel, T. 2001, New Astron., 6, 437
Goddi, C., Ginsburg, A., Maud, L., Zhang, Q., & Zapata, L. 2018, ArXiv e-prints

[arXiv:1805.05364]
González, M., Audit, E., & Huynh, P. 2007, A&A, 464, 429
González, M., Vaytet, N., Commerçon, B., & Masson, J. 2015, A&A, 578, A12
Goodman, A. A., Benson, P. J., Fuller, G. A., & Myers, P. C. 1993, ApJ, 406, 528
Harries, T. J., Douglas, T. A., & Ali, A. 2017, MNRAS, 471, 4111
Haworth, T. J., & Harries, T. J. 2012, MNRAS, 420, 562
Hennebelle, P., Commerçon, B., Chabrier, G., & Marchand, P. 2016, ApJ, 830,

L8
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Appendix A: Temperature structure with isotropic
scattering
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Fig. A.1. Gas temperature profiles, following the test of Pascucci et al.
(2004). We compare the gas temperature computed using MCFOST,
the hybrid method (M1+FLD) and the FLD method alone in RAMSES,
with isotropic scattering. T? = 5800 K and the integrated optical depth
in the disk mid-plane is τ = 100. Top: radial profile in the disk mid-
plane. Bottom: vertical profile at a disk radius of 20 AU.

Figure 1 shows that the extinction opacity is dominated by
scattering at high frequency, that is, where stellar irradiation
dominates. Hence, we examine how the gray opacities are mod-
ified when including isotropic scattering in the FLD and M1
equations.

It can be shown that taking the scattering into account does
not modify the first moment of the RT equation (the conserva-
tion of the radiative energy), because the source term involves
the radiative energy and its redistribution is the same with and
without scattering.

However, the first moment of the RT equation (see Eq. (5)) is
modified because the coupling between the gas and the radiative
flux is enhanced by the scattering. Therefore, the opacity in this
equation is the extinction (absorption+scattering) opacity instead
of the absorption opacity.

Similarly, the gray version of the flux evolution equation in
the M1 module introduces the Planck mean opacity as defined in
Eq. (3) but with the extinction opacities.

In fact, the inclusion of isotropic scattering has no explicit
impact on the radiative energy repartition but it increases the
absorption and redistribution of the radiative flux. To test the
behavior of the hybrid approach with isotropic scattering we run
the most optically-thick case of the setup from Pascucci et al.
(2004), with τ = 100, following the configuration and numerical
parameters of Sect. 3.1.

The left panel of Fig. A.1 shows that the temperature in the
mid-plane of the disk is well reproduced by the hybrid approach,
as compared to the result obtained with MCFOST. The maxi-
mal error is ≈20% with the hybrid against ≈40% with the FLD
method alone. The right panel of Fig. A.1 emphasizes that most
of the shielding effect in the disk mid-plane is captured by the
hybrid approach, unlike for the FLD method. We compare both
panels of Fig. A.1 with the left panel of Fig. 4 and right panel of
Fig. 5, respectively, as they show the result of the same setup
without scattering. We observe that the temperature structure
is not much influenced by the treatment of scattering. First, as
shown in Fig. 1, scattering only dominates at high-frequencies
and therefore mainly at the first interaction of stellar photons
with the medium, which corresponds to the disk inner edge.
After this interaction, photons are reemitted at the local tem-
perature, where the absorption opacity dominates. This explains
why the temperature at the disk inner edge is ∼400 K with
isotropic scattering against ∼350 K without scattering. Second,
since opacities are frequency-averaged in our hybrid approach,
taking isotropic scattering into account does not impact much
the Planck and Rosseland mean opacities. Therefore, we do not
consider scattering in the collapse calculations in Sect. 4.

Appendix B: Performance test
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Fig. B.1. Strong scaling result for 2–32 cores in the test of Pascucci
et al. (2004), with τ = 100, T? = 5800 K. The ideal theoretical speedup
is represented by the black line. We compare the strong scaling between
the hybrid method (M1+FLD, blue squares) and the FLD method alone
(orange circles). We normalize the speedup by that obtained with two
cores.

In this section, we compare the performance of the FLD and
the hybrid methods. First, we run the test from Pascucci et al.
(2004), with τ = 100 and T? = 5800 K to probe the scaling of
each method. For this test, we choose a grid with two levels of
refinement: 8 and 9, which leads to ∼2 × 107 cells. Figure B.1
shows the strong scaling results from 2 to 32 cores. We can see
that the scaling properties of the FLD and the hybrid methods are
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very similar and close to the theoretical line. The departure from
the theoretical line (speedup of '11 instead of 16 for 32 cores) is
likely due to the high number of global communications which
occur in the FLD conjugate gradient algorithm.

The FLD implementation without hydrodynamics is implicit
and therefore is not restricted by the CFL condition in our pure
radiative transfer tests, in constrast to the M1 part of our hybrid
method. Therefore, we do not compare the computational time
in those tests. However, we look at the total CPU time in the
collapse calculations presented in Sect. 4. The HY run took
≈5100 CPU hours, against ≈3900 for the FLD run, which con-
sists in an additional time of about ≈30%. The time step in the
HY run is first constrained by the M1 CFL condition when the
primary sink forms, which is responsible for this difference of
computational time: more steps were needed to reach the same

physical time. As mentioned in Sect. 2, the FLD modifies the
hydrodynamical CFL time step : the sound speed accounts for
both thermal and radiative pressures. It decreases as the radia-
tive pressure (hence energy) increases, while the M1 time step is
fixed. As the central mass gains mass, its temperature and lumi-
nosity generally rise and so does the radiative energy. Therefore,
the FLD time step decreases in both runs, but is still greater than
the M1 time step in the HY run, at first. Then when the out-
flows are launched, both runs are limited by the FLD time step,
because both the radiative energy has become significant and the
density is very low in the outflow (hence the modified sound
speed increases). From this time on, the time step is comparable
in both runs. However, the number of iterations in the conjugate
gradient is ∼10% smaller in the HY run than in the FLD run, and
so is the elapsed time per time step.
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